1
|
Alhashem Z, Feldner-Busztin D, Revell C, Alvarez-Garcillan Portillo M, Camargo-Sosa K, Richardson J, Rocha M, Gauert A, Corbeaux T, Milanetto M, Argenton F, Tiso N, Kelsh RN, Prince VE, Bentley K, Linker C. Notch controls the cell cycle to define leader versus follower identities during collective cell migration. eLife 2022; 11:e73550. [PMID: 35438077 PMCID: PMC9129880 DOI: 10.7554/elife.73550] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Coordination of cell proliferation and migration is fundamental for life, and its dysregulation has catastrophic consequences, such as cancer. How cell cycle progression affects migration, and vice versa, remains largely unknown. We address these questions by combining in silico modelling and in vivo experimentation in the zebrafish trunk neural crest (TNC). TNC migrate collectively, forming chains with a leader cell directing the movement of trailing followers. We show that the acquisition of migratory identity is autonomously controlled by Notch signalling in TNC. High Notch activity defines leaders, while low Notch determines followers. Moreover, cell cycle progression is required for TNC migration and is regulated by Notch. Cells with low Notch activity stay longer in G1 and become followers, while leaders with high Notch activity quickly undergo G1/S transition and remain in S-phase longer. In conclusion, TNC migratory identities are defined through the interaction of Notch signalling and cell cycle progression.
Collapse
Affiliation(s)
- Zain Alhashem
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | - Christopher Revell
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
| | | | - Karen Camargo-Sosa
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Joanna Richardson
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
| | - Anton Gauert
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | - Tatianna Corbeaux
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| | | | | | - Natascia Tiso
- Department of Biology, University of PadovaPadovaItaly
| | - Robert N Kelsh
- Department of Biology & Biochemistry, University of BathBathUnited Kingdom
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of ChicagoChicagoUnited States
- Department of Organismal Biology and Anatomy, The University of ChicagoChicagoUnited States
| | - Katie Bentley
- Cellular Adaptive Behaviour Lab, Francis Crick InstituteLondonUnited Kingdom
- Department of Informatics, King's College LondonLondonUnited Kingdom
| | - Claudia Linker
- Randall Centre for Cell and Molecular Biophysics, Guy's Campus, King's College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Lan T, Yu M, Chen W, Yin J, Chang HT, Tang S, Zhao Y, Svoronos S, Wong SWK, Tseng Y. Decomposition of cell activities revealing the role of the cell cycle in driving biofunctional heterogeneity. Sci Rep 2021; 11:23431. [PMID: 34873244 PMCID: PMC8648726 DOI: 10.1038/s41598-021-02926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Heterogeneity of cell phenotypes remains a barrier in progressing cell research and a challenge in conquering cancer-related drug resistance. Cell morphology, the most direct property of cell phenotype, evolves along the progression of the cell cycle; meanwhile, cell motility, the dynamic property of cell phenotype, also alters over the cell cycle. However, a quantifiable research understanding the relationship between the cell cycle and cell migration is missing. Herein, we coordinate the migratory behaviours of NIH 3T3 fibroblasts to their corresponding phases of the cell cycle, the G1, the S, and the G2 phases, and explain the relationship through the spatiotemporal arrangements between the Rho GTPases’ signals and cyclin-dependent kinase inhibitors, p21Cip1, and p27Kip1. Taken together, we demonstrate that both cell morphology and the dynamic subcellular behaviour are homogenous within each stage of the cell cycle phases but heterogenous between phases through quantitative cell analyses and an interactive molecular mechanism between the cell cycle and cell migration, posing potential implications in countering drug resistance.
Collapse
Affiliation(s)
- Tian Lan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.,Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Meng Yu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Weisheng Chen
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Jun Yin
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Hsiang-Tsun Chang
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Shan Tang
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Ye Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Spyros Svoronos
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Samuel W K Wong
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Yiider Tseng
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China. .,Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Frye K, Renda F, Fomicheva M, Zhu X, Gong L, Khodjakov A, Kaverina I. Cell Cycle-Dependent Dynamics of the Golgi-Centrosome Association in Motile Cells. Cells 2020; 9:cells9051069. [PMID: 32344866 PMCID: PMC7290758 DOI: 10.3390/cells9051069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023] Open
Abstract
Here, we characterize spatial distribution of the Golgi complex in human cells. In contrast to the prevailing view that the Golgi compactly surrounds the centrosome throughout interphase, we observe characteristic differences in the morphology of Golgi ribbons and their association with the centrosome during various periods of the cell cycle. The compact Golgi complex is typical in G1; during S-phase, Golgi ribbons lose their association with the centrosome and extend along the nuclear envelope to largely encircle the nucleus in G2. Interestingly, pre-mitotic separation of duplicated centrosomes always occurs after dissociation from the Golgi. Shortly before the nuclear envelope breakdown, scattered Golgi ribbons reassociate with the separated centrosomes restoring two compact Golgi complexes. Transitions between the compact and distributed Golgi morphologies are microtubule-dependent. However, they occur even in the absence of centrosomes, which implies that Golgi reorganization is not driven by the centrosomal microtubule asters. Cells with different Golgi morphology exhibit distinct differences in the directional persistence and velocity of migration. These data suggest that changes in the radial distribution of the Golgi around the nucleus define the extent of cell polarization and regulate cell motility in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Keyada Frye
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Fioranna Renda
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Maria Fomicheva
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Lisa Gong
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Correspondence: ; Tel.: +1-615-936-5567
| |
Collapse
|
4
|
Abstract
Cancer cell migration is essential for metastasis, during which cancer cells move through the tumor and reach the blood vessels. In vivo, cancer cells are exposed to contact guidance and chemotactic cues. Depending on the strength of such cues, cells will migrate in a random or directed manner. While similar cues may also stimulate cell proliferation, it is not clear whether cell cycle progression affects migration of cancer cells and whether this effect is different in random versus directed migration. In this study, we tested the effect of cell cycle progression on contact guided migration in 2D and 3D environments, in the breast carcinoma cell line, FUCCI-MDA-MB-231. The results were quantified from live cell microscopy images using the open source lineage editing and validation image analysis tools (LEVER). In 2D, cells were placed inside 10 μm-wide microchannels to stimulate contact guidance, with or without an additional chemotactic gradient of the soluble epidermal growth factor. In 3D, contact guidance was modeled by aligned collagen fibers. In both 2D and 3D, contact guidance was cell cycle-dependent, while the addition of the chemo-attractant gradient in 2D increased cell velocity and persistence in directionally migrating cells, regardless of their cell cycle phases. In both 2D and 3D contact guidance, cells in the G1 phase of the cell cycle outperformed cells in the S/G2 phase in terms of migration persistence and instantaneous velocity. These data suggest that in the presence of contact guidance cues in vivo, breast carcinoma cells in the G1 phase of the cell cycle may be more efficient in reaching the neighboring vasculature.
Collapse
Affiliation(s)
| | - Edgar Cardenas De La Hoz
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Andrew R Cohen
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Bojana Gligorijevic
- Bioengineering department, College of Engineering, Temple University, Philadelphia, Pennsylvania 19122, USA.,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
5
|
Yeh YT, Harouaka RA, Zheng SY. Evaluating a novel dimensional reduction approach for mechanical fractionation of cells using a tandem flexible micro spring array (tFMSA). LAB ON A CHIP 2017; 17:691-701. [PMID: 28144670 DOI: 10.1039/c6lc01527a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a novel methodology to establish experimental models for the rational design of cell fractionation based on physical properties of cells. Label-free microfluidic separation of cells based on size is a widely employed technique. However, close observation reveals that cell capture results cannot be explained by cell sizes alone. This is particularly apparent with viable cell fractionation, where cells retain their native deformability. We have developed a principal size cutoff (PSC) model based on the analysis of size distribution and size-based filtration efficiency for cell populations. The goal of this analysis is to use an unbiased approach to achieve dimensional reduction of deformability and other mechanical properties that affect cell capture. The PSC model provides a single calibrated principal size component that may be compared directly to device gap width, which is the critical dimension for cell filtration. The PSC model was evaluated experimentally using a tandem flexible micro spring array (tFMSA) device made of parylene filtration elements applied within micro-molded polydimethylsiloxane (PDMS) chambers. In the tFMSA device, a mixture of cells is sequentially passed through individual filters with decreasing gap widths to allow size-based selection. We applied this method to demonstrate viable separation of subgroups of cells with different mechanical properties from complex mixtures, including fractionation according to cancer cell type, cell cycle stage, cell viability status, and leukocyte nuclear phenotype. The PSC methodology and tFMSA device can advance a better understanding of complex factors affecting mechanical cell fractionation and provide a miniature platform for obtaining rationally designed cell fractions for biomedical applications.
Collapse
Affiliation(s)
- Yin-Ting Yeh
- Department of Biomedical Engineering, Materials Research Institute and Huck Life Science Institute, The Pennsylvania State University, N-238 Millennium Science Complex, University Park, PA 16802, USA.
| | - Ramdane A Harouaka
- Department of Biomedical Engineering, Materials Research Institute and Huck Life Science Institute, The Pennsylvania State University, N-238 Millennium Science Complex, University Park, PA 16802, USA.
| | - Si-Yang Zheng
- Department of Biomedical Engineering, Materials Research Institute and Huck Life Science Institute, The Pennsylvania State University, N-238 Millennium Science Complex, University Park, PA 16802, USA. and Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA and Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
6
|
Hypoxia-specific, VEGF-expressing neural stem cell therapy for safe and effective treatment of neuropathic pain. J Control Release 2016; 226:21-34. [PMID: 26826306 DOI: 10.1016/j.jconrel.2016.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/05/2016] [Accepted: 01/26/2016] [Indexed: 12/11/2022]
Abstract
Vascular endothelial growth factor (VEGF) is an angiogenic cytokine that stimulates the differentiation and function of vascular endothelial cells. VEGF has been implicated in improving nervous system function after injury. However, uncontrolled overexpression of VEGF increases the risk of tumor formation at the site of gene delivery. For this reason, VEGF expression needs to be strictly controlled. The goal of the present study was to understand the effects of hypoxia-induced gene expression system to control VEGF gene expression in neural stem cells (NSCs) on the regeneration of neural tissue after sciatic nerve injury. In this study, we used the erythropoietin (Epo) enhancer-SV40 promoter system (EpoSV-VEGF-NSCs) for hypoxia-specific VEGF expression. We used three types of NSCs: DsRed-NSCs as controls, SV-VEGF-NSCs as uncontrolled VEGF overexpressing NSCs, and EpoSV-VEGF-NSCs. For comparison of VEGF expression at normoxia and hypoxia, we measured the amount of VEGF secreted. VEGF expression decreased at normoxia and increased at hypoxia for EpoSV-VEGF-NSCs; thus, EpoSV-VEGF-NSCs controlled VEGF expression, dependent upon oxygenation condition. To demonstrate the therapeutic effect of EpoSV-VEGF-NSCs, we transplanted each cell line in a neuropathic pain sciatic nerve injury rat model. The transplanted EpoSV-VEGF-NSCs improved sciatic nerve functional index (SFI), mechanical allodynia, and re-myelination similar to the SV-VEGF-NSCs. Additionally, the number of blood vessels increased to a level similar to that of the SV-VEGF-NSCs. However, we did not observe tumor generation in the EpoSV-VEGF-NSC animals that were unlikely to have tumor formation in the SV-VEGF-NSCs. From our results, we determined that EpoSV-VEGF-NSCs safely regulate VEGF gene expression which is dependent upon oxygenation status. In addition, we found that they are therapeutically appropriate for treating sciatic nerve injury.
Collapse
|
7
|
Yasuda N, Sekine H, Bise R, Okano T, Shimizu T. Tracing behavior of endothelial cells promotes vascular network formation. Microvasc Res 2015; 105:125-31. [PMID: 26687561 DOI: 10.1016/j.mvr.2015.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 12/12/2022]
Abstract
The in vitro formation of network structures derived from endothelial cells in grafts before transplantation contributes to earlier engraftment. In a previous study, endothelial cells migrated to form a net-shaped structure in co-culture. However, the specific network formation behavior of endothelial cells during migration remains unclear. In this study, we demonstrated the tracing behavior and cell cycle of endothelial cells using Fucci-labeled (Fluorescent Ubiquitination-based Cell Cycle Indicator) endothelial cells. Here, we observed the co-culture of Fucci-labeled human umbilical vein endothelial cells (HUVECs) together with normal human dermal fibroblasts (NHDFs) using time-lapse imaging and analyzed by multicellular concurrent tracking. In the G0/G1 period, HUVECs migrate faster than in the S/G2/M period, because G0/G1 is the mobile phase and S/G2/M is the proliferation phase in the cell cycle. When HUVECs are co-cultured, they tend to move randomly until they find existing tracks that they then follow to form clusters. Extracellular matrix (ECM) staining showed that collagen IV, laminin and thrombospondin deposited in accordance with endothelial cell networks. Therefore the HUVECs may migrate on the secreted ECM and exhibit tracing behavior, where the HUVECs migrate toward each other. These results suggested that ECM and a cell phase contributed to form a network by accelerating cell migration.
Collapse
Affiliation(s)
- Noriko Yasuda
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - Ryoma Bise
- Advanced Business Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan.
| |
Collapse
|
8
|
Kagawa Y, Matsumoto S, Kamioka Y, Mimori K, Naito Y, Ishii T, Okuzaki D, Nishida N, Maeda S, Naito A, Kikuta J, Nishikawa K, Nishimura J, Haraguchi N, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Ishii H, Doki Y, Matsuda M, Kikuchi A, Mori M, Ishii M. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo. PLoS One 2013; 8:e83629. [PMID: 24386239 PMCID: PMC3875446 DOI: 10.1371/journal.pone.0083629] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/05/2013] [Indexed: 01/09/2023] Open
Abstract
The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.
Collapse
Affiliation(s)
- Yoshinori Kagawa
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuji Kamioka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koshi Mimori
- Department of Surgery, Medical Institute of Bioregulation, Kyushu University, Beppu, Oita, Japan
| | - Yoko Naito
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Taeko Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- DNA-chip Developmental Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Naohiro Nishida
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Surgery, Medical Institute of Bioregulation, Kyushu University, Beppu, Oita, Japan
| | - Sakae Maeda
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Naito
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| | - Keizo Nishikawa
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| | - Junichi Nishimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naotsugu Haraguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ichiro Takemasa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masataka Ikeda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Mitsugu Sekimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideshi Ishii
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Laboratory of Cellular Dynamics, WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
Aplasia cutis congenita (ACC) manifests with localized skin defects at birth of unknown cause, mostly affecting the scalp vertex. Here, genome-wide linkage analysis and exome sequencing was used to identify the causative mutation in autosomal dominant ACC. A heterozygous Arg-to-His missense mutation (p.R930H) in the ribosomal GTPase BMS1 is identified in ACC that is associated with a delay in 18S rRNA maturation, consistent with a role of BMS1 in processing of pre-rRNAs of the small ribosomal subunit. Mutations that affect ribosomal function can result in a cell cycle defect and ACC skin fibroblasts with the BMS1 p.R930H mutation show a reduced cell proliferation rate due to a p21-mediated G1/S phase transition delay. Unbiased comparative global transcript and proteomic analyses of ACC fibroblasts with this mutation confirm a central role of increased p21 levels for the ACC phenotype, which are associated with downregulation of heterogenous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich splicing factors (SRSFs). Functional enrichment analysis of the proteomic data confirmed a defect in RNA post-transcriptional modification as the top-ranked cellular process altered in ACC fibroblasts. The data provide a novel link between BMS1, the cell cycle, and skin morphogenesis. Elucidating the pathomechanisms in congenital diseases of the skin provides the opportunity to learn what cellular processes are important during embryonic development of the skin structures. Aplasia cutis congenita (ACC) manifests with localized skin defects, most commonly affecting the scalp skin. Here, global proteomic and transcriptional analyses are combined with genome-wide linkage and exome sequencing approaches to identify the molecular mechanisms involved in ACC. A mutation in the ribosomal GTPase BMS1 is identified in ACC that affects 18S rRNA maturation. This mutation is associated with a p21-mediated G1/S phase transition delay during the cell cycle that inhibits cell proliferation. The findings are consistent with mutations in ribosomal disorders that result in nucleolar stress and a G1/S phase transition delay. Thus, mutations in BMS1 can affect the formation of a highly proliferative tissue during development, such as the rapidly expanding scalp epidermis.
Collapse
Affiliation(s)
- Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
10
|
The Guanine Nucleotide Exchange Factor SWAP-70 Modulates the Migration and Invasiveness of Human Malignant Glioma Cells. Transl Oncol 2011; 2:300-9. [PMID: 19956392 DOI: 10.1593/tlo.09172] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 06/30/2009] [Accepted: 08/07/2009] [Indexed: 11/18/2022] Open
Abstract
The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue.
Collapse
|
11
|
Clark AG, Paluch E. Mechanics and regulation of cell shape during the cell cycle. Results Probl Cell Differ 2011; 53:31-73. [PMID: 21630140 DOI: 10.1007/978-3-642-19065-0_3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cell types undergo dramatic changes in shape throughout the cell cycle. For individual cells, a tight control of cell shape is crucial during cell division, but also in interphase, for example during cell migration. Moreover, cell cycle-related cell shape changes have been shown to be important for tissue morphogenesis in a number of developmental contexts. Cell shape is the physical result of cellular mechanical properties and of the forces exerted on the cell. An understanding of the causes and repercussions of cell shape changes thus requires knowledge of both the molecular regulation of cellular mechanics and how specific changes in cell mechanics in turn effect global shape changes. In this chapter, we provide an overview of the current knowledge on the control of cell morphology, both in terms of general cell mechanics and specifically during the cell cycle.
Collapse
Affiliation(s)
- Andrew G Clark
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | |
Collapse
|
12
|
Sage D, Unser M, Salmon P, Dibner C. A software solution for recording circadian oscillator features in time-lapse live cell microscopy. Cell Div 2010; 5:17. [PMID: 20604925 PMCID: PMC2915961 DOI: 10.1186/1747-1028-5-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/06/2010] [Indexed: 12/31/2022] Open
Abstract
Background Fluorescent and bioluminescent time-lapse microscopy approaches have been successfully used to investigate molecular mechanisms underlying the mammalian circadian oscillator at the single cell level. However, most of the available software and common methods based on intensity-threshold segmentation and frame-to-frame tracking are not applicable in these experiments. This is due to cell movement and dramatic changes in the fluorescent/bioluminescent reporter protein during the circadian cycle, with the lowest expression level very close to the background intensity. At present, the standard approach to analyze data sets obtained from time lapse microscopy is either manual tracking or application of generic image-processing software/dedicated tracking software. To our knowledge, these existing software solutions for manual and automatic tracking have strong limitations in tracking individual cells if their plane shifts. Results In an attempt to improve existing methodology of time-lapse tracking of a large number of moving cells, we have developed a semi-automatic software package. It extracts the trajectory of the cells by tracking theirs displacements, makes the delineation of cell nucleus or whole cell, and finally yields measurements of various features, like reporter protein expression level or cell displacement. As an example, we present here single cell circadian pattern and motility analysis of NIH3T3 mouse fibroblasts expressing a fluorescent circadian reporter protein. Using Circadian Gene Express plugin, we performed fast and nonbiased analysis of large fluorescent time lapse microscopy datasets. Conclusions Our software solution, Circadian Gene Express (CGE), is easy to use and allows precise and semi-automatic tracking of moving cells over longer period of time. In spite of significant circadian variations in protein expression with extremely low expression levels at the valley phase, CGE allows accurate and efficient recording of large number of cell parameters, including level of reporter protein expression, velocity, direction of movement, and others. CGE proves to be useful for the analysis of widefield fluorescent microscopy datasets, as well as for bioluminescence imaging. Moreover, it might be easily adaptable for confocal image analysis by manually choosing one of the focal planes of each z-stack of the various time points of a time series. Availability CGE is a Java plugin for ImageJ; it is freely available at: http://bigwww.epfl.ch/sage/soft/circadian/.
Collapse
Affiliation(s)
- Daniel Sage
- Biomedical Imaging Group, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | | | |
Collapse
|
13
|
Calcium and cyclic nucleotides affect TNF-alpha-induced stem cell migration. Biochem Biophys Res Commun 2009; 382:241-6. [PMID: 19233128 DOI: 10.1016/j.bbrc.2009.02.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 02/13/2009] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to study the effect of calcium, cyclic AMP (cAMP) and cyclic GMP (cGMP) on embryonic stem cell (ESC) motility during TNF-alpha-induced chemotaxis. ESCs were monitored using a chemotaxis chamber, with different concentrations of calcium or cAMP or cGMP added to the medium. Changes in intracellular calcium ([Ca(2+)](i)) were measured with the fluorescent dye fura-2/AM. We combined migratory parameters in a mathematical model and described it as "mobility". After adding calcium, a dose-dependant increase in cell speed was found. Cyclic AMP increased mobility as well as the [Ca(2+)](i). In contrast, adding dbcGMP resulted in a significant decrease in the mobility of the ESCs. During migration ESCs showed an increase in [Ca(2+)](i). Furthermore, TNF-alpha dramatically increased the movement as well as the directionality of ESCs. These results demonstrate that ESCs are highly motile and respond to different concentrations of calcium in a dose-related manner.
Collapse
|
14
|
Mao J, Chen L, Xu B, Wang L, Wang W, Li M, Zheng M, Li H, Guo J, Li W, Jacob TJ, Wang L. Volume-activated chloride channels contribute to cell-cycle-dependent regulation of HeLa cell migration. Biochem Pharmacol 2009; 77:159-68. [DOI: 10.1016/j.bcp.2008.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/23/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
|
15
|
Ueno S, Kono R, Iwao Y. PTEN is required for the normal progression of gastrulation by repressing cell proliferation after MBT in Xenopus embryos. Dev Biol 2006; 297:274-83. [PMID: 16919259 DOI: 10.1016/j.ydbio.2006.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/30/2006] [Accepted: 06/01/2006] [Indexed: 11/16/2022]
Abstract
PTEN phosphatase mediates several developmental cues involving cell proliferation, growth, death, and migration. We investigated the function of the PTEN gene at the transition from the cell proliferation state to morphogenesis around the midblastula transition (MBT) and gastrulation in Xenopus embryos. An immunoblotting analysis indicated that PTEN expresses constantly through embryogenesis. By up- or down-regulating PTEN activity using overexpression of the active form or C terminus of PTEN before MBT, we induced elongation of the cell cycle time just before MBT or maintained its speed even after MBT, respectively. The disruption of the cell cycle time by changing the activity of PTEN delayed gastrulation after MBT. In addition, PTEN began to localize to the plasma membranes and nuclei at MBT. Overexpression of a membrane-localizing mutant of PTEN caused dephosphorylation of Akt, whereas overexpression of the C terminus of PTEN caused phosphorylation of Akt and inhibited the localization of EGFP-PTEN to the plasma membranes and nuclei. These results indicate that an appropriate PTEN activity, probably regulated by its differential localization, is necessary for coordinating cell proliferation and early morphogenesis.
Collapse
Affiliation(s)
- Shuichi Ueno
- Department of Biological Science, Faculty of Science, Yamaguchi University, 753-8512 Yamaguchi, Japan.
| | | | | |
Collapse
|
16
|
Hwang SY, Jung JW, Jeong JS, Kim YJ, Oh ES, Kim TH, Kim JY, Cho KH, Han IO. Dominant-negative Rac increases both inherent and ionizing radiation-induced cell migration in C6 rat glioma cells. Int J Cancer 2005; 118:2056-63. [PMID: 16287069 DOI: 10.1002/ijc.21574] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Rho-like GTPases, including Cdc42, Rac1 and RhoA, regulate distinct actin cytoskeleton changes required for cell adhesion, migration and invasion. In the present study, we examined the role of Rac signaling in inherent migration, as well as radiation-induced migration, of rat glioma cells. Stable overexpression of dominant-negative Rac1N17 in a C6 rat glioma cell line (C6-RacN17) promoted cell migration, and ionizing radiation further increased this migration. Migration was accompanied by decreased expression of the focal adhesion molecules FAK and paxillin. Focal contacts and actin stress fibers were also reduced in C6-RacN17 cells. Downstream effectors of Rac include JNK and p38 MAP kinases. Irradiation transiently activated p38, JNK and ERK1/2 MAP kinases in C6-RacN17 cells, while p38 and JNK were constitutively activated in C6 control cells. Blocking JNK activity with JNK inhibitor SP600125 inhibited migration, suggesting that the JNK pathway may regulate radiation-induced, as well as inherent, migration of C6-RacN17 cells. Additionally, the radiation-induced migration increase was also inhibited by SB203580, a specific inhibitor of p38 MAP kinase. However, PD98059, a MEK kinase 1 inhibitor, failed to influence migration. This is the first evidence that suppression of Rac signaling may be involved in invasion or metastasis of glioma cells before and/or after radiotherapy. These data further suggest that radiotherapy for malignant glioma needs to be used with caution because of the potential for therapy-induced cell migration or invasion and that pharmacological inhibition of cell migration and invasion through targeting the Rac signaling pathway may represent a new approach for improving the therapeutic efficacy of radiotherapy for malignant glioma.
Collapse
Affiliation(s)
- So-Young Hwang
- Research Institute, National Cancer Center, Goyang, Gyeonggi, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Paluch E, Piel M, Prost J, Bornens M, Sykes C. Cortical actomyosin breakage triggers shape oscillations in cells and cell fragments. Biophys J 2005; 89:724-33. [PMID: 15879479 PMCID: PMC1366569 DOI: 10.1529/biophysj.105.060590] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell shape and movements rely on complex biochemical pathways that regulate actin, microtubules, and substrate adhesions. Some of these pathways act through altering the cortex contractility. Here we examined cellular systems where contractility is enhanced by disassembly of the microtubules. We found that adherent cells, when detached from their substrate, developed a membrane bulge devoid of detectable actin and myosin. A constriction ring at the base of the bulge oscillated from one side of the cell to the other. The movement was accompanied by sequential redistribution of actin and myosin to the membrane. We observed this oscillatory behavior also in cell fragments of various sizes, providing a simplified, nucleus-free system for biophysical studies. Our observations suggest a mechanism based on active gel dynamics and inspired by symmetry breaking of actin gels growing around beads. The proposed mechanism for breakage of the actomyosin cortex may be used for cell polarization.
Collapse
Affiliation(s)
- Ewa Paluch
- Laboratoire Physicochimie Curie, UMR168 Institut Curie/CNRS, 75231 Paris cedex 05, France
| | | | | | | | | |
Collapse
|