1
|
Faingold CL. Lethal Interactions of neuronal networks in epilepsy mediated by both synaptic and volume transmission indicate approaches to prevention. Prog Neurobiol 2025; 249:102770. [PMID: 40258456 DOI: 10.1016/j.pneurobio.2025.102770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neuronal network interactions are important in normal brain physiology and also in brain disorders. Many mesoscopic networks, including the auditory and respiratory network, mediate a single brain function. Macroscopic networks, including the locomotor network, central autonomic network (CAN), and many seizure networks involve interactions among multiple mesoscopic networks. Network interactions are mediated by neuroactive substances, acting via synaptic transmission, which mediate rapid interactions between networks. Slower, but vitally important network interactions, are mediated by volume transmission. Changes in the interactions between networks, mediated by neuroactive substances, can significantly alter network function and interactions. The acoustic startle response involves interactions between auditory and locomotor networks, and also includes brainstem reticular formation (BRF) nuclei, which participate in many different networks. In the fear-potentiated startle paradigm this network interacts positively with the amygdala, induced by conditioning. Seizure networks can interact negatively with the respiratory network, which becomes lethal in sudden unexpected death in epilepsy (SUDEP), a tragic emergent property of the seizure network. SUDEP models that exhibit audiogenic seizures (AGSz) involve interactions between the auditory and locomotor networks with BRF nuclei. In the DBA/1 mouse SUDEP model the AGSz network interacts negatively with the respiratory network, resulting in postictal apnea. The apnea is lethal unless the CAN is able to initiate autoresuscitation. These network interactions involve synaptic transmission, mediated by GABA and glutamate and volume transmission mediated by adenosine, CO2 and serotonin. Altering these interaction mechanisms may prevent SUDEP. These epilepsy network interactions illustrate the complex mechanisms that can occur among neuronal networks.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology, Southern Illinois University, School of Medicine, Springfield, IL 62701 USA, United States.
| |
Collapse
|
2
|
Kulikov AA, Naumova AA, Sokolova YO, Suponin AA, Krasnov KA, Nikolaeva SD, Chernigovskaya EV, Bazhanova ED, Glazova MV. p53 inhibition during audiogenic kindling in Krushinsky-Molodkina rats attenuates seizure severity and prevents neurodegeneration in the hippocampus. Neuroscience 2025; 574:138-151. [PMID: 40210194 DOI: 10.1016/j.neuroscience.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/13/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
In the present study, we analyzed the effects of the p53 inhibitor pifithrin-α (PFT) on the expression of brainstem audiogenic seizures (AGS) and limbic seizures in Krushinsky-Molodkina (KM) rats genetically prone to AGS. To reproduce limbic/mesial temporal lobe epilepsy (TLE)-like condition in KM rats, we used repetitive AGS stimulations (audiogenic kindling) during 14 days. In parallel with AGS stimulations, KM rats received daily intraperitoneal injections of PFT. Our data demonstrated that PFT treatment significantly decreased the duration and severity of both brainstem AGS and limbic seizures. In addition, PFT partially prevented the kindling-induced neurodegeneration and activation of apoptotic mechanisms in the hippocampus of KM rats. Moreover, PFT treatment led to the persistent upregulation of anti-apoptotic Bcl-2, along with GluA2 and GluN2A, glutamate receptor subunits which are involved into the mechanisms supporting cell survival and preventing neuronal hyperexcitability. Altogether, our data confirm that p53 can be considered as a perspective target for the development of novel strategies to mitigate seizure activity and avert its deleterious consequences.
Collapse
Affiliation(s)
- Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Yulia O Sokolova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Andrey A Suponin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Konstantin A Krasnov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Svetlana D Nikolaeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Elena D Bazhanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, The Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
3
|
Alves SS, Rossi L, de Oliveira JAC, Servilha-Menezes G, Grigorio-de-Sant'Ana M, Mazzei RF, Almeida SS, Sebollela A, da Silva Junior RMP, Garcia-Cairasco N. Metformin Improves Spatial Memory and Reduces Seizure Severity in a Rat Model of Epilepsy and Alzheimer's Disease comorbidity via PI3K/Akt Signaling Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04844-2. [PMID: 40126600 DOI: 10.1007/s12035-025-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Emerging evidence suggests a bidirectional relationship between Alzheimer's disease (AD) and epilepsy. In our previous studies, we identified a partial AD-like phenotype associated with central insulin resistance in the Wistar audiogenic rat (WAR), a genetic model of epilepsy. We also found that intracerebroventricular administration of streptozotocin, a compound used to model diabetes and AD, exacerbates seizure susceptibility. Given the role of insulin signaling in both AD and epilepsy, we hypothesized that metformin (MET), an anti-diabetic drug known for enhancing insulin sensitivity, could be a potential therapeutic agent for both conditions. Our objective was to investigate MET's effects on brain insulin signaling, seizure activity, and AD-like pathology in WARs. Adult male WARs received oral MET (250 mg/kg) for 21 days. Audiogenic seizures were assessed using the Categorized Severity Index and Racine's scale. Spatial memory was tested with the Morris water maze (MWM), followed by Western blot analysis of hippocampal proteins. MET significantly reduced seizure severity and improved MWM performance. Although MET did not affect insulin receptor levels or activation, it increased phosphoinositide 3-kinase (PI3K), activated Akt, and increased glycogen synthase kinase-3α/β (GSK-3α/β) levels. MET also decreased amyloid β precursor protein (AβPP) levels but did not affect Tau phosphorylation. These results suggest that chronic MET treatment alleviates behaviors related to both AD and epilepsy in WARs and modulates insulin signaling independently of insulin receptor activation. Our findings highlight MET's potential as a therapeutic agent for managing comorbid AD and epilepsy, warranting further investigation into its mechanisms of action.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Letícia Rossi
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Jose Antonio Cortes de Oliveira
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Mariana Grigorio-de-Sant'Ana
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo (FFCLRP-USP), Ribeirão Preto, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo (FFCLRP-USP), Ribeirão Preto, Brazil
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
| |
Collapse
|
4
|
Marroni SS, Santos VR, Castro OW, Tejada J, Santos J, Cortes de Oliveira JA, Garcia-Cairasco N. Epilepsy, compulsion and oxytocin: Insights from behavioral sequences, using neuroethology and complexity systems approaches. Epilepsy Behav 2025; 164:110273. [PMID: 39827679 DOI: 10.1016/j.yebeh.2025.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/23/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Epilepsies are complex neurological entities usually co-existing with neuropsychiatric comorbidities. We already demonstrated that microinjection of oxytocin (OT) into the central nucleus of amygdala (CeA) induces hypergrooming in Wistar rats, a model of compulsion. Furthermore, the Wistar Audiogenic Rat (WAR) strain is a genetic model of generalized tonic-clonic seizures. Here we quantified grooming behavior in WAR, with grooming scores, flowcharts and directed graphs of syntactic and non-syntactic grooming chains, after bilateral administration of OT or saline (SAL) into the CeA. Our current pioneer behavioral description considers that hypergrooming (compulsion) in WARs is a comorbidity because: (1) WARs have the highest grooming scores, when exposed only to novelty (2), WARs have better grooming scores than Wistars after CeA-SAL, (3) Epileptic WARs perform much better than Wistars in OT-CeA-dependent stereotyped behavioral sequences (flowcharts of syntactic/non-syntactic grooming chains). One additional observation is that the behavioral sequences here demonstrated can be modeled as reliable Markov chains. In conclusion we can drive hypergrooming in WARs, defined previously as a model of ritualistic motor behavior in Wistar rats, with OT from CeA, one of the principal amygdala complex outputs. As perspectives, ongoing cellular studies are on their way, to demonstrate the neural network, certainly incorporating cortico-striatal-thalamic-basal ganglia-cortical circuits, driven from CeA OT-dependent grooming pattern, a stereotyped, sequential and complex array of behaviors, and its association with seizure susceptibility.
Collapse
Affiliation(s)
- Simone S Marroni
- Physiology Department, Ribeirão Preto, School of Medicine, University of São Paulo, (USP), Ribeirão Preto, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto, School of Medicine, University of São Paulo, (USP), Ribeirão Preto, Brazil
| | - Victor R Santos
- Physiology Department, Ribeirão Preto, School of Medicine, University of São Paulo, (USP), Ribeirão Preto, Brazil
| | - Olagide W Castro
- Physiology Department, Ribeirão Preto, School of Medicine, University of São Paulo, (USP), Ribeirão Preto, Brazil; Institute of Biological Sciences and Health, Federal University of Alagoas (UFAL), Maceio, Brazil
| | - Julian Tejada
- Psychology Department, Center of Education and Human Science, Federal University of Sergipe, (UFS), São Cristóvão, SE, Brazil
| | - Jessica Santos
- Physiology Department, Ribeirão Preto, School of Medicine, University of São Paulo, (USP), Ribeirão Preto, Brazil
| | | | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto, School of Medicine, University of São Paulo, (USP), Ribeirão Preto, Brazil; Neuroscience and Behavioral Sciences Department, Ribeirão Preto, School of Medicine, University of São Paulo, (USP), Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Alves SS, Servilha-Menezes G, Rossi L, de Oliveira JAC, Grigorio-de-Sant'Ana M, Sebollela A, da Silva-Junior RMP, Garcia-Cairasco N. Insulin signaling disruption exacerbates memory impairment and seizure susceptibility in an epilepsy model with Alzheimer's disease-like pathology. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02896-1. [PMID: 39987343 DOI: 10.1007/s00702-025-02896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Alzheimer's disease (AD) and epilepsy exhibit a complex bidirectional relationship. Curiously, diabetes as a comorbidity increases the risk of epilepsy among AD patients. Recently, we reported that the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy, displays a partial AD-like phenotype, including brain insulin resistance. We also assessed seizure susceptibility in an AD model created through intracerebroventricular injections of streptozotocin (icv-STZ), which induces AD features via brain insulin resistance. Our goal was to explore how disrupted brain insulin signaling influences AD-like features and seizure susceptibility in the WAR strain. Adult male WARs received a single intracerebroventricular injection of streptozotocin (icv-STZ) (1.5 mg/kg) or vehicle (saline). Two weeks post-injection, spatial memory was assessed using the Barnes Maze (BM) test. Three weeks later, the rats underwent an audiogenic kindling (AuK) protocol (20 acoustic stimuli, 2 per day) to evaluate seizure frequency and severity. Seizures were analyzed using the Categorized Severity Index and Racine's scale and Western blot analysis was performed on hippocampal tissue. Our findings revealed that icv-STZ significantly worsened memory performance, increased seizure frequency, and reduced seizure onset relative to vehicle. Furthermore, icv-STZ decreased Akt activation and increased Glycogen Synthase Kinase-3 (GSK3) phosphorylation, indicating disrupted insulin signaling. Notably, icv-STZ decreased tau phosphorylation without altering amyloid β precursor protein (AβPP) levels. In conclusion, a low-dose icv-STZ injection exacerbates memory deficits and seizure susceptibility in the WAR strain by disturbing downstream proteins involved in insulin signaling. This highlights the implications of brain insulin resistance in both AD and epilepsy.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Letícia Rossi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - José Antonio Cortes de Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Mariana Grigorio-de-Sant'Ana
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Av. Dos Bandeirantes 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
6
|
Dereli AS, Apaire A, El Tahry R. Sudden Unexpected Death in Epilepsy: Central Respiratory Chemoreception. Int J Mol Sci 2025; 26:1598. [PMID: 40004062 PMCID: PMC11855741 DOI: 10.3390/ijms26041598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a critical concern for individuals suffering from epilepsy, with respiratory dysfunction playing a significant role in its pathology. Fatal seizures are often characterized by central apnea and hypercapnia (elevated CO2 levels), indicating a failure in ventilatory control. Research has shown that both human epilepsy patients and animal models exhibit a reduced hypercapnic ventilatory response in the interictal (non-seizure) period, suggesting an impaired ability to regulate breathing in response to high CO2 levels. This review examines the role of central chemoreceptors-specifically the retrotrapezoid nucleus, raphe nuclei, nucleus tractus solitarius, locus coeruleus, and hypothalamus in this pathology. These structures are critical for sensing CO2 and maintaining respiratory homeostasis. Emerging evidence also implicates neuropeptidergic pathways within these chemoreceptive regions in SUDEP. Neuropeptides like galanin, pituitary adenylate cyclase-activating peptide (PACAP), orexin, somatostatin, and bombesin-like peptides may modulate chemosensitivity and respiratory function, potentially exacerbating respiratory failure during seizures. Understanding the mechanisms linking central chemoreception, respiratory control, and neuropeptidergic signaling is essential to developing targeted interventions to reduce the risk of SUDEP in epilepsy patients.
Collapse
Affiliation(s)
- Ayse S. Dereli
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
| | - Auriane Apaire
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
| | - Riem El Tahry
- Clinical Neuroscience, Institute of Neuroscience (IoNS), Université Catholique de Louvain, 1200 Brussels, Belgium; (A.A.); (R.E.T.)
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), WEL Research Institute, 1300 Wavre, Belgium
- Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
7
|
Eiras MC, Verruma CG, Fernandes A, Ramos ES, Furtado CLM, Garcia-Cairasco N, Dos Reis RM. Repeated acoustic stimulation (audiogenic kindling) induces estrous arrest in the Wistar audiogenic Rat (WAR) strain. A model of pseudopregnancy? Epilepsy Behav 2024; 161:110125. [PMID: 39510016 DOI: 10.1016/j.yebeh.2024.110125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Epilepsy is a chronic disorder characterized by a predisposition to epileptic seizures, affecting more than 50 million people worldwide. METHODS Wistar and Wistar Audiogenic Rats (WAR) females were evaluated regarding estrous cycle and seizures episodes during repeated (kindling) acoustic stimulation at different stages of the estrous cycle. RESULTS Acoustic stimulation did not affect the estrous cycle of most Wistar females in either control (91.6 %) or kindled (70.0 %) groups. They also had no seizures episodes. In WAR females, most of the control group (91.6 %) showed regular cycles during acoustic stimulation. In the kindling group, all females showed irregular cycles during acoustic stimulation with diestrus arrest for several days (11.8 ± 1.46 days) and 12 of them (92.3 %) showed, at least, four mesencephalic seizure behaviors during the acoustic stimulation (1 ≤ cSI ≤ 8). In this group, 7 females (53.84 %) also showed limbic seizures (2 ≤ LI ≤ 4). When WAR females were stratified by estrous cycle stage, the group that started the acoustic stimulation during estrus had five females (45.4 %) with diestrus arrest for several days (11.4 ± 0.89 days) and, eight females (72.7 %) exhibited, at least, two seizure behaviors (1 < cSI < 8). When acoustic stimulation was started in the metestrus stage, six females (54.5 %) exhibited diestrus arrest for several days (10.5 ± 3.27 days). In the metestrus group, ten females (90.9 %) presented five or six seizure episodes (1 < cSI < 8). CONCLUSION Our results showed that chronic audiogenic seizures (audiogenic kindling) affect the estrous cycle of WAR females, resulting in a consistent diestrus arrest for 10-12 days, which is consistent with the phenomenon of pseudopregnancy.
Collapse
Affiliation(s)
- Matheus Credendio Eiras
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Carolina Gennari Verruma
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Artur Fernandes
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Ester Silveira Ramos
- Department of Genetics, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Cristiana Libardi Miranda Furtado
- Graduate Program in Medical Sciences, Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, Brazil; Postgraduate Program in Translational Medicine, Drug Research and Development Center Federal University of Ceará, Fortaleza, Brazil.
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of Sao Paulo (FMRP-USP), Ribeirão Preto, Brazil.
| |
Collapse
|
8
|
Ahmedt-Aristizabal D, Armin MA, Hayder Z, Garcia-Cairasco N, Petersson L, Fookes C, Denman S, McGonigal A. Deep learning approaches for seizure video analysis: A review. Epilepsy Behav 2024; 154:109735. [PMID: 38522192 DOI: 10.1016/j.yebeh.2024.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024]
Abstract
Seizure events can manifest as transient disruptions in the control of movements which may be organized in distinct behavioral sequences, accompanied or not by other observable features such as altered facial expressions. The analysis of these clinical signs, referred to as semiology, is subject to observer variations when specialists evaluate video-recorded events in the clinical setting. To enhance the accuracy and consistency of evaluations, computer-aided video analysis of seizures has emerged as a natural avenue. In the field of medical applications, deep learning and computer vision approaches have driven substantial advancements. Historically, these approaches have been used for disease detection, classification, and prediction using diagnostic data; however, there has been limited exploration of their application in evaluating video-based motion detection in the clinical epileptology setting. While vision-based technologies do not aim to replace clinical expertise, they can significantly contribute to medical decision-making and patient care by providing quantitative evidence and decision support. Behavior monitoring tools offer several advantages such as providing objective information, detecting challenging-to-observe events, reducing documentation efforts, and extending assessment capabilities to areas with limited expertise. The main applications of these could be (1) improved seizure detection methods; (2) refined semiology analysis for predicting seizure type and cerebral localization. In this paper, we detail the foundation technologies used in vision-based systems in the analysis of seizure videos, highlighting their success in semiology detection and analysis, focusing on work published in the last 7 years. We systematically present these methods and indicate how the adoption of deep learning for the analysis of video recordings of seizures could be approached. Additionally, we illustrate how existing technologies can be interconnected through an integrated system for video-based semiology analysis. Each module can be customized and improved by adapting more accurate and robust deep learning approaches as these evolve. Finally, we discuss challenges and research directions for future studies.
Collapse
Affiliation(s)
- David Ahmedt-Aristizabal
- Imaging and Computer Vision Group, CSIRO Data61, Australia; SAIVT Laboratory, Queensland University of Technology, Australia.
| | | | - Zeeshan Hayder
- Imaging and Computer Vision Group, CSIRO Data61, Australia.
| | - Norberto Garcia-Cairasco
- Physiology Department and Neuroscience and Behavioral Sciences Department, Ribeirão Preto Medical School, University of São Paulo, Brazil.
| | - Lars Petersson
- Imaging and Computer Vision Group, CSIRO Data61, Australia.
| | - Clinton Fookes
- SAIVT Laboratory, Queensland University of Technology, Australia.
| | - Simon Denman
- SAIVT Laboratory, Queensland University of Technology, Australia.
| | - Aileen McGonigal
- Neurosciences Centre, Mater Hospital, Australia; Queensland Brain Institute, The University of Queensland, Australia.
| |
Collapse
|
9
|
Krivopalov S, Yushkov B, Sarapultsev A. Wireless EEG Recording of Audiogenic Seizure Activity in Freely Moving Krushinsky-Molodkina Rats. Biomedicines 2024; 12:946. [PMID: 38790907 PMCID: PMC11117987 DOI: 10.3390/biomedicines12050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates audiogenic epilepsy in Krushinsky-Molodkina (KM) rats, questioning the efficacy of conventional EEG techniques in capturing seizures during animal restraint. Using a wireless EEG system that allows unrestricted movement, our aim was to gather ecologically valid data. Nine male KM rats, prone to audiogenic seizures, received implants of wireless EEG transmitters that target specific seizure-related brain regions. These regions included the inferior colliculus (IC), pontine reticular nucleus, oral part (PnO), ventrolateral periaqueductal gray (VLPAG), dorsal area of the secondary auditory cortex (AuD), and motor cortex (M1), facilitating seizure observation without movement constraints. Our findings indicate that targeted neural intervention via electrode implantation significantly reduced convulsive seizures in approximately half of the subjects, suggesting therapeutic potential. Furthermore, the amplitude of brain activity in the IC, PnO, and AuD upon audiogenic stimulus onset significantly influenced seizure severity and nature, highlighting these areas as pivotal for epileptic propagation. Severe cases exhibited dual waves of seizure generalization, indicative of intricate neural network interactions. Distinctive interplay between specific brain regions, disrupted during convulsive activity, suggests neural circuit reconfiguration in response to escalating seizure intensity. These discoveries challenge conventional methodologies, opening avenues for novel approaches in epilepsy research and therapeutic interventions.
Collapse
Affiliation(s)
- Sergey Krivopalov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
| | - Boris Yushkov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
- GAUZ SO Institute for Medical Cell Technologies, 620026 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
| |
Collapse
|
10
|
Rebik A, Broshevitskaya N, Kuzhuget S, Aleksandrov P, Abbasova K, Zaichenko M, Midzyanovskaya I. Audiogenic Seizures and Social Deficits: No Aggravation Found in Krushinsky-Molodkina Rats. Biomedicines 2023; 11:2566. [PMID: 37761007 PMCID: PMC10526393 DOI: 10.3390/biomedicines11092566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Epilepsy or epileptic syndromes affect more than 70 million people, often comorbid with autism spectrum disorders (ASD). Seizures are concerned as a factor for social regression in ASD. A stepwise experimental approach to this problem requires an animal model to provoke seizures and monitor subsequent behavior. We used rats of the Krushinsky-Molodkina (KM) strain as a validated inbred genetic model for human temporal lobe epilepsy, with recently described social deficiency and hypolocomotion. Generalized tonic-clonic seizures in KM rats are sound-triggered, thus being controlled events in drug-naïve animals. We studied whether seizure experience would aggravate contact deficits in these animals. Locomotor and contact parameters were registered in "the elevated plus maze", "socially enriched open field", and "social novelty/social preference tests" before and after sound-provoked seizures. The triple seizure provocations minimally affected the contact behavior. The lack of social drive in KM rats was not accompanied by a submissive phenotype, as tested in "the tube dominance test", but featured with a poor contact repertoire. Here, we confirmed our previous findings on social deficits in KM rats. The contact deficiency was dissociated from hypolocomotion and anxiety and did not correlate with seizure experience. It was established that experience of rare, generalized tonic-clonic convulsions did not lead to an impending regress in contact motivation, as seen in an animal model of genetic epilepsy and comorbid social deficiency. One of the oldest animal models for epilepsy has a translational potential to study mechanisms of social behavioral deficits in future neurophysiological and pharmacological research.
Collapse
Affiliation(s)
- Anastasiya Rebik
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Nadezda Broshevitskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Syldys Kuzhuget
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (K.A.)
| | - Pavel Aleksandrov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Kenul Abbasova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia (K.A.)
| | - Maria Zaichenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| | - Inna Midzyanovskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (A.R.); (M.Z.)
| |
Collapse
|
11
|
Swain CC, Wischmeier JN, Neifer AE, Lloyd EAR, Neifer KL, Kile KB, Burkett JP. Hereditary convulsions in an outbred prairie vole line. Epilepsy Res 2023; 195:107202. [PMID: 37540927 PMCID: PMC10529651 DOI: 10.1016/j.eplepsyres.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Patients with epilepsy are significantly burdened by the disease due to long-term health risks, the severe side effect profiles of anti-epileptic drugs, and the strong possibility of pharmacoresistant refractory seizures. New animal models of epilepsy with unique characteristics promise to further research to address these ongoing problems. Here, we characterize a newly developed line of prairie voles (Microtus ochrogaster, UTol:HIC or "Toledo" line) that presents with a hereditary, adult-onset, handling-induced convulsion phenotype. Toledo voles were bred for four generations and tested to determine whether the observed phenotype was consistent with epileptic seizures. Toledo voles maintained a stable 22 % incidence of convulsions across generations, with an average age of onset of 12-16 weeks. Convulsions in Toledo voles were reliably evoked by rodent seizure screens and were phenotypically consistent with murine seizures. At the colony level, Toledo voles had a 7-fold increase in risk for sudden unexpected death from unknown causes, which parallels sudden unexpected death in epilepsy (SUDEP) in human patients. Finally, convulsions in Toledo voles were reduced or prevented by treatment with the anti-epileptic drug levetiracetam. Taken in combination, these results suggest that convulsions in Toledo voles may be epileptic seizures. The Toledo prairie vole strain may serve as a new rodent model of epilepsy in an undomesticated, outbred species.
Collapse
Affiliation(s)
- Caroline C Swain
- University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - James N Wischmeier
- University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | - Asha E Neifer
- University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | | | - Kari L Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kara B Kile
- Department of Physics, University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | - James P Burkett
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| |
Collapse
|
12
|
Ryazanova MA, Plekanchuk VS, Prokudina OI, Makovka YV, Alekhina TA, Redina OE, Markel AL. Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding. Biomedicines 2023; 11:1814. [PMID: 37509453 PMCID: PMC10376947 DOI: 10.3390/biomedicines11071814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Research into genetic and physiological mechanisms of widespread disorders such as arterial hypertension as well as neuropsychiatric and other human diseases is urgently needed in academic and practical medicine and in the field of biology. Nevertheless, such studies have many limitations and pose difficulties that can be overcome by using animal models. To date, for the purposes of creating animal models of human pathologies, several approaches have been used: pharmacological/chemical intervention; surgical procedures; genetic technologies for creating transgenic animals, knockouts, or knockdowns; and breeding. Although some of these approaches are good for certain research aims, they have many drawbacks, the greatest being a strong perturbation (in a biological system) that, along with the expected effect, exerts side effects in the study. Therefore, for investigating the pathogenesis of a disease, models obtained using genetic selection for a target trait are of high value as this approach allows for the creation of a model with a "natural" manifestation of the pathology. In this review, three rat models are described: ISIAH rats (arterial hypertension), GC rats (catatonia), and PM rats (audiogenic epilepsy), which are developed by breeding in the Laboratory of Evolutionary Genetics at the Institute of Cytology and Genetics (the Siberian Branch of the Russian Academy of Sciences).
Collapse
Affiliation(s)
- Marina A Ryazanova
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladislava S Plekanchuk
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga I Prokudina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yulia V Makovka
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Tatiana A Alekhina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga E Redina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Arcady L Markel
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
13
|
Alves SS, de Oliveira JAC, Lazarini-Lopes W, Servilha-Menezes G, Grigório-de-Sant'Ana M, Del Vecchio F, Mazzei RF, Sousa Almeida S, da Silva Junior RMP, Garcia-Cairasco N. Audiogenic Seizures in the Streptozotocin-Induced Rat Alzheimer's Disease Model. J Alzheimers Dis 2023:JAD230153. [PMID: 37393501 DOI: 10.3233/jad-230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative and progressive disorder with no cure and constant failures in clinical trials. The main AD hallmarks are amyloid-β (Aβ) plaques, neurofibrillary tangles, and neurodegeneration. However, many other events have been implicated in AD pathogenesis. Epilepsy is a common comorbidity of AD and there is important evidence indicating a bidirectional link between these two disorders. Some studies suggest that disturbed insulin signaling might play an important role in this connection. OBJECTIVE To understand the effects of neuronal insulin resistance in the AD-epilepsy link. METHODS We submitted the streptozotocin (STZ) induced rat AD Model (icv-STZ AD) to an acute acoustic stimulus (AS), a known trigger of seizures. We also assessed animals' performance in the memory test, the Morris water maze and the neuronal activity (c-Fos protein) induced by a single audiogenic seizure in regions that express high levels of insulin receptors. RESULTS We identified significant memory impairment and seizures in 71.43% of all icv-STZ/AS rats, in contrast to 22.22% of the vehicle group. After seizures, icv-STZ/AS rats presented higher number of c-Fos immunopositive cells in hippocampal, cortical, and hypothalamic regions. CONCLUSION STZ may facilitate seizure generation and propagation by impairment of neuronal function, especially in regions that express high levels of insulin receptors. The data presented here indicate that the icv-STZ AD model might have implications not only for AD, but also for epilepsy. Finally, impaired insulin signaling might be one of the mechanisms by which AD presents a bidirectional connection to epilepsy.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Willian Lazarini-Lopes
- Department of Pharmacology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | | | - Flavio Del Vecchio
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto - University of São Paulo (FFCLRP-USP), São Paulo, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), São Paulo, Brazil
| |
Collapse
|
14
|
Surina NM, Fedotova IB, Nikolaev GM, Grechenko VV, Gankovskaya LV, Ogurtsova AD, Poletaeva II. Neuroinflammation in Pathogenesis of Audiogenic Epilepsy: Altered Proinflammatory Cytokine Levels in the Rats of Krushinsky-Molodkina Seizure-Prone Strain. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:481-490. [PMID: 37080934 DOI: 10.1134/s0006297923040041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Neuroinflammation plays an important role in epileptogenesis, however, most studies are performed using pharmacological models of epilepsy, while there are only few data available for non-invasive, including genetic, models. The levels of a number of pro-inflammatory cytokines were examined in the Krushinsky-Molodkina (KM) rat strain with high audiogenic epilepsy (AE) proneness (intense tonic seizure fit in response to loud sound) and in the control strain "0" (not predisposed to AE) using multiplex immunofluorescence magnetic assay (MILLIPLEX map Kit). Cytokine levels were determined in the dorsal striatum tissue and in the brain stem. Background levels of IL-1β, IL-6, and TNF-α in the dorsal striatum of the KM rats were significantly lower than in the rats "0" (by 32.31, 27.84, and 38.87%, respectively, p < 0.05, 0.05, and 0.01), whereas no inter-strain differences in the levels of these metabolites were detected in the brain stem in the "background" state. Four hours after sound exposure, the TNF-α level in the dorsal striatum of the KM rats was significantly lower (by 38.34%, p < 0.01) than in the "0" rats. In the KM rats, the dorsal striatal levels of IL-1β and IL-6 were significantly higher after the sound exposure and subsequent seizure fit, compared to the background (35.29 and 50.21% increase, p < 0.05, 0.01, respectively). In the background state the IL-2 level in the KM rats was not detected, whereas after audiogenic seizures its level was 14.01 pg/ml (significant difference, p < 0.01). In the KM rats the brain stem levels of IL-1β and TNF-α after audiogenic seizures were significantly lower than in the background (13.23 and 23.44% decrease, respectively, p < 0.05). In the rats of the "0" strain, the levels of cytokines in the dorsal striatum after the action of sound (which did not induce AE seizures) were not different from those of the background, while in the brain stem of the "0" strain the levels of IL-1β were lower than in the background (40.28%, p < 0.01). Thus, the differences between the background levels of cytokines and those after the action of sound were different in the rats with different proneness to AE. These data suggest involvement of the analyzed cytokines in pathophysiology of the seizure state, namely in AE seizures.
Collapse
Affiliation(s)
- Natalia M Surina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Irina B Fedotova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Georgy M Nikolaev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | | | | | - Inga I Poletaeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
15
|
Inherited pain hypersensitivity and increased anxiety-like behaviors are associated with genetic epilepsy in Wistar Audiogenic Rats: Short- and long-term effects of acute and chronic seizures on nociception and anxiety. Epilepsy Behav 2023; 141:109160. [PMID: 36907082 DOI: 10.1016/j.yebeh.2023.109160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Anxiety and pain hypersensitivity are neurobehavioral comorbidities commonly reported by patients with epilepsies, and preclinical models are suitable to investigate the neurobiology of behavioral and neuropathological alterations associated with these epilepsy-related comorbidities. This work aimed to characterize endogenous alterations in nociceptive threshold and anxiety-like behaviors in the Wistar Audiogenic Rat (WAR) model of genetic epilepsy. We also assessed the effects of acute and chronic seizures on anxiety and nociception. WARs from acute and chronic seizure protocols were divided into two groups to assess short- and long-term changes in anxiety (1 day or 15 days after seizures, respectively). To assess anxiety-like behaviors, the laboratory animals were submitted to the open field, light-dark box, and elevated plus maze tests. The von Frey, acetone, and hot plate tests were used to measure the endogenous nociception in seizure-free WARs, and postictal antinociception was recorded at 10, 30, 60, 120, 180 min, and 24 h after seizures. Seizure-free WARs presented increased anxiety-like behaviors and pain hypersensitivity, displaying mechanical and thermal allodynia (to heat and cold stimuli) in comparison to nonepileptic Wistar rats. Potent postictal antinociception that persisted for 120 to 180 min was detected after acute and chronic seizures. Additionally, acute and chronic seizures have magnified the expression of anxiety-like behaviors when assessed at 1 day and 15 days after seizures. Behavioral analysis indicated more severe and persistent anxiogenic-like alterations in WARs submitted to acute seizures. Therefore, WARs presented pain hypersensitivity and increased anxiety-like behaviors endogenously associated with genetic epilepsy. Acute and chronic seizures induced postictal antinociception in response to mechanical and thermal stimuli and increased anxiety-like behaviors when assessed 1 day and 15 days later. These findings support the presence of neurobehavioral alterations in subjects with epilepsy and shed light on the use of genetic models to characterize neuropathological and behavioral alterations associated with epilepsy.
Collapse
|
16
|
Tchaikovsky I, Lucena MM, Andrade da Costa BLDS, Garcia-Cairasco N, Carelli PV, Cairrao M. Behavior and electrophysiological effects on striatum-nigra circuit after high frequency stimulation. Relevance to Parkinson and epilepsy. Int J Neurosci 2023; 133:523-531. [PMID: 34082662 DOI: 10.1080/00207454.2021.1929216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The phenomenon of plasticity in the striatum, and its relation with the striatum-nigra neuronal circuit has clinical and neurophysiological relevance to Parkinson and epilepsy. High frequency stimulation (HFS) can induce neural plasticity. Furthermore, it is possible to induce plasticity in the dorsal striatum and this can be modulated by substantia nigra activity. But it has not been shown yet what would be the effects in the striatum-nigra circuit after plasticity induction in striatum with HSF. Literature also misses a detailed description of the way back loop of the circuit: the striatal firing rate after substantia nigrás inhibition. We here conducted: First Experiment, application of HFS in dorsomedial striatum and measure of spontaneous and longlasting behavior expression in the open field three days later; Second, application of single pulses on dorsomedial striatum and measure of the evoked potentials in substantia nigra before and after HFS; Third Experiment: inhibition of substantia nigra and recording of the firing rate of dorsomedial striatum. HFS in dorsomedial striatum caused increased locomotion behaviors, but not classical stereotypy. However, rats had either an increase or decrease in substantia nigrás evoked potentials. Also, substantia nigrás inhibition caused an increase in dorsomedial striatum firing rate. Present data are suggestive of a potential application of HFS in striatum, as an attempt to modulate behavior rigidity and hypokinesia of diseases involving the basal ganglia, especially Parkinson´s Disease.
Collapse
Affiliation(s)
- Igor Tchaikovsky
- Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Pedro V Carelli
- Physics department, Federal University of Pernambuco, Recife, Brazil
| | - Marcelo Cairrao
- Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
17
|
Klippel Zanona Q, Alves Marconi G, de Sá Couto Pereira N, Lazzarotto G, Luiza Ferreira Donatti A, Antonio Cortes de Oliveira J, Garcia-Cairasco N, Elisa Calcagnotto M. Absence-like seizures, cortical oscillations abnormalities and decreased anxiety-like behavior in Wistar Audiogenic Rats with cortical microgyria. Neuroscience 2022; 500:26-40. [DOI: 10.1016/j.neuroscience.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/25/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
|
18
|
Servilha-Menezes G, Garcia-Cairasco N. A complex systems view on the current hypotheses of epilepsy pharmacoresistance. Epilepsia Open 2022; 7 Suppl 1:S8-S22. [PMID: 35253410 PMCID: PMC9340300 DOI: 10.1002/epi4.12588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/11/2022] Open
Abstract
Drug-resistant epilepsy remains to this day as a highly prevalent condition affecting around one-third of patients with epilepsy, despite all the research and the development of several new antiseizure medications (ASMs) over the last decades. Epilepsies are multifactorial complex diseases, commonly associated with psychiatric, neurological, and somatic comorbidities. Thus, to solve the puzzling problem of pharmacoresistance, the diagnosis and modeling of epilepsy and comorbidities need to change toward a complex system approach. In this review, we have summarized the sequence of events for the definition of epilepsies and comorbidities, the search for mechanisms, and the major hypotheses of pharmacoresistance, drawing attention to some of the many converging aspects between the proposed mechanisms, their supporting evidence, and comorbidities-related alterations. The use of systems biology applied to epileptology may lead to the discovery of new targets and the development of new ASMs, as may advance our understanding of the epilepsies and their comorbidities, providing much deeper insight on multidrug pharmacoresistance.
Collapse
Affiliation(s)
- Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil.,Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
19
|
Neuroplastic alterations in cannabinoid receptors type 1 (CB1) in animal models of epileptic seizures. Neurosci Biobehav Rev 2022; 137:104675. [PMID: 35460705 DOI: 10.1016/j.neubiorev.2022.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 04/17/2022] [Indexed: 01/01/2023]
Abstract
Currently, there is an urgent need to better comprehend neuroplastic alterations in cannabinoid receptors type 1 (CB1) and to understand the biological meaning of these alterations in epileptic disorders. The present study reviewed neuroplastic changes in CB1 distribution, expression, and functionality in animal models of epileptic seizures. Neuroplastic alterations in CB1 were consistently observed in chemical, genetic, electrical, and febrile seizure models. Most studies assessed changes in hippocampal and cortical CB1, while thalamic, hypothalamic, and brainstem nuclei were rarely investigated. Additionally, the relationship between CB1 alteration and the control of brain excitability through modulation of specific neuronal networks, such as striatonigral, nigrotectal and thalamocortical pathways, and inhibitory projections to hippocampal pyramidal neurons, were all presented and discussed in the present review. Neuroplastic alterations in CB1 detected in animal models of epilepsy may reflect two different scenarios: (1) endogenous adaptations aimed to control neuronal hyperexcitability in epilepsy or (2) pathological alterations that facilitate neuronal hyperexcitability. Additionally, a better comprehension of neuroplastic and functional alterations in CB1 can improve pharmacological therapies for epilepsies and their comorbidities.
Collapse
|
20
|
Alves SS, da Silva Junior RMP, Delfino-Pereira P, Pereira MGAG, Vasconcelos I, Schwaemmle H, Mazzei RF, Carlos ML, Espreafico EM, Tedesco AC, Sebollela A, Almeida SS, de Oliveira JAC, Garcia-Cairasco N. A Genetic Model of Epilepsy with a Partial Alzheimer's Disease-Like Phenotype and Central Insulin Resistance. Mol Neurobiol 2022; 59:3721-3737. [PMID: 35378696 DOI: 10.1007/s12035-022-02810-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/22/2022] [Indexed: 12/20/2022]
Abstract
Studies have suggested an important connection between epilepsy and Alzheimer's disease (AD), mostly due to the high number of patients diagnosed with AD who develop epileptic seizures later on. However, this link is not well understood. Previous studies from our group have identified memory impairment and metabolic abnormalities in the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy. Our goal was to investigate AD behavioral and molecular alterations, including brain insulin resistance, in naïve (seizure-free) animals of the WAR strain. We used the Morris water maze (MWM) test to evaluate spatial learning and memory performance and hippocampal tissue to verify possible molecular and immunohistochemical alterations. WARs presented worse performance in the MWM test (p < 0.0001), higher levels of hyperphosphorylated tau (S396) (p < 0.0001) and phosphorylated glycogen synthase kinase 3 (S21/9) (p < 0.05), and lower insulin receptor levels (p < 0.05). Conversely, WARs and Wistar controls present progressive increase in amyloid fibrils (p < 0.0001) and low levels of soluble amyloid-β. Interestingly, the detected alterations were age-dependent, reaching larger differences in aged than in young adult animals. In summary, the present study provides evidence of a partial AD-like phenotype, including altered regulation of insulin signaling, in a genetic model of epilepsy. Together, these data contribute to the understanding of the connection between epilepsy and AD as comorbidities. Moreover, since both tau hyperphosphorylation and altered insulin signaling have already been reported in epilepsy and AD, these two events should be considered as important components in the interconnection between epilepsy and AD pathogenesis and, therefore, potential therapeutic targets in this field.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | | | - Polianna Delfino-Pereira
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | | | - Israel Vasconcelos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Hanna Schwaemmle
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirao Preto, Brazil
| | - Maiko Luiz Carlos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirao Preto, Brazil
| | - Enilza Maria Espreafico
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Antônio Claudio Tedesco
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirao Preto, Brazil
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo (FFCLRP-USP), Ribeirao Preto, Brazil
| | - José Antônio Cortes de Oliveira
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Av. Dos Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil
| | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Ribeirao Preto, Brazil.
- Department of Physiology, Ribeirão Preto Medical School - University of São Paulo (FMRP-USP), Av. Dos Bandeirantes 3900, Ribeirao Preto, SP, 14049-900, Brazil.
| |
Collapse
|
21
|
Midzyanovskaya IS, Birioukova LM, Storvik M, Luijtelaar GV, Tuomisto LM. The prefrontal cortex shows widespread decrease in H3 histamine receptor binding densities in rats with genetic generalized epilepsies. Epilepsy Res 2022; 182:106921. [DOI: 10.1016/j.eplepsyres.2022.106921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
|
22
|
Godoy LD, Prizon T, Rossignoli MT, Leite JP, Liberato JL. Parvalbumin Role in Epilepsy and Psychiatric Comorbidities: From Mechanism to Intervention. Front Integr Neurosci 2022; 16:765324. [PMID: 35250498 PMCID: PMC8891758 DOI: 10.3389/fnint.2022.765324] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Parvalbumin is a calcium-binding protein present in inhibitory interneurons that play an essential role in regulating many physiological processes, such as intracellular signaling and synaptic transmission. Changes in parvalbumin expression are deeply related to epilepsy, which is considered one of the most disabling neuropathologies. Epilepsy is a complex multi-factor group of disorders characterized by periods of hypersynchronous activity and hyperexcitability within brain networks. In this scenario, inhibitory neurotransmission dysfunction in modulating excitatory transmission related to the loss of subsets of parvalbumin-expressing inhibitory interneuron may have a prominent role in disrupted excitability. Some studies also reported that parvalbumin-positive interneurons altered function might contribute to psychiatric comorbidities associated with epilepsy, such as depression, anxiety, and psychosis. Understanding the epileptogenic process and comorbidities associated with epilepsy have significantly advanced through preclinical and clinical investigation. In this review, evidence from parvalbumin altered function in epilepsy and associated psychiatric comorbidities were explored with a translational perspective. Some advances in potential therapeutic interventions are highlighted, from current antiepileptic and neuroprotective drugs to cutting edge modulation of parvalbumin subpopulations using optogenetics, designer receptors exclusively activated by designer drugs (DREADD) techniques, transcranial magnetic stimulation, genome engineering, and cell grafting. Creating new perspectives on mechanisms and therapeutic strategies is valuable for understanding the pathophysiology of epilepsy and its psychiatric comorbidities and improving efficiency in clinical intervention.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Tamiris Prizon
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- João Pereira Leite,
| | - José Luiz Liberato
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: José Luiz Liberato,
| |
Collapse
|
23
|
Lazarini-Lopes W, Silva-Cardoso GK, Leite-Panissi CRA, Garcia-Cairasco N. Increased TRPV1 Channels and FosB Protein Expression Are Associated with Chronic Epileptic Seizures and Anxiogenic-like Behaviors in a Preclinical Model of Temporal Lobe Epilepsy. Biomedicines 2022; 10:biomedicines10020416. [PMID: 35203625 PMCID: PMC8962263 DOI: 10.3390/biomedicines10020416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Gleice Kelli Silva-Cardoso
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Christie Ramos Andrade Leite-Panissi
- Psychology Department, Faculty of Philosophy, Science, and Letters, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (G.K.S.-C.); (C.R.A.L.-P.)
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Physiology Department, Ribeirão Preto School of Medicine and Neuroscience and Behavioral Sciences Department, University of São Paulo, Ribeirão Preto 14049-900, Brazil
- Correspondence:
| |
Collapse
|
24
|
Kulikov AA, Naumova AA, Aleksandrova EP, Glazova MV, Chernigovskaya EV. Audiogenic kindling stimulates aberrant neurogenesis, synaptopodin expression, and mossy fiber sprouting in the hippocampus of rats genetically prone to audiogenic seizures. Epilepsy Behav 2021; 125:108445. [PMID: 34837844 DOI: 10.1016/j.yebeh.2021.108445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Temporal lobe epilepsy is associated with considerable structural changes in the hippocampus. Pharmacological and electrical models of temporal lobe epilepsy in animals strongly suggest that hippocampal reorganization is based on seizure-stimulated aberrant neurogenesis but the data are often controversial and hard to interpret. The aim of the present study was to estimate neurogenesis and synaptic remodeling in the hippocampus of Krushinsky-Molodkina (KM) rats genetically prone to audiogenic seizures (AGS). In our experiments we exposed KM rats to audiogenic kindling of different durations (4, 14, and 21 AGS) to model different stages of epilepsy development. Naïve KM rats were used as a control. Our results showed that even 4 AGS stimulated proliferation in the subgranular layer of the dentate gyrus (DG) accompanied with increase in number of doublecortin (DCX)-positive immature granular cells. Elevated number of proliferating cells was also observed in the hilus indicating the enhancement of abnormal migration of neural progenitors. In contrast to the DG, all DCX-positive cells in the hilus expressed VGLUT1/2 and their number was increased indicating that seizure activity accelerates glutamatergic differentiation of ectopic hilar cells. 14-day kindling further stimulated proliferation, abnormal migration, and glutamatergic differentiation of new neurons both in the DG granular and subgranular layers and in the hilus. However, after 21 AGS increased proliferation was observed only in the DG, while the numbers of immature neurons expressed VGLUT1/2 were still enhanced in both hippocampal areas. Audiogenic kindling also stimulated sprouting of mossy fibers and enhanced expression of synaptopodin in the hippocampus indicating generation of new synaptic contacts between granular cells, mossy cells, and CA3 pyramid neurons. Thus, our data suggest that epilepsy progression is associated with exacerbation of aberrant neurogenesis and reorganization of hippocampal neural circuits that contribute to the enhancement and spreading of epileptiform activity.
Collapse
Affiliation(s)
- Alexey A Kulikov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Alexandra A Naumova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Ekaterina P Aleksandrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| | - Margarita V Glazova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia.
| | - Elena V Chernigovskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez pr., 194223 St. Petersburg, Russia
| |
Collapse
|
25
|
Chuvakova LN, Funikov SY, Rezvykh AP, Davletshin AI, Evgen'ev MB, Litvinova SA, Fedotova IB, Poletaeva II, Garbuz DG. Transcriptome of the Krushinsky-Molodkina Audiogenic Rat Strain and Identification of Possible Audiogenic Epilepsy-Associated Genes. Front Mol Neurosci 2021; 14:738930. [PMID: 34803604 PMCID: PMC8600260 DOI: 10.3389/fnmol.2021.738930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Audiogenic epilepsy (AE), inherent to several rodent strains is widely studied as a model of generalized convulsive epilepsy. The molecular mechanisms that determine the manifestation of AE are not well understood. In the present work, we compared transcriptomes from the corpora quadrigemina in the midbrain zone, which are crucial for AE development, to identify genes associated with the AE phenotype. Three rat strains without sound exposure were compared: Krushinsky-Molodkina (KM) strain (100% AE-prone); Wistar outbred rat strain (non-AE prone) and “0” strain (partially AE-prone), selected from F2 KM × Wistar hybrids for their lack of AE. The findings showed that the KM strain gene expression profile exhibited a number of characteristics that differed from those of the Wistar and “0” strain profiles. In particular, the KM rats showed increased expression of a number of genes involved in the positive regulation of the MAPK signaling cascade and genes involved in the positive regulation of apoptotic processes. Another characteristic of the KM strain which differed from that of the Wistar and “0” rats was a multi-fold increase in the expression level of the Ttr gene and a significant decrease in the expression of the Msh3 gene. Decreased expression of a number of oxidative phosphorylation-related genes and a few other genes was also identified in the KM strain. Our data confirm the complex multigenic nature of AE inheritance in rodents. A comparison with data obtained from other independently selected AE-prone rodent strains suggests some common causes for the formation of the audiogenic phenotype.
Collapse
Affiliation(s)
- Lyubov N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Artem I Davletshin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Michael B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Fedotova IB, Surina NM, Nikolaev GM, Revishchin AV, Poletaeva II. Rodent Brain Pathology, Audiogenic Epilepsy. Biomedicines 2021; 9:biomedicines9111641. [PMID: 34829870 PMCID: PMC8615954 DOI: 10.3390/biomedicines9111641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
The review presents data which provides evidence for the internal relationship between the stages of rodent audiogenic seizures and post-ictal catalepsy with the general pattern of animal reaction to the dangerous stimuli and/or situation. The wild run stage of audiogenic seizure fit could be regarded as an intense panic reaction, and this view found support in numerous experimental data. The phenomenon of audiogenic epilepsy probably attracted the attention of physiologists as rodents are extremely sensitive to dangerous sound stimuli. The seizure proneness in this group shares common physiological characteristics and depends on animal genotype. This concept could be the new platform for the study of epileptogenesis mechanisms.
Collapse
Affiliation(s)
- Irina B. Fedotova
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | - Natalia M. Surina
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | - Georgy M. Nikolaev
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
| | | | - Inga I. Poletaeva
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.B.F.); (N.M.S.); (G.M.N.)
- Correspondence:
| |
Collapse
|
27
|
Bosque JR, Gómez-Nieto R, Hormigo S, Herrero-Turrión MJ, Díaz-Casado E, Sancho C, López DE. Molecular tools for the characterization of seizure susceptibility in genetic rodent models of epilepsy. Epilepsy Behav 2021; 121:106594. [PMID: 31685382 DOI: 10.1016/j.yebeh.2019.106594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Epilepsy is a chronic neurological disorder characterized by abnormal neuronal activity that arises from imbalances between excitatory and inhibitory synapses, which are highly correlated to functional and structural changes in specific brain regions. The difference between the normal and the epileptic brain may harbor genetic alterations, gene expression changes, and/or protein alterations in the epileptogenic nucleus. It is becoming increasingly clear that such differences contribute to the development of distinct epilepsy phenotypes. The current major challenges in epilepsy research include understanding the disease progression and clarifying epilepsy classifications by searching for novel molecular biomarkers. Thus, the application of molecular techniques to carry out comprehensive studies at deoxyribonucleic acid, messenger ribonucleic acid, and protein levels is of utmost importance to elucidate molecular dysregulations in the epileptic brain. The present review focused on the great diversity of technical approaches available and new research methodology, which are already being used to study molecular alterations underlying epilepsy. We have grouped the different techniques according to each step in the flow of information from DNA to RNA to proteins, and illustrated with specific examples in animal models of epilepsy, some of which are our own. Separately and collectively, the genomic and proteomic techniques, each with its own strengths and limitations, provide valuable information on molecular mechanisms underlying seizure susceptibility and regulation of neuronal excitability. Determining the molecular differences between genetic rodent models of epilepsy and their wild-type counterparts might be a key in determining mechanisms of seizure susceptibility and epileptogenesis as well as the discovery and development of novel antiepileptic agents. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- José Ramón Bosque
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - Ricardo Gómez-Nieto
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Neurobiology and Anatomy, Drexel University College of Medicine, United States of America
| | - Sebastián Hormigo
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| | - M Javier Herrero-Turrión
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; INCYL Neurological Tissue Bank (BTN-INCYL), Spain
| | - Elena Díaz-Casado
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - Consuelo Sancho
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain
| | - Dolores E López
- Institute for Neuroscience of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain; Salamanca Institute for Biomedical Research (IBSAL), Spain; Department of Neurobiology and Anatomy, Drexel University College of Medicine, United States of America.
| |
Collapse
|
28
|
Garcia-Cairasco N, Podolsky-Gondim G, Tejada J. Searching for a paradigm shift in the research on the epilepsies and associated neuropsychiatric comorbidities. From ancient historical knowledge to the challenge of contemporary systems complexity and emergent functions. Epilepsy Behav 2021; 121:107930. [PMID: 33836959 DOI: 10.1016/j.yebeh.2021.107930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
In this review, we will discuss in four scenarios our challenges to offer possible solutions for the puzzle associated with the epilepsies and neuropsychiatric comorbidities. We need to recognize that (1) since quite old times, human wisdom was linked to the plural (distinct global places/cultures) perception of the Universe we are in, with deep respect for earth and nature. Plural ancestral knowledge was added with the scientific methods; however, their joint efforts are the ideal scenario; (2) human behavior is not different than animal behavior, in essence the product of Darwinian natural selection; knowledge of animal and human behavior are complementary; (3) the expression of human behavior follows the same rules that complex systems with emergent properties, therefore, we can measure events in human, clinical, neurobiological situations with complexity systems' tools; (4) we can use the semiology of epilepsies and comorbidities, their neural substrates, and potential treatments (including experimental/computational modeling, neurosurgical interventions), as a source and collection of integrated big data to predict with them (e.g.: machine/deep learning) diagnosis/prognosis, individualized solutions (precision medicine), basic underlying mechanisms and molecular targets. Once the group of symptoms/signals (with a myriad of changing definitions and interpretations over time) and their specific sequences are determined, in epileptology research and clinical settings, the use of modern and contemporary techniques such as neuroanatomical maps, surface electroencephalogram and stereoelectroencephalography (SEEG) and imaging (MRI, BOLD, DTI, SPECT/PET), neuropsychological testing, among others, are auxiliary in the determination of the best electroclinical hypothesis, and help design a specific treatment, usually as the first attempt, with available pharmacological resources. On top of ancient knowledge, currently known and potentially new antiepileptic drugs, alternative treatments and mechanisms are usually produced as a consequence of the hard, multidisciplinary, and integrated studies of clinicians, surgeons, and basic scientists, all over the world. The existence of pharmacoresistant patients, calls for search of other solutions, being along the decades the surgeries the most common interventions, such as resective procedures (i.e., selective or standard lobectomy, lesionectomy), callosotomy, hemispherectomy and hemispherotomy, added by vagus nerve stimulation (VNS), deep brain stimulation (DBS), neuromodulation, and more recently focal minimal or noninvasive ablation. What is critical when we consider the pharmacoresistance aspect with the potential solution through surgery, is still the pursuit of localization-dependent regions (e.g.: epileptogenic zone (EZ)), in order to decide, no matter how sophisticated are the brain mapping tools (EEG and MRI), the size and location of the tissue to be removed. Mimicking the semiology and studying potential neural mechanisms and molecular targets - by means of experimental and computational modeling - are fundamental steps of the whole process. Concluding, with the conjunction of ancient knowledge, coupled to critical and creative contemporary, scientific (not dogmatic) clinical/surgical, and experimental/computational contributions, a better world and of improved quality of life can be offered to the people with epilepsy and neuropsychiatric comorbidities, who are still waiting (as well as the scientists) for a paradigm shift in epileptology, both in the Basic Science, Computational, Clinical, and Neurosurgical Arenas. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Laboratório de Neurofisiologia e Neuroetologia Experimental, Departmento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto. Brazil; Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Guilherme Podolsky-Gondim
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Julian Tejada
- Departamento de Psicologia, Universidade Federal de Sergipe, Brazil.
| |
Collapse
|
29
|
Dos Santos RR, Bernardino TC, da Silva MCM, de Oliveira ACP, Drumond LE, Rosa DV, Massensini AR, Moraes MFD, Doretto MC, Romano-Silva MA, Reis HJ. Neurochemical abnormalities in the hippocampus of male rats displaying audiogenic seizures, a genetic model of epilepsy. Neurosci Lett 2021; 761:136123. [PMID: 34293418 DOI: 10.1016/j.neulet.2021.136123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Epilepsy is a disorder characterized by recurrent seizures that affects 1% of the population. However, the neurochemical alterations observed in epilepsy are not fully understood. There are different animal models of epilepsy, such as genetic or drug induced. In the present study, we utilize Wistar Audiogenic Rats (WAR), a murine strain that develops seizures in response to high intensity audio stimulation, in order to investigate abnormalities in glutamatergic and GABAergic systems. METHODS Synaptosomes and glial plasmalemmal vesicles were prepared from hippocampus and cortex, respectively. Glutamate and GABA release and uptake were assayed by monitoring the fluorescence and using L-[3H]-radiolabeled compounds. Glutamate and calcium concentration in the synaptosomes were also measured. The expression of neuronal calcium sensor 1 (NCS-1) was determined by western blot. RESULTS Glutamate and GABA release evoked by KCl was decreased in WAR compared to control Wistar rats. Calcium independent release was not considerably different in both groups. The total amount of glutamate of synaptosomes, as well as glutamate uptake by synaptosomes and GPV were also decreased in WAR in comparison with the controls. In addition, [Ca2+]i of hippocampal synaptosomes, as well as NCS-1 expression in the hippocampus, were increased in WAR in comparison with controls. CONCLUSION In conclusion, our results suggest that WAR have important alterations in the glutamatergic and GABAergic pathways, as well as an increased expression of NCS-1 in the hippocampus and inferior colliculus. These alterations may be linked to the spreading of hyperexcitability and recruitment of various brain regions.
Collapse
Affiliation(s)
- Rodrigo Ribeiro Dos Santos
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil; Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Túlio C Bernardino
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria Carolina Machado da Silva
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Antônio C P de Oliveira
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Luciana E Drumond
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Daniela V Rosa
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - André R Massensini
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Márcio F D Moraes
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Maria C Doretto
- Núcleo de Neurociências, Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil
| | - Marco A Romano-Silva
- Departamento de Saúde Mental, Faculdade de Medicina, Universidade Federal de Minas Gerais. Av Alfredo Balena 190, CEP 30130-100 Belo Horizonte, MG, Brazil
| | - Helton J Reis
- Laboratório de Neurofarmacologia, Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. Av Antonio Carlos 6627, Campus Pampulha, CEP 30190-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
30
|
Valentim-Lima E, de Oliveira JAC, Antunes-Rodrigues J, Reis LC, Garcia-Cairasco N, Mecawi AS. Neuroendocrine changes in the hypothalamic-neurohypophysial system in the Wistar audiogenic rat (WAR) strain submitted to audiogenic kindling. J Neuroendocrinol 2021; 33:e12975. [PMID: 33942400 DOI: 10.1111/jne.12975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 11/27/2022]
Abstract
The Wistar audiogenic rat (WAR) strain is used as an animal model of epilepsy, which when submitted to acute acoustic stimulus presents tonic-clonic seizures, mainly dependent on brainstem (mesencephalic) structures. However, when WARs are exposed to chronic acoustic stimuli (audiogenic kindling-AK), they usually present tonic-clonic seizures, followed by limbic seizures, after recruitment of forebrain structures such as the cortex, hippocampus and amygdala. Although some studies have reported that hypothalamic-hypophysis function is also altered in WAR through modulating vasopressin (AVP) and oxytocin (OXT) secretion, the role of these neuropeptides in epilepsy still is controversial. We analyzed the impact of AK and consequent activation of mesencephalic neurocircuits and the recruitment of forebrain limbic (LiR) sites on the hypothalamic-neurohypophysial system and expression of Avpr1a and Oxtr in these structures. At the end of the AK protocol, nine out of 18 WARs presented LiR. Increases in both plasma vasopressin and oxytocin levels were observed in WAR when compared to Wistar rats. These results were correlated with an increase in the expressions of heteronuclear (hn) and messenger (m) RNA for Oxt in the paraventricular nucleus (PVN) in WARs submitted to AK that presented LiR. In the paraventricular nucleus, the hnAvp and mAvp expressions increased in WARs with and without LiR, respectively. There were no significant differences in Avp and Oxt expression in supraoptic nuclei (SON). Also, there was a reduction in the Avpr1a expression in the central nucleus of the amygdala and frontal lobe in the WAR strain. In the inferior colliculus, Avpr1a expression was lower in WARs after AK, especially those without LiR. Our results indicate that both AK and LiR in WARs lead to changes in the hypothalamic-neurohypophysial system and its receptors, providing a new molecular basis to better understaind epilepsy.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Disease Models, Animal
- Epilepsy, Reflex/genetics
- Epilepsy, Reflex/metabolism
- Epilepsy, Reflex/pathology
- Epilepsy, Reflex/physiopathology
- Gene Expression Regulation
- Hippocampus/metabolism
- Hippocampus/pathology
- Hippocampus/physiopathology
- Hypothalamus/metabolism
- Hypothalamus/pathology
- Hypothalamus/physiopathology
- Kindling, Neurologic/pathology
- Kindling, Neurologic/physiology
- Male
- Neurosecretory Systems/metabolism
- Neurosecretory Systems/pathology
- Neurosecretory Systems/physiopathology
- Oxytocin/blood
- Oxytocin/genetics
- Oxytocin/metabolism
- Pituitary Gland, Posterior/metabolism
- Pituitary Gland, Posterior/pathology
- Pituitary Gland, Posterior/physiopathology
- Rats
- Rats, Wistar
- Seizures/genetics
- Seizures/metabolism
- Seizures/physiopathology
- Seizures/psychology
- Vasopressins/blood
- Vasopressins/genetics
- Vasopressins/metabolism
Collapse
Affiliation(s)
- Evandro Valentim-Lima
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Luis Carlos Reis
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | | | - Andre S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Damasceno S, Fonseca PADS, Rosse IC, Moraes MFD, de Oliveira JAC, Garcia-Cairasco N, Brunialti Godard AL. Putative Causal Variant on Vlgr1 for the Epileptic Phenotype in the Model Wistar Audiogenic Rat. Front Neurol 2021; 12:647859. [PMID: 34177758 PMCID: PMC8220163 DOI: 10.3389/fneur.2021.647859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Wistar Audiogenic Rat is an epilepsy model whose animals are predisposed to develop seizures induced by acoustic stimulation. This model was developed by selective reproduction and presents a consistent genetic profile due to the several generations of inbreeding. In this study, we performed an analysis of WAR RNA-Seq data, aiming identified at genetic variants that may be involved in the epileptic phenotype. Seventeen thousand eighty-five predicted variants were identified as unique to the WAR model, of which 15,915 variants are SNPs and 1,170 INDELs. We filter the predicted variants by pre-established criteria and selected five for validation by Sanger sequencing. The genetic variant c.14198T>C in the Vlgr1 gene was confirmed in the WAR model. Vlgr1 encodes an adhesion receptor that is involved in the myelination process, in the development of stereocilia of the inner ear, and was already associated with the audiogenic seizures presented by the mice Frings. The transcriptional quantification of Vlgr1 revealed the downregulation this gene in the corpus quadrigeminum of WAR, and the protein modeling predicted that the mutated residue alters the structure of a domain of the VLGR1 receptor. We believe that Vlgr1 gene may be related to the predisposition of WAR to seizures and suggest the mutation Vlgr1/Q4695R as putative causal variant, and the first molecular marker of the WAR strain.
Collapse
Affiliation(s)
- Samara Damasceno
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Augusto de Souza Fonseca
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izinara Cruz Rosse
- Departamento de Farmácia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Márcio Flávio Dutra Moraes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Norberto Garcia-Cairasco
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Lúcia Brunialti Godard
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
32
|
Chronic cannabidiol (CBD) administration induces anticonvulsant and antiepileptogenic effects in a genetic model of epilepsy. Epilepsy Behav 2021; 119:107962. [PMID: 33887676 DOI: 10.1016/j.yebeh.2021.107962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/23/2022]
Abstract
Cannabidiol (CBD) is a marijuana compound implicated in epilepsy treatment in animal models and pharmacoresistant patients. However, little is known about chronic CBD administration's effects in chronic models of seizures, especially regarding its potential antiepileptogenic effects. In the present study, we combined a genetic model of epilepsy (the Wistar Audiogenic Rat strain - WARs), a chronic protocol of seizures (the audiogenic kindling - AuK), quantitative and sequential behavioral analysis (neuroethology), and microscopy imaging to analyze the effects of chronic CBD administration in a genetic model of epilepsy. The acute audiogenic seizure is characterized by tonic-clonic seizures and intense brainstem activity. However, during the AuK WARs can develop limbic seizures associated with the recruitment of forebrain and limbic structures. Here, chronic CBD administration, twice a day, attenuated brainstem, tonic-clonic seizures, prevented limbic recruitment, and suppressed limbic (kindled) seizures, suggesting CBD antiepileptogenic effects. Additionally, CBD prevented chronic neuronal hyperactivity, suppressing FosB immunostaining in the brainstem (inferior colliculus and periaqueductal gray matter) and forebrain (basolateral amygdala nucleus and piriform cortex), structures associated with tonic-clonic and limbic seizures, respectively. Chronic seizures increased cannabinoid receptors type 1 (CB1R) immunostaining in the hippocampus and the BLA, while CBD administration prevented changes in CB1R expression induced by the AuK. The neuroethological analysis provided details about CBD's protective effects against brainstem and limbic seizures associated with FosB expression. Our results strongly suggest chronic CBD anticonvulsant and antiepileptogenic effects associated with reduced chronic neuronal activity and modulation of CB1R expression. We also support the chronic use of CBD for epilepsies treatments.
Collapse
|
33
|
Godoy LD, Garcia-Cairasco N. Maternal behavior and the neonatal HPA axis in the Wistar Audiogenic Rat (WAR) strain: Early-life implications for a genetic animal model in epilepsy. Epilepsy Behav 2021; 117:107877. [PMID: 33714185 DOI: 10.1016/j.yebeh.2021.107877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/28/2020] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
Epileptogenesis is a multistage process and seizure susceptibility can be influenced by stress early in life. Wistar Audiogenic Rat (WAR) strain is an interesting model to study the association between stress and epilepsy, since it is naturally susceptible to seizures and present changes in the hypothalamus-pituitary-adrenal (HPA) axis activity. All these features are related to the pathogenic mechanisms usually associated with psychiatric comorbidities present in epilepsy. Therefore, the current study aimed to evaluate the neonate HPA axis function and maternal care under control and stress conditions in the WAR strain. Maternal behavior and neonate HPA axis were evaluated in Wistar and WAR strains under rest and after the presence of stressors. We observed that WAR pups present higher plasmatic corticosterone concentration as compared to Wistar pups. Although WAR dams do not show significant altered maternal behavior at rest, there is a higher latency to recover the litter in the pup retrieval test, while some did not recover all the litter. Wistar Audiogenic Rat dams presented similar behaviors to Wistar dams to a female intruder and maternal care with the pups in the maternal defense test. Taken together, these findings indicate that the WAR strain could show HPA axis disruption early in life and dams present altered maternal behavior under stressful events. Those alterations make the WAR strain an interesting model to evaluate vulnerability to epilepsy and its associated neuropsychiatric comorbidities.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
34
|
Fuerte-Hortigón A, Gonçalves J, Zeballos L, Masa R, Gómez-Nieto R, López DE. Distribution of the Cannabinoid Receptor Type 1 in the Brain of the Genetically Audiogenic Seizure-Prone Hamster GASH/Sal. Front Behav Neurosci 2021; 15:613798. [PMID: 33841106 PMCID: PMC8024637 DOI: 10.3389/fnbeh.2021.613798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/25/2021] [Indexed: 11/13/2022] Open
Abstract
The endocannabinoid system modulates epileptic seizures by regulating neuronal excitability. It has become clear that agonist activation of central type I cannabinoid receptors (CB1R) reduces epileptogenesis in pre-clinical animal models of epilepsy. The audiogenic seizure-prone hamster GASH/Sal is a reliable experimental model of generalized tonic-clonic seizures in response to intense sound stimulation. However, no studies hitherto had investigated CB1R in the GASH/Sal. Although the distribution of CB1R has been extensively studied in mammalian brains, their distribution in the Syrian golden hamster brain also remains unknown. The objective of this research is to determine by immunohistochemistry the differential distribution of CB1R in the brains of GASH/Sal animals under seizure-free conditions, by comparing the results with wild-type Syrian hamsters as controls. CB1R in the GASH/Sal showed a wide distribution in many nuclei of the central nervous system. These patterns of CB1R-immunolabeling are practically identical between the GASH/Sal model and control animals, varying in the intensity of immunostaining in certain regions, being slightly weaker in the GASH/Sal than in the control, mainly in brain regions associated with epileptic networks. The RT-qPCR analysis confirms these results. In summary, our study provides an anatomical basis for further investigating CB1R in acute and kindling audiogenic seizure protocols in the GASH/Sal model as well as exploring CB1R activation via exogenously administered cannabinoid compounds.
Collapse
Affiliation(s)
- Alejando Fuerte-Hortigón
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Department of Neurology, Virgen Macarena Hospital, Sevilla, Spain
| | - Jaime Gonçalves
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Laura Zeballos
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Rubén Masa
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Dolores E López
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Department of Cell Biology and Pathology, University of Salamanca, Salamanca, Spain
| |
Collapse
|
35
|
A freeze-and-thaw-induced fragment of the microtubule-associated protein tau in rat brain extracts: implications for the biochemical assessment of neurotoxicity. Biosci Rep 2021; 41:227937. [PMID: 33629708 PMCID: PMC7990086 DOI: 10.1042/bsr20203980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/04/2022] Open
Abstract
Tau is a microtubule-associated protein (MAP) responsible for controlling the stabilization of microtubules in neurons. Tau function is regulated by phosphorylation. However, in some neurological diseases Tau becomes aberrantly hyperphosphorylated, which contributes to the pathogenesis of neurological diseases, known as tauopathies. Western blotting (WB) has been widely employed to determine Tau levels in neurological disease models. However, Tau quantification by WB should be interpreted with care, as this approach has been recognized as prone to produce artifactual results if not properly performed. In the present study, our goal was to evaluate the influence of a freeze-and-thaw cycle, a common procedure preceding WB, to the integrity of Tau in brain homogenates from rats, 3xTg-AD mice and human samples. Homogenates were prepared in ice-cold RIPA buffer supplemented with protease/phosphatase inhibitors. Immediately after centrifugation, an aliquot of the extracts was analyzed via WB to quantify total and phosphorylated Tau levels. The remaining aliquots of the same extracts were stored for at least 2 weeks at either −20 or −80°C and then subjected to WB. Extracts from rodent brains submitted to freeze-and-thaw presented a ∼25 kDa fragment immunoreactive to anti-Tau antibodies. An in-gel digestion followed by mass spectrometry (MS) analysis in excised bands revealed this ∼25 kDa species corresponds to a Tau fragment. Freeze-and-thaw-induced Tau proteolysis was detected even when extracts were stored at −80°C. This phenomenon was not observed in human samples at any storage condition tested. Based on these findings, we strongly recommend the use of fresh extracts of brain samples in molecular analysis of Tau levels in rodents.
Collapse
|
36
|
Kulikov AA, Nasluzova EV, Dorofeeva NA, Glazova MV, Lavrova EA, Chernigovskaya EV. Pifithrin-α Inhibits Neural Differentiation
of Newborn Cells in the Subgranular Zone of the Dentate Gyrus at
Initial Stages of Audiogenic Kindling in Krushinsky–Molodkina Rat
Strain. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021020125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Cunha AOS, Garcia-Cairasco N. Cannabinoids in Audiogenic Seizures: From Neuronal Networks to Future Perspectives for Epilepsy Treatment. Front Behav Neurosci 2021; 15:611902. [PMID: 33643007 PMCID: PMC7904685 DOI: 10.3389/fnbeh.2021.611902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids and Cannabis-derived compounds have been receiving especial attention in the epilepsy research scenario. Pharmacological modulation of endocannabinoid system's components, like cannabinoid type 1 receptors (CB1R) and their bindings, are associated with seizures in preclinical models. CB1R expression and functionality were altered in humans and preclinical models of seizures. Additionally, Cannabis-derived compounds, like cannabidiol (CBD), present anticonvulsant activity in humans and in a great variety of animal models. Audiogenic seizures (AS) are induced in genetically susceptible animals by high-intensity sound stimulation. Audiogenic strains, like the Genetically Epilepsy Prone Rats, Wistar Audiogenic Rats, and Krushinsky-Molodkina, are useful tools to study epilepsy. In audiogenic susceptible animals, acute acoustic stimulation induces brainstem-dependent wild running and tonic-clonic seizures. However, during the chronic protocol of AS, the audiogenic kindling (AuK), limbic and cortical structures are recruited, and the initially brainstem-dependent seizures give rise to limbic seizures. The present study reviewed the effects of pharmacological modulation of the endocannabinoid system in audiogenic seizure susceptibility and expression. The effects of Cannabis-derived compounds in audiogenic seizures were also reviewed, with especial attention to CBD. CB1R activation, as well Cannabis-derived compounds, induced anticonvulsant effects against audiogenic seizures, but the effects of cannabinoids modulation and Cannabis-derived compounds still need to be verified in chronic audiogenic seizures. The effects of cannabinoids and Cannabis-derived compounds should be further investigated not only in audiogenic seizures, but also in epilepsy related comorbidities present in audiogenic strains, like anxiety, and depression.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel A. Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rui M. P. da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alexandra O. S. Cunha
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Midzyanovskaya IS, Petrenko TE, Birioukova LM, Tuomisto LM. Reduced H3 histamine receptor binding densities in the upper layers of motor cortex in rats prone to audiogenic convulsive seizures. Epilepsy Res 2020; 170:106543. [PMID: 33387800 DOI: 10.1016/j.eplepsyres.2020.106543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 01/11/2023]
Abstract
Fits of audiogenic seizures in rodents are considered as a model for generalized convulsive epilepsies in humans. The laminar distribution of the H3 histamine receptor binding densities was quantified in the motor cortex of two strains of rats with genetically determined generalized epilepsies, namely KM rats with audiogenic seizures only, and WAGRij rats with both audiogenic seizures and absence seizures. It was found that H3 histamine receptor binding densities in layer 2/3d of the primary and secondary motor cortices of the rats that experienced audiogenic seizure fits were significantly lower than in the cortices of control rats. Possible explanations are discussed.
Collapse
Affiliation(s)
- I S Midzyanovskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Russian Federation; University of Eastern Finland, School of Pharmacy, Finland.
| | - T E Petrenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Russian Federation; Pirogov Russian National Research Medical University, Russian Federation
| | - L M Birioukova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Russian Federation; University of Eastern Finland, School of Pharmacy, Finland
| | - L M Tuomisto
- University of Eastern Finland, School of Pharmacy, Finland
| |
Collapse
|
39
|
Becari C, Pereira GL, Oliveira JAC, Polonis K, Garcia-Cairasco N, Costa-Neto CM, Pereira MGAG. Epilepsy Seizures in Spontaneously Hypertensive Rats After Acoustic Stimulation: Role of Renin-Angiotensin System. Front Neurosci 2020; 14:588477. [PMID: 33424536 PMCID: PMC7787150 DOI: 10.3389/fnins.2020.588477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/20/2020] [Indexed: 12/03/2022] Open
Abstract
Hypertension is a common comorbidity observed in individuals with epilepsy. Growing evidence suggests that lower blood pressure is associated with reduced frequency and severity of seizures. In this study, we sought to investigate whether the renin–angiotensin system (RAS), which is a critical regulator of blood pressure, is involved in the pathogenesis of audiogenic epilepsy-related seizures in a hypertensive rat model. Spontaneously hypertensive rats (SHRs) were given RAS inhibitors, angiotensin-converting enzyme (ACE) inhibitor or angiotensin II type I receptor (AT1R) antagonist, for 7 days prior to inducing epileptic seizures by acoustic stimulation. After the pretreatment phase, blood pressure (BP) of SHRs normalized as expected, and there was no difference in systolic and diastolic BP between the pretreated SHRs and normotensive rat group (Wistar). Next, treated and untreated SHRs (a high BP control) were individually subjected to acoustic stimuli twice a day for 2 weeks. The severity of tonic–clonic seizures and the severity of temporal lobe epilepsy seizures (product of forebrain recruitment) were evaluated by the mesencephalic severity index (Rossetti et al. scale) and the limbic index (Racine’s scale), respectively. Seizures were observed in both untreated (a high BP control) SHRs and in SHRs treated with AT1R antagonist and ACE inhibitor. There was no statistical difference in the mesencephalic severity and limbic index between these groups. Our results demonstrate that SHRs present seizure susceptibility with acoustic stimulation. Moreover, although RAS inhibitors effectively reduce blood pressure in SHR, they do not prevent developing epileptic seizures upon acoustic stimulation in SHR. In conclusion, our study shows that RAS is an unlikely link between hypertension and susceptibility to epileptic seizures induced by acoustic stimulation in SHRs, which is in contrast with the anticonvulsant effect of losartan in other animal models of epilepsy.
Collapse
Affiliation(s)
- Christiane Becari
- Division of Vascular and Endovascular Surgery, Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Giorgia Lemes Pereira
- Department of Biochemistry, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - José A C Oliveira
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Katarzyna Polonis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Claudio M Costa-Neto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marilia G A G Pereira
- Department of Biochemistry, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
40
|
Lazarini-Lopes W, da Silva-Júnior RMP, Servilha-Menezes G, Do Val-da Silva RA, Garcia-Cairasco N. Cannabinoid Receptor Type 1 (CB1R) Expression in Limbic Brain Structures After Acute and Chronic Seizures in a Genetic Model of Epilepsy. Front Behav Neurosci 2020; 14:602258. [PMID: 33408620 PMCID: PMC7779524 DOI: 10.3389/fnbeh.2020.602258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023] Open
Abstract
The endocannabinoid system (ECS) is related to several physiological processes, associated to the modulation of brain excitability, with impact in the expression of susceptibility and control of epileptic seizures. The cannabinoid receptor type 1 (CB1R) is widely expressed in the brain, especially in forebrain limbic structures. Changes in CB1R expression are associated with epileptic seizures in animal models and humans. The Wistar Audiogenic Rat (WAR) strain is a genetic model of epilepsy capable of mimicking tonic-clonic and limbic seizures in response to intense sound stimulation. The WAR strain presents several behavioral and physiological alterations associated with seizure susceptibility, but the ECS has never been explored in this strain. Therefore, the aim of the present study was to characterize CB1R expression in forebrain limbic structures important to limbic seizure expression in WARs. We used a detailed anatomical analysis to assess the effects of acute and chronic audiogenic seizures on CB1R expression in several layers and regions of hippocampus and amygdala. WARs showed increased CB1R immunostaining in the inner molecular layer of the hippocampus, when compared to control Wistar rats. Acute and chronic audiogenic seizures increased CB1R immunostaining in several regions of the dorsal hippocampus and amygdala of WARs. Also, changes in CB1R expression in the amygdala, but not in the hippocampus, were associated with limbic recruitment and limbic seizure severity in WARs. Our results suggest that endogenous alterations in CB1R immunostaining in WARs could be associated with genetic susceptibility to audiogenic seizures. We also demonstrated CB1R neuroplastic changes associated with acute and chronic seizures in the amygdala and hippocampus. Moreover, the present study brings important information regarding CB1R and seizure susceptibility in a genetic model of seizures and supports the relationship between ECS and epilepsy.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Rui M P da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Department of Internal Medicine, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel Servilha-Menezes
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Raquel A Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.,Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
41
|
Moraes-Souza RQ, Sinzato YK, Antunes BT, Umeoka EHL, Oliveira JAC, Garcia-Cairasco N, Karki B, Volpato GT, Damasceno DC. Evaluation of Maternal Reproductive Outcomes and Biochemical Analysis from Wistar Audiogenic Rats (WAR) and Repercussions in Their Offspring. Reprod Sci 2020; 27:2223-2231. [PMID: 32632770 DOI: 10.1007/s43032-020-00236-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
The objective of the present study was to evaluate maternal reproductive performance, body weight, and frequency of external and internal anomalies of newborns of Wistar Audiogenic Rat (WAR) females as compared with Wistar rats. The adult WAR and Wistar rats were mated within their respective strains. After confirming the pregnancy, the body weights were weekly evaluated. On day 21 of pregnancy, the female rats were anesthetized and sacrificed to evaluate the maternal reproductive outcomes and biochemical profile, newborn weight, and external and internal anomalies. The WAR strain gained less weight during the pregnancy and presented hyperproteinemia, hypertriglyceridemia, and embryonic losses concerning Wistar rats, suggesting an inadequate intrauterine condition for embryonic development and fetal viability. WAR also presented a higher percentage of newborns classified as small for gestational age related to intrauterine growth restriction, which was confirmed by the lower number of ossification centers. There was a higher percentage of skeletal anomalies compared with fetuses of the Wistar dams, confirming their greater susceptibility during the formation and development of their skeletal system. Thus, the WAR presents physiological alterations compromising the viability of their embryos and fetuses, leading to impaired development of the newborns.
Collapse
Affiliation(s)
- Rafaianne Q Moraes-Souza
- Tocogynecology Postgraduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Yuri K Sinzato
- Tocogynecology Postgraduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Beatriz T Antunes
- Tocogynecology Postgraduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Eduardo H L Umeoka
- Faculty of Medicine, University Center Unicerrado, Goiatuba, Goiás, Brazil.,Neurosciences and Behavioral Sciences Department and Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Barshana Karki
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Gustavo T Volpato
- Laboratory of System Physiology and Reproductive Toxicology, Institute of Biological and Health Sciences, Federal University of Mato Grosso (UFMT), Barra do Garças, Mato Grosso, Brazil
| | - Débora Cristina Damasceno
- Tocogynecology Postgraduate Course, Laboratory of Experimental Research on Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil. .,Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Botucatu - UNESP, Distrito de Rubião Júnior s/n, Botucatu, SP, 18603-970, Brazil.
| |
Collapse
|
42
|
Díaz-Rodríguez SM, López-López D, Herrero-Turrión MJ, Gómez-Nieto R, Canal-Alonso A, Lopéz DE. Inferior Colliculus Transcriptome After Status Epilepticus in the Genetically Audiogenic Seizure-Prone Hamster GASH/Sal. Front Neurosci 2020; 14:508. [PMID: 32528245 PMCID: PMC7264424 DOI: 10.3389/fnins.2020.00508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/22/2020] [Indexed: 01/31/2023] Open
Abstract
The Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal), an animal model of reflex epilepsy, exhibits generalized tonic–clonic seizures in response to loud sound with the epileptogenic focus localized in the inferior colliculus (IC). Ictal events in seizure-prone strains cause gene deregulation in the epileptogenic focus, which can provide insights into the epileptogenic mechanisms. Thus, the present study aimed to determine the expression profile of key genes in the IC of the GASH/Sal after the status epilepticus. For such purpose, we used RNA-Seq to perform a comparative study between the IC transcriptome of GASH/Sal and that of control hamsters both subjected to loud sound stimulation. After filtering for normalization and gene selection, a total of 36 genes were declared differentially expressed from the RNA-seq analysis in the IC. A set of differentially expressed genes were validated by RT-qPCR showing significant differentially expression between GASH/Sal hamsters and Syrian control hamsters. The confirmed differentially expressed genes were classified on ontological categories associated with epileptogenic events similar to those produced by generalized tonic seizures in humans. Subsequently, based on the result of metabolomics, we found the interleukin-4 and 13-signaling, and nucleoside transport as presumably altered routes in the GASH/Sal model. This research suggests that seizures in GASH/Sal hamsters are generated by multiple molecular substrates, which activate biological processes, molecular processes, cellular components and metabolic pathways associated with epileptogenic events similar to those produced by tonic seizures in humans. Therefore, our study supports the use of the GASH/Sal as a valuable animal model for epilepsy research, toward establishing correlations with human epilepsy and searching new biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Sandra M Díaz-Rodríguez
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,Department of Cellular Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Daniel López-López
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Manuel J Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,Neurological Tissue Bank INCYL (BTN-INCYL), Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,Department of Cellular Biology and Pathology, University of Salamanca, Salamanca, Spain
| | - Angel Canal-Alonso
- Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,BISITE Research Group, University of Salamanca, Salamanca, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain.,Department of Cellular Biology and Pathology, University of Salamanca, Salamanca, Spain
| |
Collapse
|
43
|
Krivopalov SA, Yushkov BG, Bykova MY, Zabegalov KN. [Gender differences in the pool of free amino acid neurotransmitters in Krushinsky-Molodkina rats]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:124-129. [PMID: 32420892 DOI: 10.18097/pbmc20206602124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The study of the role of neurotransmitter systems in the pathogenesis of epilepsy is one of the priorities of epileptology. New data on the functions of free neurotransmitter-like amino acid in the central nervous system are of the greatest importance and determine the prospects for the development of novel effective anticonvulsants. It is widely believed in clinical medicine that epilepsy has distinct gender characteristics. The aim of this study was to investigate the gender peculiarities in the content of neurotransmitter amino acids in the brain of Krushinsky-Molodkina (KM) rats, which were used as model organisms for the study of genetically induced audiogenic epilepsy. The content of Asp, Glu, GABA, Gly, and Tau of the medulla oblongata, hippocampus and cerebral cortex were determined using high-performance liquid chromatography (HPLC) in intact KM rats, KM rats exposed to a series of epileptiform seizures, and Wistar rats (control group). Both the Wistar and KM rats had gender distinctions in the distribution of free amino acids among the investigated brain parts. The audiogenic epilepsy was characterized by smoothing gender differences as well as differences between the concentrations of free amino acids in the cortex and medulla oblongata, specific for Wistar rats. The changes observed in male rats after the set of seizures included the increase in GABA concentration and a decrease in the Gly level in all investigated brain parts, as well as the decrease of the Tau content in the cortex and hippocampus. At the same time, the Glu content in cortex increased, while the Asp level decreased. After 6 days of audiogenic stimulations the female KM rats demonstrated the increase in the Glu level in all investigated brain parts, the increase in Gly and Asp levels in hippocampus, and no changes in the GABA content. Thus, after the set of epileptiform seizures the KM rats achieved a new steady state of the studied amino acids pool, which differed in males and females. In this case, gender differences significantly changed after the seizures.
Collapse
Affiliation(s)
- S A Krivopalov
- Institute of Immunology and Physiology, Ural Branch of RAS, Yekaterinburg, Russia; Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russia
| | - B G Yushkov
- Institute of Immunology and Physiology, Ural Branch of RAS, Yekaterinburg, Russia; Institute of Medical Cell Technologies, Yekaterinburg, Russia
| | - M Yu Bykova
- Institute of Immunology and Physiology, Ural Branch of RAS, Yekaterinburg, Russia
| | - K N Zabegalov
- Ural Federal University named after the First President of Russia B.N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
44
|
Maia OAC, Malheiros-Lima MR, Oliveira MA, Castro CL, Moriya HT, Tavares-de-Lima W, Takakura AC, Moreira TS. Pilocarpine-induced status epilepticus reduces chemosensory control of breathing. Brain Res Bull 2020; 161:98-105. [PMID: 32433938 DOI: 10.1016/j.brainresbull.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022]
Abstract
One of the possible causes of death in epilepsy is breathing disorders, especially apneas, which lead to an increase in CO2 levels (hypercapnia) and/or a decrease in O2 levels in arterial blood (hypoxemia). The respiratory neurons located in the ventral brainstem respiratory column are the main groups responsible for controlling breathing. Recent data from our group demonstrated respiratory changes in two experimental models of epilepsy, i.e. audiogenic epilepsy, and amygdala rapid kindling. Here, we aimed to evaluate respiratory changes in the classic model of temporal lobe epilepsy induced by intra-hippocampal injection of pilocarpine. Adult Wistar rats with stainless-steel cannulas implanted in the hippocampus region were used. The animals were submitted to pilocarpine injection (2.4 mg/μL, N = 12-15) or saline (N = 9) into the hippocampus. The respiratory parameters analyzed by whole-body plethysmography were respiratory rate (fR), tidal volume (VT) and ventilation (VE). Respiratory mechanics such as Newtonian airway resistance (Rn), viscance of the pulmonary parenchyma (G) and the elastance of the pulmonary parenchyma (H) were also investigated. No changes in baseline breathing were detected 15 or 30 days after pilocarpine-induced status epilepticus (SE). However, 30 days after pilocarpine-induced SE, a significant reduction in VE was observed during hypercapnic (7% CO2) stimulation, without affecting the hypoxia (8% O2) ventilatory response. We also did not observe changes in respiratory mechanics. The present results suggest that the impairment of the hypercapnia ventilatory response in pilocarpine-induced SE could be related to a presumable degeneration of brainstem respiratory neurons but not to peripheral mechanisms.
Collapse
Affiliation(s)
- Octávio A C Maia
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Milene R Malheiros-Lima
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Maria A Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Claudio L Castro
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil
| | - Henrique T Moriya
- Department of Engineering of Control and Telecommunication, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Wothan Tavares-de-Lima
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, 1524 Prof Lineu Prestes Av 05508-000, Sao Paulo, SP, Brazil.
| |
Collapse
|
45
|
Pena RFO, Ceballos CC, De Deus JL, Roque AC, Garcia-Cairasco N, Leão RM, Cunha AOS. Modeling Hippocampal CA1 Gabaergic Synapses of Audiogenic Rats. Int J Neural Syst 2020; 30:2050022. [PMID: 32285725 DOI: 10.1142/s0129065720500227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Wistar Audiogenic Rats (WARs) are genetically susceptible to sound-induced seizures that start in the brainstem and, in response to repetitive stimulation, spread to limbic areas, such as hippocampus. Analysis of the distribution of interevent intervals of GABAergic inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal cells showed a monoexponential trend in Wistar rats, suggestive of a homogeneous population of synapses, but a biexponential trend in WARs. Based on this, we hypothesize that there are two populations of GABAergic synaptic release sites in CA1 pyramidal neurons from WARs. To address this hypothesis, we used a well-established neuronal computational model of a CA1 pyramidal neuron previously developed to replicate physiological properties of these cells. Our simulations replicated the biexponential trend only when we decreased the release frequency of synaptic currents by a factor of six in at least 40% of distal synapses. Our results suggest that almost half of the GABAergic synapses of WARs have a drastically reduced spontaneous release frequency. The computational model was able to reproduce the temporal dynamics of GABAergic inhibition that could underlie susceptibility to the spread of seizures.
Collapse
Affiliation(s)
- Rodrigo F O Pena
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cesar Celis Ceballos
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil.,Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júnia Lara De Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Carlos Roque
- Department of Physics, School of Philosophy, Sciences and Letters, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Maurício Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | |
Collapse
|
46
|
Díaz-Casado E, Gómez-Nieto R, de Pereda JM, Muñoz LJ, Jara-Acevedo M, López DE. Analysis of gene variants in the GASH/Sal model of epilepsy. PLoS One 2020; 15:e0229953. [PMID: 32168507 PMCID: PMC7069730 DOI: 10.1371/journal.pone.0229953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Epilepsy is a complex neurological disorder characterized by sudden and recurrent seizures, which are caused by various factors, including genetic abnormalities. Several animal models of epilepsy mimic the different symptoms of this disorder. In particular, the genetic audiogenic seizure hamster from Salamanca (GASH/Sal) animals exhibit sound-induced seizures similar to the generalized tonic seizures observed in epileptic patients. However, the genetic alterations underlying the audiogenic seizure susceptibility of the GASH/Sal model remain unknown. In addition, gene variations in the GASH/Sal might have a close resemblance with those described in humans with epilepsy, which is a prerequisite for any new preclinical studies that target genetic abnormalities. Here, we performed whole exome sequencing (WES) in GASH/Sal animals and their corresponding controls to identify and characterize the mutational landscape of the GASH/Sal strain. After filtering the results, moderate- and high-impact variants were validated by Sanger sequencing, assessing the possible impact of the mutations by “in silico” reconstruction of the encoded proteins and analyzing their corresponding biological pathways. Lastly, we quantified gene expression levels by RT-qPCR. In the GASH/Sal model, WES showed the presence of 342 variations, in which 21 were classified as high-impact mutations. After a full bioinformatics analysis to highlight the high quality and reliable variants, the presence of 3 high-impact and 15 moderate-impact variants were identified. Gene expression analysis of the high-impact variants of Asb14 (ankyrin repeat and SOCS Box Containing 14), Msh3 (MutS Homolog 3) and Arhgef38 (Rho Guanine Nucleotide Exchange Factor 38) genes showed a higher expression in the GASH/Sal than in control hamsters. In silico analysis of the functional consequences indicated that those mutations in the three encoded proteins would have severe functional alterations. By functional analysis of the variants, we detected 44 significantly enriched pathways, including the glutamatergic synapse pathway. The data show three high-impact mutations with a major impact on the function of the proteins encoded by these genes, although no mutation in these three genes has been associated with some type of epilepsy until now. Furthermore, GASH/Sal animals also showed gene variants associated with different types of epilepsy that has been extensively documented, as well as mutations in other genes that encode proteins with functions related to neuronal excitability, which could be implied in the phenotype of the GASH/Sal. Our findings provide valuable genetic and biological pathway data associated to the genetic burden of the audiogenic seizure susceptibility and reinforce the need to validate the role of each key mutation in the phenotype of the GASH/Sal model.
Collapse
Affiliation(s)
- Elena Díaz-Casado
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Salamanca Institute for Biomedical Research, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Salamanca Institute for Biomedical Research, Salamanca, Spain
- Department of Cell Biology and Pathology, School Medicine, University of Salamanca, Salamanca, Spain
| | - José M. de Pereda
- Institute of Molecular and Cellular Biology of Cancer, CSIC.—University of Salamanca, Salamanca, Spain
| | - Luis J. Muñoz
- Animal facilities, University of Salamanca, Salamanca, Spain
| | | | - Dolores E. López
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
- Salamanca Institute for Biomedical Research, Salamanca, Spain
- Department of Cell Biology and Pathology, School Medicine, University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
47
|
Damasceno S, Gómez-Nieto R, Garcia-Cairasco N, Herrero-Turrión MJ, Marín F, Lopéz DE. Top Common Differentially Expressed Genes in the Epileptogenic Nucleus of Two Strains of Rodents Susceptible to Audiogenic Seizures: WAR and GASH/Sal. Front Neurol 2020; 11:33. [PMID: 32117006 PMCID: PMC7031349 DOI: 10.3389/fneur.2020.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022] Open
Abstract
The Wistar Audiogenic Rat (WAR) and the Genetic Audiogenic Seizure Hamster from Salamanca (GASH/Sal) strains are audiogenic epilepsy models, in which seizures are triggered by acoustic stimulation. These strains were developed by selective reproduction and have a genetic background with minimal or no variation. In the current study, we evaluated the transcriptome of the inferior colliculus, the epileptogenic nucleus, of both audiogenic models, in order to get insights into common molecular aspects associated to their epileptic phenotype. Based on GASH/Sal RNA-Seq and WAR microarray data, we performed a comparative analysis that includes selection and functional annotation of differentially regulated genes in each model, transcriptional evaluation by quantitative reverse transcription PCR of common genes identified in both transcriptomes and immunohistochemistry. The microarray data revealed 71 genes with differential expression in WAR, and the RNA-Seq data revealed 64 genes in GASH/Sal, showing common genes in both models. Analysis of transcripts showed that Egr3 was overexpressed in WAR and GASH/Sal after audiogenic seizures. The Npy, Rgs2, Ttr, and Abcb1a genes presented the same transcriptional profile in the WAR, being overexpressed in the naïve and stimulated WAR in relation to their controls. Npy appeared overexpressed only in the naïve GASH/Sal compared to its control, while Rgs2 and Ttr genes appeared overexpressed in naïve GASH/Sal and overexpressed after audiogenic seizure. No statistical difference was observed in the expression of Abcb1a in the GASH/Sal model. Compared to control animals, the immunohistochemical analysis of the inferior colliculus showed an increased immunoreactivity for NPY, RGS2, and TTR in both audiogenic models. Our data suggest that WAR and GASH/Sal strains have a difference in the timing of gene expression after seizure, in which GASH/Sal seems to respond more quickly. The transcriptional profile of the Npy, Rgs2, and Ttr genes under free-seizure conditions in both audiogenic models indicates an intrinsic expression already established in the strains. Our findings suggest that these genes may be causing small changes in different biological processes involved in seizure occurrence and response, and indirectly contributing to the susceptibility of the WAR and GASH/Sal models to audiogenic seizures.
Collapse
Affiliation(s)
- Samara Damasceno
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain
| | - Ricardo Gómez-Nieto
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| | | | - Manuel Javier Herrero-Turrión
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,INCYL Neurological Tissue Bank (BTN-INCYL), Salamanca, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Dolores E Lopéz
- Institute of Neurosciences of Castilla y León, University of Salamanca, Salamanca, Spain.,Salamanca Institute for Biomedical Research, Salamanca, Spain
| |
Collapse
|
48
|
Inflammatory markers in the hippocampus after audiogenic kindling. Neurosci Lett 2020; 721:134830. [PMID: 32044393 DOI: 10.1016/j.neulet.2020.134830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 01/21/2023]
Abstract
Here, we investigated the participation of pro and anti-inflammatory cytokines in the spread of repeated audiogenic seizures from brainstem auditory structures to limbic areas, including the hippocampus. We used Wistar Audiogenic Rats (WARs) and Wistars submitted to the audiogenic kindling protocol with a loud broad-band noise. We measured pro and anti-inflammatory cytokines and nitrate levels in the hippocampus of stimulated animals. Our results show that all WARs developed audiogenic seizures that evolved to limbic seizures whereas seizure-resistant controls did not present any seizures. However, regardless of seizure severity, we did not observe differences in the pro inflammatory cytokines IL-1β, IL-6, TNF-α and IFN-α or in the anti-inflammatory IL-10 in the hippocampi of audiogenic and resistant animals. We also did not find any differences in nitrate content. Our data indicate that the spread of seizures during the audiogenic kindling is not dependent on hippocampal release of cytokines or oxidative stress, but the severity of brainstem seizures will be higher in animals with higher levels of cytokines and the oxidative stress marker, nitrate.
Collapse
|
49
|
Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Leite JP, Garcia-Cairasco N. The anticonvulsant effects of cannabidiol in experimental models of epileptic seizures: From behavior and mechanisms to clinical insights. Neurosci Biobehav Rev 2020; 111:166-182. [PMID: 31954723 DOI: 10.1016/j.neubiorev.2020.01.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/21/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Epilepsy is a neurological disorder characterized by the presence of seizures and neuropsychiatric comorbidities. Despite the number of antiepileptic drugs, one-third of patients did not have their seizures under control, leading to pharmacoresistance epilepsy. Cannabis sativa has been used since ancient times in Medicine for the treatment of many diseases, including convulsive seizures. In this context, Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been a promising compound for treating epilepsies due to its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. In this review, we summarize evidence of the CBD anticonvulsant activities present in a great diversity of animal models. Special attention was given to behavioral CBD effects and its translation to human epilepsies. CBD anticonvulsant effects are associated with a great variety of mechanisms of action such as endocannabinoid and calcium signaling. CBD has shown effectiveness in the clinical scenario for epilepsies, but its effects on epilepsy-related comorbidities are scarce even in basic research. More detailed and complex behavioral evaluation about CBD effects on seizures and epilepsy-related comorbidities are required.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - Raquel A Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Rui M P da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| | - João P Leite
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil.
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Brazil; Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
50
|
Cunha AOS, Moradi M, de Deus JL, Ceballos CC, Benites NM, de Barcellos Filho PCG, de Oliveira JAC, Garcia-Cairasco N, Leão R. Alterations in brainstem auditory processing, the acoustic startle response and sensorimotor gating of startle in Wistar audiogenic rats (WAR), an animal model of reflex epilepsies. Brain Res 2020; 1727:146570. [PMID: 31811837 DOI: 10.1016/j.brainres.2019.146570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/30/2022]
Abstract
While acute audiogenic seizures in response to acoustic stimulus appear as an alteration in sensory-motor processing in the brainstem, the repetition of the stimulus leads to the spread of epileptic activity to limbic structures. Here, we investigated whether animals of the Wistar Audiogenic Rat (WAR) strain, genetically selected by inbreeding for seizure susceptibility, would have alterations in their auditory response, assessed by the auditory brainstem responses (ABR) and sensory-motor gating, measured as pre-pulse inhibition (PPI), which could be related to their audiogenic seizures susceptibility or severity. We did not find differences between the amplitudes and latencies of ABR waves in response to clicks for WARs when compared to Wistars. Auditory gain and symmetry between ears were also similar. However, hearing thresholds in response to some tones were lower and amplitudes of wave II were larger in WARs. WARs had smaller acoustic startle reflex amplitudes and the percentages of startle inhibited by an acoustic prepulse were higher for WARs than for Wistars. However, no correlation was found between these alterations and brainstem-dependent seizure severity or limbic seizure frequency during audiogenic kindling. Our data show that while WARs present moderate alterations in primary auditory processing, the sensory motor gating measured in startle/PPI tests appears to be more drastically altered. The observed changes might be correlated with audiogenic seizure susceptibility but not seizures severity.
Collapse
Affiliation(s)
| | - Marzieh Moradi
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Neuroscience and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Junia Lara de Deus
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cesar Celis Ceballos
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nikollas Moreira Benites
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | - Norberto Garcia-Cairasco
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Leão
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|