1
|
Giorgetti A, Orazietti V, Busardò FP, Giorgetti R. Psychomotor performances relevant for driving under the combined effect of ethanol and synthetic cannabinoids: A systematic review. Front Psychiatry 2023; 14:1131335. [PMID: 36911125 PMCID: PMC9998479 DOI: 10.3389/fpsyt.2023.1131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
OBJECTIVE To determine whether the acute co-consumption of ethanol and synthetic cannabinoids (SCs) increases the risk of a motor vehicle collision and affects the psychomotor performances relevant for driving. DESIGN Systematic review of the literature. DATA SOURCES Electronic searches were performed in two databases, unrestricted by year, with previously set method and criteria. Search, inclusion and data extraction were performed by two blind authors. RESULTS Twenty articles were included, amounting to 31 cases of SCs-ethanol co-consumption. The impairment of psychomotor functions varied widely between studies, ranging from no reported disabilities to severe unconsciousness. Overall, a dose-effect relationship could not be observed. CONCLUSION Despite the biases and limitations of the literature studies, it seems likely that the co-consumption poses an increased risk for driving. The drugs might exert a synergistic effect on the central nervous system depression, as well as on aggressiveness and mood alterations. However, more research is needed on the topic.
Collapse
Affiliation(s)
- Arianna Giorgetti
- Department of Medical and Surgical Sciences, Unit of Legal Medicine, University of Bologna, Bologna, Italy
| | - Vasco Orazietti
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Francesco Paolo Busardò
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| | - Raffaele Giorgetti
- Department of Excellence of Biomedical Science and Public Health, University "Politecnica delle Marche" of Ancona, Ancona, Italy
| |
Collapse
|
2
|
Synthetic Cannabinoids and Cannabis: How the Patterns of Use Differ: Results from the European Web Survey on Drugs. Int J Ment Health Addict 2022. [DOI: 10.1007/s11469-022-00919-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2022] Open
|
3
|
Lima LSD, Loyola V, Bicca JVML, Faro L, Vale CLC, Lotufo Denucci B, Mortari MR. Innovative treatments for epilepsy: Venom peptides, cannabinoids, and neurostimulation. J Neurosci Res 2022; 100:1969-1986. [PMID: 35934922 DOI: 10.1002/jnr.25114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
Abstract
Antiepileptic drugs have been successfully treating epilepsy and providing individuals sustained seizure freedom. However, about 30% of the patients with epilepsy present drug resistance, which means they are not responsive to the pharmacological treatment. Considering this, it becomes extremely relevant to pursue alternative therapeutic approaches, in order to provide appropriate treatment for those patients and also improve their quality of life. In the light of that, this review aims to discuss some innovative options for the treatment of epilepsy, which are currently under investigation, addressing strategies that go from therapeutic compounds to clinical procedures. For instance, peptides derived from animal venoms, such as wasps, spiders, and scorpions, demonstrate to be promising antiepileptic molecules, acting on a variety of targets. Other options are cannabinoids and compounds that modulate the endocannabinoid system, since it is now known that this network is involved in the pathophysiology of epilepsy. Furthermore, neurostimulation is another strategy, being an alternative clinical procedure for drug-resistant patients who are not eligible for palliative surgeries.
Collapse
Affiliation(s)
- Larissa Silva de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Vinícius Loyola
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - João Victor Montenegro Luzardo Bicca
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Lucas Faro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Camilla Lepesqueur Costa Vale
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruna Lotufo Denucci
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
4
|
Kaczor EE, Greene K, Zacharia J, Tormoehlen L, Neavyn M, Carreiro S. The Potential Proconvulsant Effects of Cannabis: a Scoping Review. J Med Toxicol 2022; 18:223-234. [PMID: 35352276 PMCID: PMC9198115 DOI: 10.1007/s13181-022-00886-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Cannabis' effect on seizure activity is an emerging topic that remains without consensus and merits further investigation. We therefore performed a scoping review to identify the available evidence and knowledge gaps within the existing literature on cannabis product exposures as a potential cause of seizures in humans. METHODS A scoping review was conducted in accordance with the PRISMA Extension for Scoping Reviews guidelines. The PubMed and Scopus databases were searched over a 20-year period from the date of the database query (12/21/2020). Inclusion criteria were (1) English language original research articles, (2) inclusion of human subjects, and (3) either investigation of seizures as a part of recreational cannabinoid use OR of exogenous cannabinoids as a cause of seizures. RESULTS A total of 3104 unique articles were screened, of which 68 underwent full-text review, and 13 met inclusion/exclusion criteria. Ten of 11 studies evaluating acute cannabis exposures reported a higher seizure incidence than would be expected based on the prevalence of epilepsy in the general and pediatric populations (range 0.7-1.2% and 0.3-0.5% respectively). The remaining two studies demonstrated increased seizure frequency and/or seizure-related hospitalization in recreational cannabis users and those with cannabis use disorder. CONCLUSIONS This scoping review demonstrates that a body of literature describing seizures in the setting of cannabis exposure exists, but it has several limitations. Ten identified studies showed a higher than expected incidence of seizures in populations exposed to cannabis products. Based on the Bradford Hill criteria, delta-9 tetrahydrocannabinol (THC) may be the causative xenobiotic for this phenomenon.
Collapse
Affiliation(s)
- Eric E Kaczor
- Division of Medical Toxicology, Department of Emergency Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Kevin Greene
- Division of Medical Toxicology, Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer Zacharia
- Department of Emergency Medicine, Maine Medical Center, Tufts University School of Medicine, Portland, ME, USA
| | - Laura Tormoehlen
- Departments of Neurology and Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark Neavyn
- Department of Emergency Medicine, Maine Medical Center, Tufts University School of Medicine, Portland, ME, USA
| | - Stephanie Carreiro
- Division of Medical Toxicology, Department of Emergency Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
5
|
Micellar Electrokinetic Chromatography Method for the Analysis of Synthetic and Phytocannabinoids. J Chromatogr A 2022; 1673:463080. [DOI: 10.1016/j.chroma.2022.463080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022]
|
6
|
Abstract
Newly emerging synthetic cannabinoid compounds continue to be found in the designer drug market. They are often targeted as a 'legal high' alternative to traditional cannabinoids via 'darknet' markets and their increased potency and efficacy are becoming a growing concern internationally. The purpose of this study was to determine whether 4-CN-CUMYL-BUTINACA, 4F-MDMB-BINACA, 5F-AEB, 5F-CUMYL-P7AICA and EMB-FUBINACA exhibited similar behavioral effects as Δ9-tetrahydrocannabinol (Δ9-THC). Locomotor activity was assessed in an open-field assay using Swiss-Webster mice. Male Sprague-Dawley rats were trained to discriminate between intraperitoneal injections of Δ9-THC (3 mg/kg) and vehicle. Following successful training, substitution tests for 4-CN-CUMYL-BUTINACA, 4F-MDMB-BINACA, 5F-AEB, 5F-CUMYL-P7AICA and EMB-FUBINACA were conducted. All of the test compounds decreased locomotor activity. 4-CN-CUMYL-BUTINACA (ED50 = 0.26 mg/kg), 4F-MDMB-BINACA (ED50 = 0.019 mg/kg), 5F-CUMYL-P7AICA (ED50 = 0.13 mg/kg) and EMB-FUBINACA (ED50 = 0.13 mg/kg) each fully substituted for the discriminative stimulus effects of the training dose of Δ9-THC, whereas 5F-AEB produced only a maximum of 67% drug-appropriate responding at 0.5 mg/kg. Higher doses produced piloerection, exophthalmos and convulsions. 4-CN-CUMYL-BUTINACA, 4F-MDMB-BINACA, 5F-CUMYL-P7AICA and EMB-FUBINACA are likely to produce similar subjective effects in humans as those produced by abused synthetic cannabinoids, and may therefore share similar abuse liability. In contrast, 5F-AEB may have a reduced abuse liability given its weaker THC-like discriminative stimulus effects but maybe more dangerous due to the adverse effects observed at doses needed to produce discriminative stimulus effects.
Collapse
Affiliation(s)
- Michael B Gatch
- Department of Pharmacology and Neuroscience, Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | | | | |
Collapse
|
7
|
Barbieri M, Tirri M, Bilel S, Arfè R, Corli G, Marchetti B, Caruso L, Soukupova M, Cristofori V, Serpelloni G, Marti M. Synthetic cannabinoid JWH-073 alters both acute behavior and in vivo/vitro electrophysiological responses in mice. Front Psychiatry 2022; 13:953909. [PMID: 36339851 PMCID: PMC9634257 DOI: 10.3389/fpsyt.2022.953909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
JWH-073 is a synthetic cannabinoid (SCB) that is illegally marketed within an "herbal blend", causing psychoactive effects more intense than those produced by Cannabis. Users report that JWH-073 causes less harmful effects than other SCBs, misrepresenting it as a "safe JWH-018 alternative", which in turn prompts its recreational use. The present study is aimed to investigate the in vivo pharmacological activity on physiological and neurobehavioral parameters in male CD-1 mice after acute 1 mg/kg JWH-073 administration. To this aim we investigate its effect on sensorimotor (visual, acoustic, and tactile), motor (spontaneous motor activity and catalepsy), and memory functions (novel object recognition; NOR) in mice coupling behavioral and EEG data. Moreover, to clarify how memory function is affected by JWH-073, we performed in vitro electrophysiological studies in hippocampal preparations using a Long-Term Potentiation (LTP) stimulation paradigm. We demonstrated that acute administration of JWH-073 transiently decreased motor activity for up to 25 min and visual sensorimotor responses for up to 105 min, with the highest effects at 25 min (~48 and ~38%, respectively), while the memory function was altered up to 24 h (~33%) in treated-mice as compared to the vehicle. EEG in the somatosensory cortex showed a maximal decrease of α (~23%) and γ (~26%) bands at 15 min, β (~26%) band at 25 min, a maximal increase of θ (~14%) band at 25 min and δ (~35%) band at 2 h, and a significant decrease of θ (~18%), α (~26%), and β (~10%) bands during 24 h. On the other hand, EEG in the hippocampus showed a significant decrease of all bands from 10 min to 2 h, with the maximal effect at 30 min for θ (~34%) and γ (~26%) bands and 2 h for α (~36%), β (~29%), and δ (~15%) bands. Notably, the δ band significant increase both at 5 min (~12%) and 24 h (~19%). Moreover, in vitro results support cognitive function impairment (~60% of decrease) by interfering with hippocampal synaptic transmission and LTP generation. Our results suggest that JWH-073 deeply alters brain electrical responsiveness with minor behavioral symptoms. Thus, it poses a subtle threat to consumers who mistakenly consider it safer than other SCBs.
Collapse
Affiliation(s)
- Mario Barbieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Giorgia Corli
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Beatrice Marchetti
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Virginia Cristofori
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Neuroscience Clinical Center and Transcranial Magnetic Stimulation (TMS) Unit, Verona, Italy
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and Laboratory for Technologies of Advanced Therapies (LTTA) Centre, University of Ferrara, Ferrara, Italy.,Department for Anti-Drug Policies, Collaborative Center of the National Early Warning System, Presidency of the Council of Ministers, Rome, Italy
| |
Collapse
|
8
|
Relation Between Acute Administration of Synthetic Cannabinoids and Induction of Epileptic Seizures. ADDICTIVE DISORDERS & THEIR TREATMENT 2021. [DOI: 10.1097/adt.0000000000000286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Kahan MD, Breithaupt A, Nash K, Numis AL. Seizure and Interictal Electroencephalographic (EEG) Changes with Cannabinoid Concentrate Use. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e931360. [PMID: 33866321 PMCID: PMC8063765 DOI: 10.12659/ajcr.931360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The electroencephalographic (EEG) findings associated with tetrahydrocannabinol (THC) use, particularly in concentrated form, are not well-described, despite the current widespread availability of these products. There is a lack of prior research describing the EEG findings in adolescent cannabis users, and the effects of THC on the seizure threshold have been variably reported. CASE REPORT A 17-year-old girl with no prior history of seizures or known seizure risk factors presented to an Emergency Department with acutely abnormal behavior in the setting of daily vaping of highly concentrated THC marijuana ("wax"). On admission, she had a witnessed generalized tonic-clonic seizure. Urine toxicology was positive for THC, and an extensive evaluation for other etiologies of her encephalopathy was unrevealing. Extended EEG on admission showed mild diffuse background slowing with occasional bifronto-centrally predominant sharp and spike wave discharges. Seven days later, without interim antiseizure medications, a repeat extended EEG showed resolution of the previously seen interictal findings. CONCLUSIONS The clinical and EEG findings were temporally associated with the patient's use of concentrated THC and may represent a constellation of symptoms of a THC wax toxidrome. In this case, THC was associated with lowering the seizure threshold and triggering a provoked seizure in an adolescent with no prior evidence of seizure tendency. This case also suggests the possibility of THC concentrate itself generating epileptiform discharges, as has previously been described with synthetic cannabinoid use.
Collapse
Affiliation(s)
- Madeline D Kahan
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Andrew Breithaupt
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Kendall Nash
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Adam L Numis
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
10
|
Cannaert A, Sparkes E, Pike E, Luo JL, Fang A, Kevin RC, Ellison R, Gerona R, Banister SD, Stove CP. Synthesis and in Vitro Cannabinoid Receptor 1 Activity of Recently Detected Synthetic Cannabinoids 4F-MDMB-BICA, 5F-MPP-PICA, MMB-4en-PICA, CUMYL-CBMICA, ADB-BINACA, APP-BINACA, 4F-MDMB-BINACA, MDMB-4en-PINACA, A-CHMINACA, 5F-AB-P7AICA, 5F-MDMB-P7AICA, and 5F-AP7AICA. ACS Chem Neurosci 2020; 11:4434-4446. [PMID: 33253529 DOI: 10.1021/acschemneuro.0c00644] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are an evolving class of new psychoactive substances (NPS) with structurally diverse compounds emerging each year. Due to the rapid pace at which these drugs enter the market, there is often little or nil information regarding the pharmacology of these substances despite widespread human use. In this study, 12 recently emerged SCRAs (reported between 2018 and 2020) were synthesized, analytically characterized, and pharmacologically evaluated using a live cell-based nanoluciferase complementation reporter assay that monitors in vitro cannabinoid receptor type 1 (CB1) activation via its interaction with β-arrestin 2 (βarr2). All synthesized SCRAs acted as agonists of CB1, although differences in potency (EC50 = 2.33-5475 nM) and efficacy (Emax = 37-378%) were noted, and several structure-activity relationships were identified. SCRAs featuring indazole cores (EC50 = 2.33-159 nM) were generally of equal or greater potency than indole analogues (EC50 = 32.9-330 nM) or 7-azaindole derivatives (EC50 = 64.0-5475 nM). Interestingly, with the exception of APP-BINACA (Emax = 75.7%) and 5F-A-P7AICA (Emax = 37.4%), all SCRAs showed greater efficacy than the historical SCRA JWH-018 to which responses were normalized (Emax = 142-378%). The most potent CB1 agonists in the study were ADB-BINACA (EC50 = 6.36 nM), 4F-MDMB-BINACA (EC50 = 7.39 nM), and MDMB-4en-PINACA (EC50 = 2.33 nM). Notably, all of these SCRAs featured an indazole core as well as a "bulky" tert-butyl moiety in the pendant amino acid side chain. This study confirms that recently detected SCRAs 4F-MDMB-BICA, 5F-MPP-PICA, MMB-4en-PICA, CUMYL-CBMICA, ADB-BINACA, APP-BINACA, 4F-MDMB-BINACA, MDMB-4en-PINACA, A-CHMINACA, 5F-AB-P7AICA, 5F-MDMB-P7AICA, and 5F-AP7AICA were all able to activate the CB1 receptor in vitro, albeit to different extents, and are potentially psychoactive in vivo. These results indicate that further evaluation of these widely used NPS is warranted to better understand the risks associated with human consumption of these drugs.
Collapse
Affiliation(s)
- Annelies Cannaert
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent B-9000, Belgium
| | - Eric Sparkes
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, Australia
| | - Edward Pike
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, Australia
- Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Jia Lin Luo
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Psychology, The University of Sydney, Sydney 2006, Australia
| | - Ada Fang
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, Australia
| | - Richard C. Kevin
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Psychology, The University of Sydney, Sydney 2006, Australia
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, School of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Roy Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, School of Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Samuel D. Banister
- The Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia
- School of Chemistry, The University of Sydney, Sydney 2006, Australia
| | - Christophe P. Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent B-9000, Belgium
| |
Collapse
|
11
|
Fahreignung bei autoimmunen Anfällen und autoimmun-assoziierten Epilepsien. ZEITSCHRIFT FUR EPILEPTOLOGIE 2020. [DOI: 10.1007/s10309-020-00360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Abuse of Licit and Illicit Psychoactive Substances in the Workplace: Medical, Toxicological, and Forensic Aspects. J Clin Med 2020; 9:jcm9030770. [PMID: 32178358 PMCID: PMC7141377 DOI: 10.3390/jcm9030770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 01/23/2023] Open
Abstract
About one-third of adult life is spent in the workplace. The use of psychoactive substances is a major preventable cause of morbidity and mortality. The consumption of psychoactive substances during or outside working hours greatly increases the frequency and severity of labor accidents, as well as the workers’ poor general state of health and productivity, implying higher costs for enterprises. It is the responsibility of organizations to ensure the safety and health of their workers. These cannot be limited to traditional routine clinical exams, as other aspects also have an impact on health. Thus, prevention and intervention in the consumption of psychoactive substances (e.g., ethanol, opioids, central nervous system stimulants or depressants, hallucinogens, Cannabis derivatives, dissociative substances, and inhalants) in labor activity should be considered as an investment of organizations and not as a cost, in view of the professional, personal, and family advantages for workers and employers, with a potential impact on productivity, security, health, and quality of life at work. Despite the extensive literature on the subject, each article generally focuses on one or another aspect of a very specific nature, not tackling the problem in a holistic way by confronting clinical, safety, and legal issues. This article presents a reflection on the legal, laboratorial, clinical, ethical, forensic, and safety concerns related to the consumption of psychoactive substances in the workplace, and can be a cross-cutting contribution to occupational medicine, forensic medicine, and insurance medicine, as well as for entrepreneurs, lawyers, judges, workers, and technicians from the public and private sectors that develop projects in this area. This discussion is based on general principles established internationally and highlights the role of the occupational healthcare system and other decision-making actors in the prevention and supervision of workplace psychoactive consumption.
Collapse
|