1
|
Amanlou A, Nassireslami E, Dehpour AR, Rashidian A, Chamanara M. Beneficial Effects of Statins on Seizures Independent of Their Lipid-Lowering Effect: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:13-25. [PMID: 36688200 PMCID: PMC9843460 DOI: 10.30476/ijms.2021.91645.2289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 01/24/2023]
Abstract
Among the many types of central nervous system (CNS) disorders, seizures and epilepsy severely affect the quality of life and routine daily activity of the sufferers. We aimed to review research studies that investigated the effect of statins on the prevention and treatment of seizures and epilepsy. Both animal models and human studies were included in this review. This article starts with a brief introduction about seizure, its prevalence, treatment, and various animal models of seizures and epilepsy. Next, we discuss statin's mechanism of action, side effects, and effects on neurological disorders with a specific focus on seizures. Finally, the effects of different types of statins on seizures are compared. The present review gives a better understanding of the therapeutic effects of statins on neurological disorders in animal models and human studies. This permits researchers to set up study designs to resolve current ambiguities and contradictions on the beneficial effects of statins on neurological disorders.
Collapse
Affiliation(s)
- Arash Amanlou
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran,
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran,
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rashidian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran,
Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran,
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lin CH, Chang CH, Tai CH, Cheng MF, Chen YC, Chao YT, Huang TL, Yen RF, Wu RM. A Double-Blind, Randomized, Controlled Trial of Lovastatin in Early-Stage Parkinson's Disease. Mov Disord 2021; 36:1229-1237. [PMID: 33449392 DOI: 10.1002/mds.28474] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent evidence indicates that lipophilic statins have a neuroprotective benefit in animal models of Parkinson's disease (PD). The objective of this study was to evaluate whether lovastatin has the potential to slow motor symptom progression in patients with early-stage PD. METHODS This double-blind, randomized, placebo-controlled trial enrolled 77 patients with early-stage PD between May 23, 2017, and July 12, 2018, with follow-up ending September 1, 2019. Lovastatin 80 mg/day or placebo with 1:1 randomization was administered for 48 weeks. Mean change in the parts I-III scores of the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS), changes in the striatal dopamine uptake ratio measured by 18 F-dopa PET scan, and changes in PD medications between baseline and the week 48 visit were measured. RESULTS Of the 77 randomized patients, 70 (90.9%) completed the study. There was a slightly beneficial trend of the MDS-UPDRS motor score in the lovastatin group (-3.18 ± 5.50) compared with the placebo group (-0.50 ± 6.11); P = 0.14 adjusted for age, sex, disease duration, and baseline LEDD. Mean percentage change in the striatal 18 F-dopa uptake ratio deteriorated less in the lovastatin group than in the placebo group on the dominant side of caudate (1.2% ± 7.3% vs -7.1% ± 8.2%, P < 0.01) and putamen (2.3% ± 7.1% vs -6.4% ± 8.1%, P < 0.01). We found no between-group differences in the change in part I or part II MDS-UPDRS scores. Lovastatin was generally well tolerated. CONCLUSIONS Lovastatin treatment in patients with early-stage PD was associated with a trend of less motor symptom worsening and was well tolerated. A future larger long-term follow-up study is needed to confirm our findings. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hao Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Fang Cheng
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Chieh Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ying-Ting Chao
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tse-Le Huang
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruoh-Fang Yen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Zeyghami MA, Hesam E, Khadivar P, Hesam HK, Ahmadnia A, Amini A. Effects of atorvastatin and metformin on development of pentylenetetrazole-induced seizure in mice. Heliyon 2020; 6:e03761. [PMID: 32382676 PMCID: PMC7203078 DOI: 10.1016/j.heliyon.2020.e03761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Recent studies have shown that statins and Metformin may have beneficial effects on seizure through different mechanisms. In the current study, we investigated whether Metformin, Atorvastatin, and concomitant uses of them have beneficial effects on pentylenetetrazole (PTZ)-induced kindling. Adult male C57BL/6 mice were randomly divided into four experimental groups with seven mice in each group. Group 1, control group; group 2, received Metformin (200 mg/kg, i.p); group 3, received Atorvastatin (10 mg/kg, i.p.); group 4, received Atorvastatin (10 mg/kg, i.p.) plus Metformin (200 mg/kg, i.p.). Twenty minutes after injection of the mentioned drugs, the experimented mice received 37/5 mg/kg of PTZ intraperitoneally on alternating days. Then the convulsive behavior signs were evaluated for 20 min after each PTZ injection. There were significant differences in the stage 2 latency parameter among group 2 (p = 0.033, F = 8.46)/group 3 (p = 0.032, F = 10.42)/group 4 (p = 0.008, F = 24.57) as compared to the control group, while no significant differences were found comparing only group 2,3, and 4 with eachother excluding the control group. Pretreatment with Atorvastatin (p = 0.002, F = 33), Atorvastatin + Metformin (p = 0.006, F = 20.77), and Metformin alone increased stage 5 latency as compared to the PTZ group, significantly. Also, our results have shown that pretreatment with Atorvastatin (p = 0.013, F = 14.48), Metformin (p = 0.015, F = 16.67), and concomitant usage of them significantly decreased stage 5 duration as compared to the control group. Our findings clearly demonstrate that concomitant use of Metformin and Atorvastatin has no more protective effect against the development of kindling as compare to these drugs alone. Thus, we concluded that, these drugs may inhibit kindling via a similar mechanism and we suggested that it is probably through regulation of autophagy.
Collapse
Affiliation(s)
- Mohammad Ali Zeyghami
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Dept. Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Hesam
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Dept. Physiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parand Khadivar
- Dept. Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Halimeh Khaton Hesam
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Ahmadnia
- Dept. Molecular Medicine, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Amini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Quintana-Pájaro LDJ, Ramos-Villegas Y, Cortecero-Sabalza E, Joaquim AF, Agrawal A, Narvaez-Rojas AR, Moscote-Salazar LR. The Effect of Statins in Epilepsy: A Systematic Review. J Neurosci Rural Pract 2018; 9:478-486. [PMID: 30271037 PMCID: PMC6126295 DOI: 10.4103/jnrp.jnrp_110_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, used for the management of hypercholesterolemia and related atherosclerotic diseases. Several studies have indicated the neuroprotective effects of statins on several neuropathological conditions. However, the role of these medications in epilepsy is still unclear. The purpose is to evaluate and summarize the level of evidence on the efficacy of statins in neuronal hyperexcitability and the neuroinflammatory processes of epilepsy. METHODS A systematic review was performed. Eligibility Criteria: This review involved studies conducted in humans and nonhuman experimental models, covering the use of an inhibitor of HMG-CoA reductase, alone or accompanied by another medication, in epilepsy. Information Sources: A systematic literature search was performed in PubMed, Embase, Ebsco Host, Scopus, Science Direct, Medline, and LILACS. Risk of Bias: It was evaluated with the Newcastle-Ottawa Scale and the experimental studies were evaluated using the GRADE tool. RESULTS Twenty articles of the 183 evaluated were included. Sixteen studies were conducted in animal models and four studies in humans. Most studies in mice reported a reduction in epileptiform activity and reduction in systemic inflammation with the treatment of statins, potentially influencing epilepsy control. Few studies in humans were performed in the geriatric population with variable results (neuroinflammation, seizure prevention, cell death, prevention of kindling, increase in convulsive threshold, increase in latency, decrease in frequency of crisis, and reduction in mortality) related to reduction in the rate of hospitalizations, mortality, and prevention of epilepsy. Studies in mice found a decrease in interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha and an increase in IL-10 and endothelial nitric oxide synthase. CONCLUSIONS The possible antiepileptic mechanism of statins may be related to the reduction in neuroinflammation mediated by a decrease in pro-inflammatory cytokines and action in the nitrergic system. Further studies evaluating the impact of statins on seizure control are necessary.
Collapse
Affiliation(s)
- Loraine De Jesús Quintana-Pájaro
- Department of Medicine, University of Cartagena, Cartagena de Indias, Colombia
- Centro de Investigaciones Biomédicas, Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - Yancarlos Ramos-Villegas
- Department of Medicine, University of Cartagena, Cartagena de Indias, Colombia
- Centro de Investigaciones Biomédicas, Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - Eileen Cortecero-Sabalza
- Department of Medicine, University of Cartagena, Cartagena de Indias, Colombia
- Centro de Investigaciones Biomédicas, Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
| | - Andrei F. Joaquim
- Department of Neurology, Division of Neurosurgery, State University of Campinas, Campinas, Sao Paulo, Brazil
| | - Amit Agrawal
- Department of Neurosurgery, MM Institute of Medical Sciences and Research, Maharishi Markandeshwar University, Ambala, Haryana, India
| | | | - Luis Rafael Moscote-Salazar
- Department of Medicine, University of Cartagena, Cartagena de Indias, Colombia
- Centro de Investigaciones Biomédicas, Faculty of Medicine, University of Cartagena, Cartagena de Indias, Colombia
- Department of Neurosurgery, University of Cartagena, Cartagena de Indias, Colombia
| |
Collapse
|
5
|
Protective Role of UCP2 in Oxidative Stress and Apoptosis during the Silent Phase of an Experimental Model of Epilepsy Induced by Pilocarpine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6736721. [PMID: 30159115 PMCID: PMC6109463 DOI: 10.1155/2018/6736721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/02/2018] [Indexed: 12/30/2022]
Abstract
Neuroprotection is a desirable process in many neurological disorders, yet complex mechanisms involved in this field are not completely understood. The pilocarpine epilepsy model causes potent, seizure-induced excitotoxicity cell death and mitochondria impairment. The present study is aimed at investigating the role of UCP2, a ROS negative regulator, in the neuroprotection after cholinergic insult. Our data demonstrated that UCP2 expression was augmented in the rat hippocampus 3 days after status epilepticus (SE), reaching a peak on the fifth day, then returning to basal levels. Concomitantly, phospho-AKT expression levels were higher in the hippocampus during the early silent phase (5 days after SE). Additionally, it was demonstrated that the blockade of UCP2 by antisense oligonucleotides (ASO) in SE rats successfully diminished both UCP2 mRNA and protein contents. SE ASO rats presented increased mitochondrial proapoptotic factor expression, caspase-3 activity, inflammatory cytokine expression, and ROS formation. Moreover, ASO treatment diminished p-AKT expression and antioxidant enzyme activities after pilocarpine insult. In conclusion, the present results highlight the neuroprotective actions of UCP2, acting in the inhibition of apoptotic factors and oxidative stress, to increase neuron survival after SE onset.
Collapse
|
6
|
Carroll CB, Wyse RKH. Simvastatin as a Potential Disease-Modifying Therapy for Patients with Parkinson's Disease: Rationale for Clinical Trial, and Current Progress. JOURNAL OF PARKINSONS DISEASE 2018; 7:545-568. [PMID: 29036837 PMCID: PMC5676977 DOI: 10.3233/jpd-171203] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many now believe the holy grail for the next stage of therapeutic advance surrounds the development of disease-modifying approaches aimed at intercepting the year-on-year neurodegenerative decline experienced by most patients with Parkinson’s disease (PD). Based on recommendations of an international committee of experts who are currently bringing multiple, potentially disease-modifying, PD therapeutics into long-term neuroprotective PD trials, a clinical trial involving 198 patients is underway to determine whether Simvastatin provides protection against chronic neurodegeneration. Statins are widely used to reduce cardiovascular risk, and act as competitive inhibitors of HMG-CoA reductase. It is also known that statins serve as ligands for PPARα, a known arbiter for mitochondrial size and number. Statins possess multiple cholesterol-independent biochemical mechanisms of action, many of which offer neuroprotective potential (suppression of proinflammatory molecules & microglial activation, stimulation of endothelial nitric oxide synthase, inhibition of oxidative stress, attenuation of α-synuclein aggregation, modulation of adaptive immunity, and increased expression of neurotrophic factors). We describe the biochemical, physiological and pharmaceutical credentials that continue to underpin the rationale for taking Simvastatin into a disease-modifying trial in PD patients. While unrelated to the Simvastatin trial (because this conducted in patients who already have PD), we discuss conflicting epidemiological studies which variously suggest that statin use for cardiovascular prophylaxis may increase or decrease risk of developing PD. Finally, since so few disease-modifying PD trials have ever been launched (compared to those of symptomatic therapies), we discuss the rationale of the trial structure we have adopted, decisions made, and lessons learnt so far.
Collapse
Affiliation(s)
- Camille B Carroll
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | | |
Collapse
|
7
|
Jin Z, Jung Y, Yi CO, Lee JY, Jeong EA, Lee JE, Park KJ, Kwon OY, Lim BH, Choi NC, Roh GS. Atorvastatin pretreatment attenuates kainic acid-induced hippocampal neuronal death via regulation of lipocalin-2-associated neuroinflammation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:301-309. [PMID: 29719452 PMCID: PMC5928343 DOI: 10.4196/kjpp.2018.22.3.301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 02/07/2018] [Indexed: 11/15/2022]
Abstract
Statins mediate vascular protection and reduce the prevalence of cardiovascular diseases. Recent work indicates that statins have anticonvulsive effects in the brain; however, little is known about the precise mechanism for its protective effect in kainic acid (KA)-induced seizures. Here, we investigated the protective effects of atorvastatin pretreatment on KA-induced neuroinflammation and hippocampal cell death. Mice were treated via intragastric administration of atorvastatin for 7 days, injected with KA, and then sacrificed after 24 h. We observed that atorvastatin pretreatment reduced KA-induced seizure activity, hippocampal cell death, and neuroinflammation. Atorvastatin pretreatment also inhibited KA-induced lipocalin-2 expression in the hippocampus and attenuated KA-induced hippocampal cyclooxygenase-2 expression and glial activation. Moreover, AKT phosphorylation in KA-treated hippocampus was inhibited by atorvastatin pretreatment. These findings suggest that atorvastatin pretreatment may protect hippocampal neurons during seizures by controlling lipocalin-2-associated neuroinflammation.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Yohan Jung
- Department of Neurology, Changwon Fatima Hospital, Changwon 51394, Korea
| | - Chin-Ok Yi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Ki-Jong Park
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Oh-Young Kwon
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Byeong Hoon Lim
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Nack-Cheon Choi
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
8
|
Amorim RP, Araújo MGL, Valero J, Lopes-Cendes I, Pascoal VDB, Malva JO, da Silva Fernandes MJ. Silencing of P2X7R by RNA interference in the hippocampus can attenuate morphological and behavioral impact of pilocarpine-induced epilepsy. Purinergic Signal 2017; 13:467-478. [PMID: 28707031 PMCID: PMC5714836 DOI: 10.1007/s11302-017-9573-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 06/28/2017] [Indexed: 12/01/2022] Open
Abstract
Cell signaling mediated by P2X7 receptors (P2X7R) has been suggested to be involved in epileptogenesis, via modulation of intracellular calcium levels, excitotoxicity, activation of inflammatory cascades, and cell death, among other mechanisms. These processes have been described to be involved in pilocarpine-induced status epilepticus (SE) and contribute to hyperexcitability, resulting in spontaneous and recurrent seizures. Here, we aimed to investigate the role of P2X7R in epileptogenesis in vivo using RNA interference (RNAi) to inhibit the expression of this receptor. Small interfering RNA (siRNA) targeting P2X7R mRNA was injected into the lateral ventricles (icv) 6 h after SE. Four groups were studied: Saline-Vehicle, Saline-siRNA, Pilo-Vehicle, and Pilo-siRNA. P2X7R was quantified by western blotting and neuronal death assessed by Fluoro-Jade B histochemistry. The hippocampal volume (edema) was determined 48 h following RNAi. Behavioral parameters as latency to the appearance of spontaneous seizures and the number of seizures were determined until 60 days after the SE onset. The Saline-siRNA and Pilo-siRNA groups showed a 43 and 37% reduction, respectively, in P2X7R protein levels compared to respective vehicle groups. Neuroprotection was observed in CA1 and CA3 of the Pilo-siRNA group compared to Pilo-Vehicle. P2X7R silencing in pilocarpine group reversed the increase in the edema detected in the hilus, suprapyramidal dentate gyrus, CA1, and CA3; reduced mortality rate following SE; increased the time to onset of spontaneous seizure; and reduced the number of seizures, when compared to the Pilo-Vehicle group. Therefore, our data highlights the potential of P2X7R as a therapeutic target for the adjunct treatment of epilepsy.
Collapse
Affiliation(s)
- Rebeca Padrão Amorim
- Departamento de Neurologia e Neurocirurgia, Disciplina de Neurociência, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 2° andar, São Paulo, SP, CEP 04039-032, Brazil
| | - Michelle Gasparetti Leão Araújo
- Departamento de Neurologia e Neurocirurgia, Disciplina de Neurociência, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 2° andar, São Paulo, SP, CEP 04039-032, Brazil
| | - Jorge Valero
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
- Achucarro Basque Center for Neuroscience, Zamudio, Bizkaia, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Iscia Lopes-Cendes
- Departamento de Genética Médica, Faculdade de Medicina da Unicamp, Campinas, SP, Brazil
| | | | - João Oliveira Malva
- Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria José da Silva Fernandes
- Departamento de Neurologia e Neurocirurgia, Disciplina de Neurociência, Universidade Federal de São Paulo, Rua Pedro de Toledo 669, 2° andar, São Paulo, SP, CEP 04039-032, Brazil.
| |
Collapse
|
9
|
Rocha AKADA, de Lima E, Amaral F, Peres R, Cipolla-Neto J, Amado D. Altered MT1 and MT2 melatonin receptors expression in the hippocampus of pilocarpine-induced epileptic rats. Epilepsy Behav 2017; 71:23-34. [PMID: 28460319 DOI: 10.1016/j.yebeh.2017.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Clinical and experimental findings show that melatonin may be used as an adjuvant to the treatment of epilepsy-related complications by alleviates sleep disturbances, circadian alterations and attenuates seizures alone or in combination with AEDs. In addition, it has been observed that there is a circadian component on seizures, which cause changes in circadian system and in melatonin production. Nevertheless, the dynamic changes of the melatoninergic system, especially with regard to its membrane receptors (MT1 and MT2) in the natural course of TLE remain largely unknown. The aim of this study was to evaluate the 24-hour profile of MT1 and MT2 mRNA and protein expression in the hippocampus of rats submitted to the pilocarpine-induced epilepsy model analyzing the influence of the circadian rhythm in the expression pattern during the acute, silent, and chronic phases. Melatonin receptor MT1 and MT2 mRNA expression levels were increased in the hippocampus of rats few hours after SE, with MT1 returning to normal levels and MT2 reducing during the silent phase. During the chronic phase, mRNA expression levels of both receptors return to levels close to control, however, presenting a different daily profile, showing that there is a circadian change during the chronic phase. Also, during the acute and silent phase it was possible to verify MT1 label only in CA2 hippocampal region with an increased expression only in the dark period of the acute phase. The MT2 receptor was present in all hippocampal regions, however, it was reduced in the acute phase and it was found in astrocytes. In chronic animals, there is a reduction in the presence of both receptors especially in regions where there is a typical damage derived from epilepsy. Therefore, we conclude that SE induced by pilocarpine is able to change melatonin receptor MT1 and MT2 protein and mRNA expression levels in the hippocampus of rats few hours after SE as well as in silent and chronic phases.
Collapse
Affiliation(s)
| | - Eliangela de Lima
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil; Department of Physiology, Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Fernanda Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil; Departament of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Rafael Peres
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Amado
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
10
|
Tajik-Esmaeeli S, Moazen-Zadeh E, Abbasi N, Shariat SV, Rezaei F, Salehi B, Akhondzadeh S. Simvastatin adjunct therapy for negative symptoms of schizophrenia: a randomized double-blind placebo-controlled trial. Int Clin Psychopharmacol 2017; 32:87-94. [PMID: 27941358 DOI: 10.1097/yic.0000000000000159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated the effects of simvastatin adjunctive therapy on the negative symptoms of schizophrenia. In this double-blind trial, inpatients with chronic schizophrenia were clinically stabilized on a constant dose of risperidone for at least 4 weeks before the study and were then randomized to receive risperidone (4-6 mg/day) plus either simvastatin (40 mg/day) (n=33) or placebo (n=33) for 8 weeks. The Positive and Negative Syndrome Scale was used to measure the negative, positive, and general symptoms of schizophrenia at baseline and every 2 weeks. The Hamilton Depression Rating Scale and the Extrapyramidal Symptom Rating Scale were used to measure depression and extrapyramidal symptoms at baseline and week 8. Difference in change in negative symptoms score from the baseline to week 8 was considered the single primary outcome. At baseline, negative symptoms scores were higher than positive symptoms scores in both simvastatin and placebo groups. There was no baseline difference between the two groups in terms of any of the measured variables. Compared with the placebo group, the simvastatin group showed a significantly higher reduction in negative symptoms scores from baseline to week 8 [mean difference: 95% confidence interval=-1.42 (-2.32 to -0.52), P=0.003]. Similar findings were observed for total scores [mean difference: 95% confidence interval=-1.85 (-2.87 to -0.83), P=0.001]. The results were not significant for positive symptoms or general psychopathology scores. We found a favorable effect of simvastatin on negative symptoms of patients with schizophrenia; however, future studies are warranted to confirm these results.
Collapse
Affiliation(s)
- Soode Tajik-Esmaeeli
- aSchool of Behavioral Sciences and Mental Health, Mental Health Research Center, Tehran Institute of Psychiatry bPsychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran cQods Hospital, Kurdistan University of Medical Sciences, Sanandaj dDepartment of Psychiatry, Arak University of Medical Sciences, Arak, Iran
| | | | | | | | | | | | | |
Collapse
|
11
|
Rocha AKADA, de Lima E, do Amaral FG, Peres R, Cipolla-Neto J, Amado D. Pilocarpine-induced epilepsy alters the expression and daily variation of the nuclear receptor RORα in the hippocampus of rats. Epilepsy Behav 2016; 55:38-46. [PMID: 26731717 DOI: 10.1016/j.yebeh.2015.11.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/16/2015] [Accepted: 11/24/2015] [Indexed: 11/24/2022]
Abstract
It is widely known that there is an increase in the inflammatory responses and oxidative stress in temporal lobe epilepsy (TLE). Further, the seizures follow a circadian rhythmicity. Retinoic acid receptor-related orphan receptor alpha (RORα) is related to anti-inflammatory and antioxidant enzyme expression and is part of the machinery of the biological clock and circadian rhythms. However, the participation of RORα in this neurological disorder has not been studied. The aim of this study was to evaluate the RORα mRNA and protein content profiles in the hippocampus of rats submitted to a pilocarpine-induced epilepsy model at different time points throughout the 24-h light-dark cycle analyzing the influence of the circadian rhythm in the expression pattern during the acute, silent, and chronic phases of the experimental model. Real-time PCR and immunohistochemistry results showed that RORα mRNA and protein expressions were globally reduced in both acute and silent phases of the pilocarpine model. However, 60days after the pilocarpine-induced status epilepticus (chronic phase), the mRNA expression was similar to the control except for the time point 3h after the lights were turned off, and no differences were found in immunohistochemistry. Our results indicate that the status epilepticus induced by pilocarpine is able to change the expression and daily variation of RORα in the rat hippocampal area during the acute and silent phases. These findings enhance our understanding of the circadian pattern present in seizures as well as facilitate strategies for the treatment of seizures.
Collapse
Affiliation(s)
| | - Eliangela de Lima
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda Gaspar do Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Rafael Peres
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Science, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Amado
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
12
|
Amorim BO, Covolan L, Ferreira E, Brito JG, Nunes DP, de Morais DG, Nobrega JN, Rodrigues AM, deAlmeida ACG, Hamani C. Deep brain stimulation induces antiapoptotic and anti-inflammatory effects in epileptic rats. J Neuroinflammation 2015; 12:162. [PMID: 26337974 PMCID: PMC4558969 DOI: 10.1186/s12974-015-0384-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 08/20/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Status epilepticus (SE) is a severe condition that may lead to hippocampal cell loss and epileptogenesis. Some of the mechanisms associated with SE-induced cell death are excitotoxicity, neuroinflammation, and apoptosis. OBJECTIVE The objective of the present study is to test the hypothesis that DBS has anti-inflammatory and antiapoptotic effects when applied during SE. METHODS Rats undergoing pilocarpine-induced SE were treated with anterior thalamic nucleus (AN) deep brain stimulation (DBS). Inflammatory changes and caspase 3 activity were measured within 1 week of treatment. RESULTS In pilocarpine-treated rats, DBS countered the significant increase in hippocampal caspase 3 activity and interleukin-6 (IL-6) levels that follows SE but had no effect on tumor necrosis factor α (TNFα). CONCLUSIONS DBS has anti-inflammatory and antiapoptotic effects when given to animals undergoing status.
Collapse
Affiliation(s)
- Beatriz O Amorim
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 5 andar, 04023-062, São Paulo, Brazil.
| | - Luciene Covolan
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 5 andar, 04023-062, São Paulo, Brazil.
| | - Elenn Ferreira
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 5 andar, 04023-062, São Paulo, Brazil.
| | - José Geraldo Brito
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 5 andar, 04023-062, São Paulo, Brazil.
| | - Diego P Nunes
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 5 andar, 04023-062, São Paulo, Brazil.
| | - David G de Morais
- Disciplina de Neurofisiologia, Universidade Federal de São Paulo, Rua Botucatu, 862 5 andar, 04023-062, São Paulo, Brazil.
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada.
| | - Antonio M Rodrigues
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil.
| | - Antonio Carlos G deAlmeida
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil.
| | - Clement Hamani
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada.
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada.
| |
Collapse
|
13
|
Ghanizadeh A, Rezaee Z, Dehbozorgi S, Berk M, Akhondzadeh S. Lovastatin for the adjunctive treatment of schizophrenia: a preliminary randomized double-blind placebo-controlled trial. Psychiatry Res 2014; 219:431-5. [PMID: 25017614 DOI: 10.1016/j.psychres.2014.06.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/03/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
Abstract
While statins target many of the pathways to neuroprogression in schizophrenia, the safety and efficacy of statins for treating schizophrenia has never been examined. This is an 8-week randomized double blind controlled clinical trial examining the efficacy and safety of adjunctive lovastatin (20 mg/day) treatment or placebo for people with schizophrenia. The baseline characteristics of the two groups were not different. Endpoint changes in Positive and Negative Syndrome Scale (PANSS) total and subscale scores did not differ between the two groups. However there was a significant difference between the doses of risperidone used in the two groups. The mean dose in the lovastatin and placebo groups were 4.8(1.8) and 3.4(1.4) mg/day, respectively (P<.03). No serious adverse events were reported. Slowness of movements, muscle rigidity, increased appetite, and decreased energy were the most common adverse effects, and these rates did not differ between the two groups. This study failed to demonstrate a benefit of lovastatin on symptoms of schizophrenia. This combination was well tolerated. However, a higher dosage of risperidone was used for treating the disorder in those taking concomitant lovastatin compared to placebo.
Collapse
Affiliation(s)
- Ahmad Ghanizadeh
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran; Department of Psychiatry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Rezaee
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran; Department of Psychiatry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Sara Dehbozorgi
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran; Department of Psychiatry, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia; Department of Psychiatry, the Florey Institute of Neuroscience and Mental Health, and Orygen Youth Health Research Centre, University of Melbourne, Parkville, Australia
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, South Kargar Street, Tehran, Iran
| |
Collapse
|
14
|
Arisi GM. Nervous and immune systems signals and connections: cytokines in hippocampus physiology and pathology. Epilepsy Behav 2014; 38:43-7. [PMID: 24534466 DOI: 10.1016/j.yebeh.2014.01.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Signaling through secretion of small molecules is a hallmark of both nervous and immune systems. The scope and influence of the intense message exchange between these two complex systems are only now becoming objects of scientific inquiry. Both neurotransmitters and cytokines affect their target cells through surface receptors and also by other molecular mechanisms. Cytokine receptors are present in neurons and glial cell populations in discrete brain regions. This review firstly focuses on the role of cytokines in hippocampal physiological processes, such as memory and learning, and secondly on the pathological involvement of cytokines in diseases like depression and epilepsy. Interleukin-1β is necessary for long-term potentiation (LTP) maintenance in the hippocampus. On the other hand, interleukin-6 has a negative regulatory role in long-term memory acquisition. Astrocyte-secreted tumor necrosis factor plays a role in synaptic strength by increasing surface translocation of glutamate AMPA receptors, and the chemokine CXCL12 can silence the tonic activity of Cajal-Retzius neurons in the hippocampus. Manifold increased concentrations of interleukin-10, interferon-γ, ICAM1, CCL2, and CCL4 are observed in the hippocampi of patients with temporal lobe epilepsy. A contemporary view of the role of cytokines as neuromodulators is emerging from studies in humans and manipulations of experimental animals. Despite the accumulating evidence of the role of cytokines on nervous system physiology and pathology, it is important not to exaggerate its relevance.
Collapse
Affiliation(s)
- Gabriel Maisonnave Arisi
- Neurobiology Laboratory, Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil.
| |
Collapse
|
15
|
Shah SR, Werlang CA, Kasper FK, Mikos AG. Novel applications of statins for bone regeneration. Natl Sci Rev 2014; 2:85-99. [PMID: 26543666 DOI: 10.1093/nsr/nwu028] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of statins for bone regeneration is a promising and growing area of research. Statins, originally developed to treat high cholesterol, are inhibitors of the enzyme 3-hydroxy-3-methylglutaryl, the rate-limiting enzyme of the mevalonate pathway. Because the mevalonate pathway is responsible for the synthesis of a wide variety of important biochemical molecules, including cholesterol and other isoprenoids, the effects of statins are pleiotropic. In particular, statins can greatly affect the process of bone turnover and regeneration via effects on important cell types, including mesenchymal stem cells, osteoblasts, endothelial cells, and osteoclasts. Statins have also been shown to have anti-inflammatory and antimicrobial properties that may be useful since infection can derail normal bone healing. This review will explore the pleiotropic effects of statins, discuss the current use of statins for bone regeneration, particularly with regard to biomaterials-based controlled delivery, and offer perspectives on the challenges and future directions of this emerging area of bone tissue engineering.
Collapse
Affiliation(s)
- Sarita R Shah
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA
| | - Caroline A Werlang
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77005-1892, USA ; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77251-1892, USA
| |
Collapse
|
16
|
Gouveia TLF, Scorza FA, Iha HA, Frangiotti MIB, Perosa SR, Cavalheiro EA, Silva JA, Feliciano RS, de Almeida AC, Naffah-Mazzacoratti MG. Lovastatin decreases the synthesis of inflammatory mediators during epileptogenesis in the hippocampus of rats submitted to pilocarpine-induced epilepsy. Epilepsy Behav 2014; 36:68-73. [PMID: 24857811 DOI: 10.1016/j.yebeh.2014.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 12/01/2022]
Abstract
Statins may act on inflammatory responses, decreasing oxidative stress and also reducing brain inflammation in several brain disorders. Epileptogenesis is a process in which a healthy brain becomes abnormal and predisposed to generating spontaneous seizures. We previously reported that lovastatin could prevent neuroinflammation in pilocarpine-induced status epilepticus (SE). In this context, this study investigated the long-lasting effects of lovastatin on mRNA expression of proinflammatory cytokines (interleukin-1β, tumor necrosis factor α, interleukin-6) and the antiinflammatory cytokine IL-10 in the hippocampus during epileptogenesis by immunohistochemistry and real time polymerase chain reaction (RT-PCR) during the latent and chronic phases in the epilepsy model induced by pilocarpine in rats. For these purposes, four groups of rats were employed: saline (CONTROL), lovastatin (LOVA), pilocarpine (PILO), and pilocarpine plus lovastatin (PILO+LOVA). After pilocarpine injection (350mg/kg, i.p.), the rats were treated with 20mg/kg of lovastatin via an esophagic probe 2h after SE onset. All surviving rats were continuously treated during 15days, twice/day. The pilocarpine plus lovastatin group showed a significant decrease in the levels of IL-1β, TNF-α, and IL-6 during the latent phase and a decreased expression of IL-1β and TNF-α in the chronic phase when compared with the PILO group. Moreover, lovastatin treatment also induced an increased expression of the antiinflammatory cytokine, IL-10, in the PILO+LOVA group when compared with the PILO group in the chronic phase. Thus, our data suggest that lovastin may reduce excitotoxicity during epileptogenesis induced by pilocarpine by increasing the synthesis of IL-10 and decreasing proinflammatory cytokines in the hippocampus.
Collapse
Affiliation(s)
- T L F Gouveia
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - F A Scorza
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - H A Iha
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - M I B Frangiotti
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - S R Perosa
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - E A Cavalheiro
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - J A Silva
- Rehabilitation Department, Universidade Nove de Julho, São Paulo, Brazil
| | - R S Feliciano
- Rehabilitation Department, Universidade Nove de Julho, São Paulo, Brazil
| | - A C de Almeida
- Biomedical Engineering Department, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - M G Naffah-Mazzacoratti
- Neurology and Neurosurgery Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Biochemistry Department, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
17
|
Citraro R, Chimirri S, Aiello R, Gallelli L, Trimboli F, Britti D, De Sarro G, Russo E. Protective effects of some statins on epileptogenesis and depressive-like behavior in WAG/Rij rats, a genetic animal model of absence epilepsy. Epilepsia 2014; 55:1284-91. [DOI: 10.1111/epi.12686] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Rita Citraro
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Serafina Chimirri
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Rossana Aiello
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Luca Gallelli
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Francesca Trimboli
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Domenico Britti
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Giovambattista De Sarro
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| | - Emilio Russo
- Science of Health Department; School of Medicine; University “Magna Graecia” of Catanzaro; Catanzaro Italy
| |
Collapse
|
18
|
Bahçekapılı N, Akgün-Dar K, Albeniz I, Kapucu A, Kandil A, Yağız O, Üzüm G. Erythropoietin pretreatment suppresses seizures and prevents the increase in inflammatory mediators during pentylenetetrazole-induced generalized seizures. Int J Neurosci 2014; 124:762-70. [DOI: 10.3109/00207454.2013.878935] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Ghanizadeh A, Hedayati A. Augmentation of fluoxetine with lovastatin for treating major depressive disorder, a randomized double-blind placebo controlled-clinical trial. Depress Anxiety 2013; 30:1084-8. [PMID: 24115188 DOI: 10.1002/da.22195] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUNDS There are contradictory evidence about the effect of statins on depression. This 6-week-randomized placebo-controlled clinical trial assessed the efficacy and safety of lovastatin as an adjuvant agent for treating major depressive disorder (MDD). METHODS The participants were 68 patients with MDD according to DSM-IV diagnostic criteria. The sample was randomly allocated into fluoxetine (up to 40 mg/day) plus lovastatin (30 mg/day) group or fluoxetine plus placebo group. Hamilton Depression Rating scale was used to measure depression score at baseline, week 2, and week 6. RESULTS Both groups showed a significant decrease of depression score on the Hamilton Depression scale. However, the treatment group decreased depression score more than placebo group [12.8(6.3) vs. 8.2(4.0), t = 3.4, df = 60, P < .001]. Any serious adverse effect was not found. DISCUSSION These results suggest that lovastatin as an adjuvant treatment may be effective for treating patients with MDD.
Collapse
Affiliation(s)
- Ahmad Ghanizadeh
- Department of Psychiatry, Research Center for Psychiatry and Behavioral Sciences, Hafez Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
20
|
Nejm MB, Gouveia TL, da Graça Naffah-Mazacoratti M, Scorza CA, Cavalheiro EA, Scorza FA. Lovastatin and sudden unexpected death in epilepsy: a matter for debate. Epilepsy Behav 2013; 28:10-1. [PMID: 23648273 DOI: 10.1016/j.yebeh.2013.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 11/16/2022]
|
21
|
Role of IL-6 in the etiology of hyperexcitable neuropsychiatric conditions: experimental evidence and therapeutic implications. Future Med Chem 2012. [DOI: 10.4155/fmc.12.156] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Many neuropsychiatric conditions are primed or triggered by different types of stressors. The mechanisms through which stress induces neuropsychiatric disease are complex and incompletely understood. A ‘double hit’ hypothesis of neuropsychiatric disease postulates that stress induces maladaptive behavior in two phases separated by a dormant period. Recent research shows that the pleiotropic cytokine IL-6 is released centrally and peripherally following physical and psychological stress. In this article, we analyze evidence from clinics and animal models suggesting that stress-induced elevation in the levels of IL-6 may play a key role in the etiology of a heterogeneous family of hyperexcitable central conditions including epilepsy, schizophrenic psychoses, anxiety and disorders of the autistic spectrum. The cellular mechanism leading to hyperexcitable conditions might be a decrease in inhibitory/excitatory synaptic balance in either or both temporal phases of the conditions. Following these observations, we discuss how they may have important implications for optimal prophylactic and therapeutic pharmacological treatment.
Collapse
|
22
|
The levels of renin-angiotensin related components are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Neurochem Int 2012; 61:54-62. [PMID: 22542773 DOI: 10.1016/j.neuint.2012.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/09/2023]
Abstract
We previously showed that patients with temporal lobe epilepsy (TLE) present an increased expression of angiotensin II (AngII) AT1 and AT2 receptors in the hippocampus, supporting the idea of an upregulation of renin-angiotensin system (RAS) in this disease. This study aimed to verify the relationship between the RAS and TLE during epileptogenesis. Levels of the peptides angiotensin I (AngI), angiotensin II (AngII) and angiotensin 1-7 (Ang 1-7), were detected by HPLC assay. Angiotensin AT1 and AT2 receptors, Mas mRNA receptors and angiotensin converting enzyme (ACE), tonin and neutral endopeptidase (NEP) mRNA were also quantified at the hippocampus of Wistar rats by real time PCR, during acute (n=10), silent (n=10) and chronic (n=10) phases of pilocarpine-induced epilepsy. We observed an increased peptide level of Ang1-7 into acute and silent phases, decreasing importantly (p≤0.05) in the chronic phase, suggesting that AngI may be converted into Ang 1-7 by NEP, which is present in high levels in these periods. Our results also showed increased peptide level of AngII in the chronic phase of this model. In contraposition, the ACE expression is reduced in all periods. These data suggest that angiotensinogen or AngI may be cleaved to AngII by tonin, which showed increased expression in all phases. We found changes in AT1, AT2 and Mas mRNA receptors levels suggesting that Ang1-7 could act at Mas receptor during the silent period. Herein, we demonstrated for the first time, changes in angiotensin-related peptides, their receptors as well as the releasing enzymes in the hippocampus of rats during pilocarpine-induced epilepsy.
Collapse
|
23
|
|
24
|
Animal study results suggest that an antifungal drug works against neuronal loss in epilepsy. Epilepsy Behav 2012; 23:174-5. [PMID: 22197717 DOI: 10.1016/j.yebeh.2011.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 11/23/2022]
|
25
|
Xie C, Sun J, Qiao W, Lu D, Wei L, Na M, Song Y, Hou X, Lin Z. Administration of simvastatin after kainic acid-induced status epilepticus restrains chronic temporal lobe epilepsy. PLoS One 2011; 6:e24966. [PMID: 21949812 PMCID: PMC3176286 DOI: 10.1371/journal.pone.0024966] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 08/22/2011] [Indexed: 11/18/2022] Open
Abstract
In this study, we examined the effect of chronic administration of simvastatin immediately after status epilepticus (SE) on rat brain with temporal lobe epilepsy (TLE). First, we evaluated cytokines expression at 3 days post KA-lesion in hippocampus and found that simvastatin-treatment suppressed lesion-induced expression of interleukin (IL)-1β and tumor necrosis factor-α (TNF-α). Further, we quantified reactive astrocytosis using glial fibrillary acidic protein (GFAP) staining and neuron loss using Nissl staining in hippocampus at 4-6 months after KA-lesion. We found that simvastatin suppressed reactive astrocytosis demonstrated by a significant decrease in GFAP-positive cells, and attenuated loss of pyramidal neurons in CA3 and interneurons in dentate hilar (DH). We next assessed aberrant mossy fiber sprouting (MFS) that is known to contribute to recurrence of spontaneous seizure in epileptic brain. In contrast to the robust MFS observed in saline-treated animals, the extent of MFS was restrained by simvastatin in epileptic rats. Attenuated MFS was related to decreased neuronal loss in CA3 and DH, which is possibly a mechanism underlying decreased hippocampal susceptibility in animal treated with simvastatin. Electronic encephalography (EEG) was recorded during 4 to 6 months after KA-lesion. The frequency of abnormal spikes in rats with simvastatin-treatment decreased significantly compared to the saline group. In summary, simvastatin treatment suppressed cytokines expression and reactive astrocytosis and decreased the frequency of discharges of epileptic brain, which might be due to the inhibition of MFS in DH. Our study suggests that simvastatin administration might be a possible intervention and promising strategy for preventing SE exacerbating to chronic epilepsy.
Collapse
Affiliation(s)
- Chuncheng Xie
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahang Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weidong Qiao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dunyue Lu
- Department of Psychiatry, State University of New York Downstate Medical Center, Brooklyn, New York, United States of America
| | - Lanlan Wei
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meng Na
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanyuan Song
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohua Hou
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
26
|
Leschner J, Ring L, Feierler J, Dinkel K, Jochum M, Faussner A. Fever-like temperature modification differentially affects in vitro signaling of bradykinin B(1) and B(2) receptors. Biol Chem 2011; 392:1021-9. [PMID: 21871009 DOI: 10.1515/bc.2011.095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The bradykinin (BK) B(2) and B(1) receptors (B(2)R, B(1)R) belong to the rhodopsin-like G protein-coupled receptors (GPCRs) and are involved in (patho)physiological processes such as blood pressure regulation or inflammation. They mediate the effects of the pro-inflammatory peptides bradykinin/kallidin and desArg(9)-BK/desArg(10)-kallidin, respectively. Whereas the B(2)R is constitutively expressed and gets internalized upon activation, the B(1)R is especially induced by inflammatory mediators and responds to stimulation with increased surface receptor numbers. Stimulation of both receptors activates phospholipase Cβ (PLCβ) and mitogen activated protein kinase (MAPK) signaling. Because inflammatory processes are characterized by heat (fever), we analyzed the effect of increased temperature (41°C vs. 37°C) on B(1)R and B(2)R signaling in HEK 293 and IMR 90 cells. Our results show that signaling of both receptors is temperature-sensitive, however to a different extent and with regard to the investigated pathways. Comparing PLCβ activity and Ca(2+)-regulated signals, a temperature-dependent increase was only observed for B(1)R but not for B(2)R activation, whereas MAPK activities were doubled at 41°C for both receptors. Taken together, our findings suggest that the observed temperature sensitivity of B(1)R-induced PLCβ activation is B(1)R-specific. In contrast, the enhanced stimulation of MAPK activity under hyperthermic conditions appears to be a common phenomenon for GPCRs.
Collapse
Affiliation(s)
- Jasmin Leschner
- Abteilung für Klinische Chemie und Klinische Biochemie, Ludwig-Maximilians-Universität, Nussbaumstrasse 20, D-80336 München, Germany
| | | | | | | | | | | |
Collapse
|