1
|
Li L, Dannenfelser R, Cruz C, Yao V. A best-match approach for gene set analyses in embedding spaces. Genome Res 2024; 34:1421-1433. [PMID: 39231608 PMCID: PMC11529866 DOI: 10.1101/gr.279141.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Embedding methods have emerged as a valuable class of approaches for distilling essential information from complex high-dimensional data into more accessible lower-dimensional spaces. Applications of embedding methods to biological data have demonstrated that gene embeddings can effectively capture physical, structural, and functional relationships between genes. However, this utility has been primarily realized by using gene embeddings for downstream machine-learning tasks. Much less has been done to examine the embeddings directly, especially analyses of gene sets in embedding spaces. Here, we propose an Algorithm for Network Data Embedding and Similarity (ANDES), a novel best-match approach that can be used with existing gene embeddings to compare gene sets while reconciling gene set diversity. This intuitive method has important downstream implications for improving the utility of embedding spaces for various tasks. Specifically, we show how ANDES, when applied to different gene embeddings encoding protein-protein interactions, can be used as a novel overrepresentation- and rank-based gene set enrichment analysis method that achieves state-of-the-art performance. Additionally, ANDES can use multiorganism joint gene embeddings to facilitate functional knowledge transfer across organisms, allowing for phenotype mapping across model systems. Our flexible, straightforward best-match methodology can be extended to other embedding spaces with diverse community structures between set elements.
Collapse
Affiliation(s)
- Lechuan Li
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Ruth Dannenfelser
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Charlie Cruz
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| | - Vicky Yao
- Department of Computer Science, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
2
|
Sui AR, Piao H, Xiong ST, Zhang P, Guo SY, Kong Y, Gao CQ, Wang ZX, Yang J, Ge BY, Supratik K, Yang JY, Li S. Scorpion venom heat-resistant synthesized peptide ameliorates epileptic seizures and imparts neuroprotection in rats mediated by NMDA receptors. Eur J Pharmacol 2024; 978:176704. [PMID: 38830458 DOI: 10.1016/j.ejphar.2024.176704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/13/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.
Collapse
Affiliation(s)
- Ao-Ran Sui
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Hua Piao
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Si-Ting Xiong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Peng Zhang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Song-Yu Guo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Cheng-Qian Gao
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Zhi-Xue Wang
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jun Yang
- Department of Child Health, Yantaishan Hospital, Yantai, 264008, China
| | - Bi-Ying Ge
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Kundu Supratik
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
3
|
Keever KM, Li Y, Womble PD, Sullens DG, Otazu GH, Lugo JN, Ramos RL. Neocortical and cerebellar malformations affect flurothyl-induced seizures in female C57BL/6J mice. Front Neurosci 2023; 17:1271744. [PMID: 38027492 PMCID: PMC10651747 DOI: 10.3389/fnins.2023.1271744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Brain malformations cause cognitive disability and seizures in both human and animal models. Highly laminated structures such as the neocortex and cerebellum are vulnerable to malformation, affecting lamination and neuronal connectivity as well as causing heterotopia. The objective of the present study was to determine if sporadic neocortical and/or cerebellar malformations in C57BL/6J mice are correlated with reduced seizure threshold. The inhaled chemi-convulsant flurothyl was used to induce generalized, tonic-clonic seizures in male and female C57BL/6J mice, and the time to seizure onset was recorded as a functional correlate of brain excitability changes. Following seizures, mice were euthanized, and brains were extracted for histology. Cryosections of the neocortex and cerebellar vermis were stained and examined for the presence of molecular layer heterotopia as previously described in C57BL/6J mice. Over 60% of mice had neocortical and/or cerebellar heterotopia. No sex differences were observed in the prevalence of malformations. Significantly reduced seizure onset time was observed dependent on sex and the type of malformation present. These results raise important questions regarding the presence of malformations in C57BL/6J mice used in the study of brain development, epilepsy, and many other diseases of the nervous system.
Collapse
Affiliation(s)
- Katherine M. Keever
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Gonzalo H. Otazu
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Raddy L. Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
4
|
Khatami P, Mirazi N, Khosravi M, Bananej M. Nonsteroidal Anti-inflammatory Drug Oxaprozin is Beneficial Against Seizure-induced Memory Impairment in an Experimental Model of Seizures in Rats: Impact On Oxidative Stress and Nrf2/HO-1 Signaling Pathway. J Mol Neurosci 2022; 72:880-887. [PMID: 35084669 DOI: 10.1007/s12031-022-01967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022]
Abstract
There is substantial evidence that anti-inflammatory agents and antioxidants have neuroprotective properties and may be useful in the treatment of neurodegenerative disorders. In this regard, the effects of oxaprozin (OXP) (a nonsteroidal anti-inflammatory drug) on the experimental model of seizure and memory impairment caused by seizures in rats were investigated in the present study. Seizures in male Wistar rats (200-250 g, 8 weeks) were induced by pentylenetetrazol (PTZ, 60 mg/kg). The anticonvulsant effects of OXP (100, 200, and 400 mg/kg, administered intraperitoneally) were evaluated in the seizure model. The effect on memory was assessed using the passive avoidance (PA) test. After behavioral tests, the animals underwent deep anesthesia and were euthanized painlessly. Animal serum was isolated for antioxidant assays (MDA and GPx). The animals' brains (hippocampus) were also isolated to gauge the relative expression of genes in the oxidative stress pathway (Nrf2/HO-1). Intraperitoneal injection of OXP decreased the mean score on the Racine scale compared to the PTZ group. Moreover, in the PA test, OXP caused a significant increase in retention latency (RL) and total time spent in the light compartment (TLC) compared to the PTZ group. Biochemical tests showed that OXP was able to significantly increase GPx serum levels and significantly reduce MDA serum levels compared to the PTZ group. Quantitative polymerase chain reaction (qPCR) results also revealed that OXP counteracted the negative effects of PTZ by significantly increasing the expression of the Nrf2 and Hmox1 genes. Overall, this study suggests the potential neuroprotective effects of the nonsteroidal anti-inflammatory drug OXP in a model of memory impairment caused by seizures via inhibition of the oxidative stress pathway.
Collapse
Affiliation(s)
- Parisa Khatami
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Maryam Khosravi
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Bananej
- Department of Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
A Flurothyl-Induced Seizure Does Not Disrupt Hippocampal Memory Reconsolidation in C57BL/6J Mice. Epilepsy Res 2022; 181:106867. [DOI: 10.1016/j.eplepsyres.2022.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
|
6
|
Alshebib YA, Hori T, Kashiwagi T. HOP protein expression in the hippocampal dentate gyrus is acutely downregulated in a status epilepticus mouse model. IBRO Neurosci Rep 2021; 11:183-193. [PMID: 34766103 PMCID: PMC8569711 DOI: 10.1016/j.ibneur.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Status epilepticus (SE) is a neurological emergency, and delayed management can lead to higher morbidity and mortality. It is thought that prolonged seizures stimulate stem cells in the hippocampus and that epileptogenesis may arise from aberrant connections formed by newly born cells, while others have suggested that the acute neuroinflammation and gliosis often seen in epileptic hippocampi contribute to hyperexcitability and epilepsy development. Previous studies have identified the expression of homeodomain-only protein (HOP) in the hippocampal dentate gyrus (HDG) and the heart. HOP was found to be a regulator of cell proliferation and differentiation during heart development, while it maintains the 'heart conduction system' in adulthood. However, little is known about HOP function in the adult HDG, particularly in the SE setting. Here, a HOP immunohistochemical profile in an SE mouse model was established. A total of 24 adult mice were analyzed 3-10 days following the SE episode, the 'acute phase'. Our findings demonstrate a significant downregulation of HOP and BLBP protein expression in the SE group following SE episodes, while HOP/Ki67 coexpression did not remarkably differ. Furthermore, coexpression of HOP/S100β and HOP/Prox1 was not observed, although we noticed insignificant HOP/DCX coexpression level. The findings of this study show no compelling evidence of proliferation, and newly added neurons were not identified during the acute phase following SE, although HOP protein expression was significantly decreased in the HDG. Similar to its counterpart in the adult heart, this suggests that HOP seems to play a key role in regulating signal conduction in adult hippocampus. Moreover, acute changes in HOP expression following SE could be part of an inflammatory response that could subsequently influence epileptogenicity.
Collapse
Key Words
- BLBP, Brain lipid-binding protein
- BrdU, 5-Bromo-2′-deoxyuridine
- Ctrl, control tissue
- DCX, Doublecortin
- EGFP, enhanced green fluorescent protein
- Epileptogenicity
- GCL, granule cell layer
- GFAP, Glial fibrillary acidic protein
- GFP, green fluorescent protein
- HDG, Hippocampal Dentate Gyrus
- HF, Hippocampus Formation
- HOP
- HOP, Homeodomain Only Protein
- Hippocampal Formation
- Homeodomain-Only Protein
- IHC, Immunohistochemistry
- NSC, Neural stem cells
- Neurocardiology
- Prox1, Prospero Homeobox 1
- RGL cell, Radial glia-like cell
- S100β, S100 calcium-binding protein B
- SE, Status Epilepticus
- SGZ, subgranular zone
- SVZ, subventricular zone
- Seizure-induced neuroinflammation
- Status Epileptics
Collapse
Affiliation(s)
- YA Alshebib
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134-0088, Japan
| | - Tomokatsu Hori
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134-0088, Japan
| | - Taichi Kashiwagi
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
7
|
Budaszewski Pinto C, de Sá Couto-Pereira N, Kawa Odorcyk F, Cagliari Zenki K, Dalmaz C, Losch de Oliveira D, Calcagnotto ME. Effects of acute seizures on cell proliferation, synaptic plasticity and long-term behavior in adult zebrafish. Brain Res 2021; 1756:147334. [PMID: 33539794 DOI: 10.1016/j.brainres.2021.147334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/18/2023]
Abstract
Acute seizures may cause permanent brain damage depending on the severity. The pilocarpine animal model has been broadly used to study the acute effects of seizures on neurogenesis and plasticity processes and the resulting epileptogenesis. Likewise, zebrafish is a good model to study neurogenesis and plasticity processes even in adulthood. Thus, the aim of this study is to evaluate the effects of pilocarpine-induced acute seizures-like behavior on neuroplasticity and long-term behavior in adult zebrafish. To address this issue, adult zebrafish were injected with Pilocarpine (350 mg/Kg, i.p; PILO group) or Saline (control group). Experiments were performed at 1, 2, 3, 10 or 30 days after injection. We evaluated behavior using the Light/Dark preference, Open Tank and aggressiveness tests. Flow cytometry and BrdU were carried out to detect changes in cell death and proliferation, while Western blotting was used to verify different proliferative, synaptic and neural markers in the adult zebrafish telencephalon. We identified an increased aggressive behavior and increase in cell death in the PILO group, with increased levels of cleaved caspase 3 and PARP1 1 day after seizure-like behavior induction. In addition, there were decreased levels of PSD95 and SNAP25 and increased BrdU positive cells 3 days after seizure-like behavior induction. Although most synaptic and cell death markers levels seemed normal by 30 days after seizures-like behavior, persistent aggressive and anxiolytic-like behaviors were still detected as long-term effects. These findings might indicate that acute severe seizures induce short-term biochemical alterations that ultimately reflects in a long-term altered phenotype.
Collapse
Affiliation(s)
- Charles Budaszewski Pinto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natividade de Sá Couto-Pereira
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Kawa Odorcyk
- Graduate Program in Biological Sciences: Physiology, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Kamila Cagliari Zenki
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carla Dalmaz
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Losch de Oliveira
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Cellular Neurochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Binder MS, Kim AD, Lugo JN. An acute seizure prior to memory reactivation transiently impairs associative memory performance in C57BL/6J mice. ACTA ACUST UNITED AC 2020; 27:340-345. [PMID: 32817300 PMCID: PMC7433655 DOI: 10.1101/lm.050633.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/01/2020] [Indexed: 11/25/2022]
Abstract
Memory deficits significantly decrease an individual's quality of life and are a pervasive comorbidity of epilepsy. Despite the various distinct processes of memory, the majority of epilepsy research has focused on seizures during the encoding phase of memory, therefore the effects of a seizure on other memory processes is relatively unknown. In the present study, we investigated how a single seizure affects memory reactivation in C57BL/6J adult mice using an associative conditioning paradigm. Initially, mice were trained to associate a tone (conditioned stimulus), with the presence of a shock (unconditioned stimulus). Flurothyl was then administered 1 h before, 1 h after, or 6 h before a memory reactivation trial. The learned association was then assessed by presenting a conditioned stimulus in a new context 24 h or 1 wk after memory reactivation. We found that mice receiving a seizure 1 h prior to reactivation exhibited a deficit in memory 24 h later but not 1 wk later. When mice were administered a seizure 6 h before or 1 h after reactivation, there were no differences in memory between seizure and control animals. Altogether, our study indicates that an acute seizure during memory reactivation leads to a temporary deficit in associative memory in adult mice. These findings suggest that the cognitive impact of a seizure may depend on the timing of the seizure relative to the memory process that is active.
Collapse
Affiliation(s)
- Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Andrew D Kim
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas 76798, USA.,Institute of Biomedical Studies, Baylor University, Waco, Texas 76798, USA.,Department of Biology, Baylor University, Waco, Texas 76798, USA
| |
Collapse
|
9
|
Cognitive and behavioral effects of brief seizures in mice. Epilepsy Behav 2019; 98:249-257. [PMID: 31398689 DOI: 10.1016/j.yebeh.2019.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 11/22/2022]
Abstract
Comorbidities associated with epilepsy greatly reduce patients' quality of life. Since antiepilepsy drugs show limited success in ameliorating cognitive and behavioral symptoms, there is a need to better understand the mechanisms underlying epilepsy-related cognitive and behavioral impairments. Most prior research addressing this problem has focused on chronic epilepsy, wherein many factors can simultaneously impact cognition and behavior. The purpose of the present study was to develop a testing paradigm using mice that can provide new insight into how short-term biological changes underlying acute seizures impact cognition and behavior. In Experiment 1, naïve C57BL/6J mice were subjected to either three brief, generalized electroconvulsive seizure (ECS) or three sham treatments equally spaced over the course of 30 min. Over the next 2 h, mice were tested in a novel object recognition paradigm. Follow-up studies examined locomotor activity immediately before and after (Experiment 2), immediately after (Experiment 3), and 45 min after (Experiment 4) a set of three ECS or sham treatments. Whereas results demonstrated that there was no statistically significant difference in recognition memory acquisition between ECS and sham-treated mice, measures of anxiety-like behavior were increased and novel object interest was decreased in ECS-treated mice compared with that in sham. Interestingly, ECS also produced a delayed inhibitory effect on locomotion, decreasing open-field activity 45-min posttreatment compared to sham. We conclude that a small cluster of brief seizures can have acute, behaviorally relevant effects in mice, and that greater emphasis should be placed on events that take place before chronic epilepsy is established in order to better understand epilepsy-related cognitive and behavioral impairments. Future research would benefit from using the paradigms defined above to study the effects of individual seizures on mouse cognition and behavior.
Collapse
|
10
|
Choo BKM, Kundap UP, Johan Arief MFB, Kumari Y, Yap JL, Wong CP, Othman I, Shaikh MF. Effect of newer anti-epileptic drugs (AEDs) on the cognitive status in pentylenetetrazol induced seizures in a zebrafish model. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:483-493. [PMID: 30844417 DOI: 10.1016/j.pnpbp.2019.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 12/30/2022]
Abstract
Epilepsy is marked by seizures that are a manifestation of excessive brain activity and is symptomatically treatable by anti-epileptic drugs (AEDs). Unfortunately, the older AEDs have many side effects, with cognitive impairment being a major side effect that affects the daily lives of people with epilepsy. Thus, this study aimed to determine if newer AEDs (Zonisamide, Levetiracetam, Perampanel, Lamotrigine and Valproic Acid) also cause cognitive impairment, using a zebrafish model. Acute seizures were induced in zebrafish using pentylenetetrazol (PTZ) and cognitive function was assessed using the T-maze test of learning and memory. Neurotransmitter and gene expression levels related to epilepsy as well as learning and memory were also studied to provide a better understanding of the underlying processes. Ultimately, impaired cognitive function was seen in AED treated zebrafish, regardless of whether seizures were induced. A highly significant decrease in γ-Aminobutyric Acid (GABA) and glutamate levels was also discovered, although acetylcholine levels were more variable. The gene expression levels of Brain-Derived Neurotrophic Factor (BDNF), Neuropeptide Y (NPY) and Cyclic Adenosine Monophosphate (CAMP) Responsive Element Binding Protein 1 (CREB-1) were not found to be significantly different in AED treated zebrafish. Based on the experimental results, a decrease in brain glutamate levels due to AED treatment appears to be at least one of the major factors behind the observed cognitive impairment in the treated zebrafish.
Collapse
Affiliation(s)
- Brandon Kar Meng Choo
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Uday P Kundap
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Muhammad Faiz Bin Johan Arief
- MBBS Young Scholars Program, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jia Ling Yap
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Chee Piau Wong
- Royal College of Surgeons in Ireland School of Medicine, Perdana University, Kuala Lumpur, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
11
|
Holley AJ, Hodges SL, Nolan SO, Binder M, Okoh JT, Ackerman K, Tomac LA, Lugo JN. A single seizure selectively impairs hippocampal-dependent memory and is associated with alterations in PI3K/Akt/mTOR and FMRP signaling. Epilepsia Open 2018; 3:511-523. [PMID: 30525120 PMCID: PMC6276778 DOI: 10.1002/epi4.12273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 02/03/2023] Open
Abstract
Objective A single brief seizure before learning leads to spatial and contextual memory impairment in rodents without chronic epilepsy. These results suggest that memory can be impacted by seizure activity in the absence of epilepsy pathology. In this study, we investigated the types of memory affected by a seizure and the time course of impairment. We also examined alterations to mammalian target of rapamycin (mTOR) and fragile X mental retardation protein (FMRP) signaling, which modulate elements of the synapse and may underlie impairment. Methods We induced a single seizure and investigated hippocampal and nonhippocampal memory using trace fear conditioning, novel object recognition (NOR), and accelerating rotarod to determine the specificity of impairment in mice. We used western blot analysis to examine for changes to cellular signaling and synaptic proteins 1 h, 24 h, and 1 week after a seizure. We also included a histologic examination to determine if cell loss or gross lesions might alternatively explain memory deficits. Results Behavioral results indicated that a seizure before learning leads to impairment of trace fear memory that worsens over time. In contrast, nonhippocampal memory was unaffected by a seizure in the NOR and rotarod tasks. Western analysis indicated increased hippocampal phospho‐S6 and total FMRP 1 h following a seizure. Tissue taken 24 h after a seizure indicated increased hippocampal GluA1, suggesting increased α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptor expression. Histologic analysis indicated that neither cell loss nor lesions are present after a single seizure. Significance The presence of memory impairment in the absence of damage suggests that memory impairment caused by seizure activity differs from general memory impairment in epilepsy. Instead, memory impairment after a single seizure is associated with alterations to mTOR and FMRP signaling, which leads to a disruption of synaptic proteins involved in consolidation of long‐term memory. These results have implications for understanding memory impairment in epilepsy.
Collapse
Affiliation(s)
- Andrew J Holley
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | | | - Suzanne O Nolan
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Matthew Binder
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - James T Okoh
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Kaylin Ackerman
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Lindsey A Tomac
- Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| | - Joaquin N Lugo
- Institute of Biomedical Studies Baylor University Waco Texas U.S.A.,Department of Psychology and Neuroscience Baylor University Waco Texas U.S.A
| |
Collapse
|
12
|
Hodges SL, Lugo JN. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res 2018; 146:9-16. [PMID: 30053675 DOI: 10.1016/j.eplepsyres.2018.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Epilepsy is one of the most common neurological disorders, and yet many afflicted individuals are resistant to all available therapeutic treatments. Existing pharmaceutical treatments function primarily to reduce hyperexcitability and prevent seizures, but fail to influence the underlying pathophysiology of the disorder. Recently, research efforts have focused on identifying alternative mechanistic targets for anti-epileptogenic therapies that can prevent the development of chronic epilepsy. The Wnt/β-catenin pathway, one possible target, has been demonstrated to be disrupted in both acute and chronic phases of epilepsy. Wnt/β-catenin signaling can regulate many seizure-induced changes in the brain, including neurogenesis and neuronal death, as well as can influence seizure susceptibility and potentially the development of chronic epilepsy. Several genome-wide studies and in vivo knockout animal models have provided evidence for an association between disrupted Wnt/β-catenin signaling and epilepsy. Furthermore, approved pharmaceutical drugs and other small molecule compounds that target components of the β-catenin destruction complex or antagonize endogenous inhibitors of the pathway have shown to be protective following seizures. However, additional studies are needed to determine the optimal time period in which modulation of the pathway may be most beneficial. Overall, disrupted molecular networks such as Wnt/β-catenin signaling, could be a promising anti-epileptogenic target for future epilepsy therapies.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
13
|
Wortmannin Attenuates Seizure-Induced Hyperactive PI3K/Akt/mTOR Signaling, Impaired Memory, and Spine Dysmorphology in Rats. eNeuro 2017; 4:eN-NWR-0354-16. [PMID: 28612047 PMCID: PMC5467399 DOI: 10.1523/eneuro.0354-16.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Numerous studies have shown epilepsy-associated cognitive deficits, but less is known about the effects of one single generalized seizure. Recent studies demonstrate that a single, self-limited seizure can result in memory deficits and induces hyperactive phosphoinositide 3-kinase/Akt (protein kinase B)/mechanistic target of rapamycin (PI3K/Akt/mTOR) signaling. However, the effect of a single seizure on subcellular structures such as dendritic spines and the role of aberrant PI3K/Akt/mTOR signaling in these seizure-induced changes are unclear. Using the pentylenetetrazole (PTZ) model, we induced a single generalized seizure in rats and: (1) further characterized short- and long-term hippocampal and amygdala-dependent memory deficits, (2) evaluated whether there are changes in dendritic spines, and (3) determined whether inhibiting hyperactive PI3K/Akt/mTOR signaling rescued these alterations. Using the PI3K inhibitor wortmannin (Wort), we partially rescued short- and long-term memory deficits and altered spine morphology. These studies provide evidence that pathological PI3K/Akt/mTOR signaling plays a role in seizure-induced memory deficits as well as aberrant spine morphology.
Collapse
|