1
|
Liu Y, Li G, Liu C, Tang Y, Zhang S. RSF1 regulates the proliferation and paclitaxel resistance via modulating NF-κB signaling pathway in nasopharyngeal carcinoma. J Cancer 2017; 8:354-362. [PMID: 28261335 PMCID: PMC5332885 DOI: 10.7150/jca.16720] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/15/2016] [Indexed: 01/29/2023] Open
Abstract
Purpose: Aberrant expression and dysfunction of RSF1 has been reported in diverse human malignancies. However, its exact role in nasopharyngeal carcinoma (NPC) remains unclear. Methods: The expression of RSF1 mRNA and protein were assayed by qRT-PCR and western blotting, and their correlations with clinicopathological parameters of patients with NPC were further analysed. Lentivirus mediated RSF1 shRNA and RSF1 cDNA were used to knockdown and upregulate the expression of RSF1. CCK8 assays and flow cytometry were applied to monitor the changes of proliferation and paclitaxel sensitivity caused by RSF1 modulation, inhibition of NF-κB pathway by inhibitor Bay 11-7082 and Survivin knockdown. Western blotting was used to detect protein alterations in NF-κB signaling pathway. Results: Our present study demonstrated that both mRNA and protein expressions of RSF1 were increased and correlated with advanced NPC clinical stage. Functional analyses revealed that RSF1 inhibition or overexpression induced changes in cell cycle, apoptosis, and then led to altered proliferation and paclitaxel sensitivity in diverse NPC cells in vitro. Further mechanism investigation hinted that RSF1 overexpression in NPC CNE-2 cells activated NF-κB pathway and promoted the expression NF-κB dependent genes involved in cell cycle and apoptosis including Survivin. Importantly, inhibition of NF-κB pathway by Bay 11-7082 and knockdown its downstream Survivin reversed the paclitaxel resistance caused by RSF1 overexpression. Conclusions: Taken together, our data indicate that RSF1 regulates the proliferation and paclitaxel resistance via activating NF-κB signaling pathway and NF-κB-dependent Survivin upregulation, suggesting that RSF1 may be used as a potential therapeutic target in NPC.
Collapse
Affiliation(s)
- Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| | - Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| | - Yaoyun Tang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| | - Shuai Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha 410008, Hunan, China.; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
| |
Collapse
|
2
|
Wilson RHC, Hesketh EL, Coverley D. The Nuclear Matrix: Fractionation Techniques and Analysis. Cold Spring Harb Protoc 2016; 2016:pdb.top074518. [PMID: 26729911 DOI: 10.1101/pdb.top074518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The first descriptions of an insoluble nuclear structure appeared more than 70 years ago, but it is only in recent years that a sophisticated picture of its significance has begun to emerge. Here we introduce multiple methods for the study of the nuclear matrix.
Collapse
Affiliation(s)
| | - Emma L Hesketh
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
3
|
Yang YI, Ahn JH, Lee KT, Shih IM, Choi JH. RSF1 is a positive regulator of NF-κB-induced gene expression required for ovarian cancer chemoresistance. Cancer Res 2014; 74:2258-69. [PMID: 24566868 DOI: 10.1158/0008-5472.can-13-2459] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression or amplification of the RSF1 gene has been associated with poor prognosis in various human cancers, including ovarian cancer. In previous work, RSF1 was identified as an amplified gene that facilitated the development of paclitaxel-resistant ovarian cancer. In the present study, we further demonstrated that RSF1 expression inversely correlated with paclitaxel response in patients with ovarian cancer and the mouse xenograft model. In addition, RSF1-overexpressing paclitaxel-resistant ovarian cancer cell lines were found to express elevated levels of genes regulated by NF-κB, including some involved with the evasion of apoptosis (CFLAR, XIAP, BCL2, and BCL2L1) and inflammation (PTGS2). In addition, ectopic expression of RSF1 using Tet-off inducible SKOV3 cells significantly enhanced NF-κB-dependent gene expression and transcriptional activation of NF-κB. An RSF1 knockdown using short hairpin RNAs suppressed these same pathways. Moreover, pretreatment with NF-κB inhibitors or downregulation of NF-κB-regulated gene expression considerably enhanced paclitaxel sensitivity in RSF1-overexpressing OVCAR3 and/or RSF1-induced SKOV3 cells. A coimmunoprecipitation assay revealed that RSF1 interacts with NF-κB and CREB-binding protein, a ubiquitous coactivator for NF-κB. Recruitment of RSF1 to the NF-κB binding element in the PTGS2 and XIAP promoters was demonstrated by the chromatin immunoprecipitation assay. Furthermore, hSNF2H, a well-known binding partner of RSF1, was partially involved in the interaction between RSF1 and NF-κB. Taken together, these data suggest that RSF1 may function as a coactivator for NF-κB, consequently augmenting expression of genes necessary for the development of chemoresistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Yeong-In Yang
- Authors' Affiliations: Department of Life and Nanopharmaceutical Science; Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, South Korea; and Department of Pathology and Oncology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
4
|
Fang FM, Li CF, Huang HY, Lai MT, Chen CM, Chiu IW, Wang TL, Tsai FJ, Shih IM, Sheu JJC. Overexpression of a chromatin remodeling factor, RSF-1/HBXAP, correlates with aggressive oral squamous cell carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2407-2415. [PMID: 21514451 PMCID: PMC3081206 DOI: 10.1016/j.ajpath.2011.01.043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/30/2010] [Accepted: 01/20/2011] [Indexed: 12/24/2022]
Abstract
RSF-1, also known as hepatitis B X-antigen associated protein (HBXAP), is a subunit of an ISWI chromatin remodeling complex, remodeling and spacing factor (RSF). Recent studies have provided new evidence that chromatin remodeling participates in the pathogenesis of neoplastic diseases by altering cell cycle regulation and gene expression. In this report, we studied the biological roles of RSF-1 in oral squamous cell carcinoma (OSCC), a highly invasive neoplastic disease. Based on IHC and quantitative real-time PCR, we demonstrated that RSF-1 expression could be detected in the majority of OSCC cases, and the levels were significantly higher in OSCC cells than in their normal counterparts. Moreover, expression levels of RSF-1 significantly correlated with the presence of angiolymphatic invasion, abnormal mitoses, metastasis, tumor recurrence, and advanced stage disease at presentation. Univariate and multivariate analyses showed a significant association of RSF-1 overexpression and worse overall survival in OSCC patients. RSF-1 knockdown remarkably decreased cellular proliferation and induced apoptosis in OSCC cells with high RSF-1 expression levels, but not in those without. Taken together, our results suggest that RSF-1 up-regulation is associated with several clinicopathological features of disease aggressiveness in OSCC patients, and RSF-1 plays an important role in maintaining cellular growth and survival in OSCC.
Collapse
Affiliation(s)
- Fu-Min Fang
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Foundation Medical Center, Tainan, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Tsong Lai
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - I-Wen Chiu
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
| | - Tian-Li Wang
- Department of Pathology, Oncology, Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Marlyand
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ie-Ming Shih
- Department of Pathology, Oncology, Gynecology/Obstetrics, Johns Hopkins Medical Institutions, Baltimore, Marlyand
| | - Jim Jinn-Chyuan Sheu
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
5
|
Qiu P, Wheater MK, Qiu Y, Sosne G. Thymosin beta4 inhibits TNF-alpha-induced NF-kappaB activation, IL-8 expression, and the sensitizing effects by its partners PINCH-1 and ILK. FASEB J 2011; 25:1815-26. [PMID: 21343177 DOI: 10.1096/fj.10-167940] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mechanisms by which thymosin β 4 (Tβ(4)) regulates the inflammatory response to injury are poorly understood. Previously, we demonstrated that ectopic Tβ(4) treatment inhibits injury-induced proinflammatory cytokine and chemokine production. We have also shown that Tβ(4) suppresses TNF-α-mediated NF-κB activation. Herein, we present novel evidence that Tβ(4) directly targets the NF-κB RelA/p65 subunit. We find that enforced expression of Tβ(4) interferes with TNF-α-mediated NF-κB activation, as well as downstream IL-8 gene transcription. These activities are independent of the G-actin-binding properties of Tβ(4). Tβ(4) blocks RelA/p65 nuclear translocation and targeting to the cognate κB site in the proximal region of the IL-8 gene promoter. Tβ(4) also inhibits the sensitizing effects of its intracellular binding partners, PINCH-1 and ILK, on NF-κB activity after TNF-α stimulation. The identification of a functional regulatory role by Tβ(4) and the focal adhesion proteins PINCH-1 and ILK on NF-κB activity in this study opens a new window for scientific exploration of how Tβ(4) modulates inflammation. In addition, the results of this study serve as a foundation for developing Tβ(4) as a new anti-inflammatory therapy.
Collapse
Affiliation(s)
- Ping Qiu
- Department of Ophthalmology, Kresge Eye Institute, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
6
|
Malonia SK, Sinha S, Lakshminarasimhan P, Singh K, Jalota-Badhwar A, Rampalli S, Kaul-Ghanekar R, Chattopadhyay S. Gene regulation by SMAR1: Role in cellular homeostasis and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:1-12. [PMID: 20709157 DOI: 10.1016/j.bbcan.2010.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 12/22/2022]
Abstract
Changes in the composition of nuclear matrix associated proteins contribute to alterations in nuclear structure, one of the major phenotypes of malignant cancer cells. The malignancy-induced changes in this structure lead to alterations in chromatin folding, the fidelity of genome replication and gene expression programs. The nuclear matrix forms a scaffold upon which the chromatin is organized into periodic loop domains called matrix attachment regions (MAR) by binding to various MAR binding proteins (MARBPs). Aberrant expression of MARBPs modulates the chromatin organization and disrupt transcriptional network that leads to oncogenesis. Dysregulation of nuclear matrix associated MARBPs has been reported in different types of cancers. Some of these proteins have tumor specific expression and are therefore considered as promising diagnostic or prognostic markers in few cancers. SMAR1 (scaffold/matrix attachment region binding protein 1), is one such nuclear matrix associated protein whose expression is drastically reduced in higher grades of breast cancer. SMAR1 gene is located on human chromosome 16q24.3 locus, the loss of heterozygosity (LOH) of which has been reported in several types of cancers. This review elaborates on the multiple roles of nuclear matrix associated protein SMAR1 in regulating various cellular target genes involved in cell growth, apoptosis and tumorigenesis.
Collapse
|
7
|
Choi JH, Sheu JJC, Guan B, Jinawath N, Markowski P, Wang TL, Shih IM. Functional analysis of 11q13.5 amplicon identifies Rsf-1 (HBXAP) as a gene involved in paclitaxel resistance in ovarian cancer. Cancer Res 2009; 69:1407-15. [PMID: 19190325 DOI: 10.1158/0008-5472.can-08-3602] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The chromosome 11q13.5 locus is frequently amplified in several types of human cancer. We have previously shown that 11q13.5 amplification was associated with significantly shorter overall survival in ovarian cancer patients, but the molecular mechanisms of how amplification of this locus contributes to disease aggressiveness remain unclear. Because ovarian cancer mortality is primarily related to resistance of chemotherapeutic agents, we screened the top six candidate genes within this amplicon for their contribution to drug resistance. Rsf-1 (also known as HBXAP) was found to be the only gene in which gene knockdown sensitized tumor cells to paclitaxel. Rsf-1 has been known to interact with hSNF2H to form an ISWI chromatin remodeling complex. We found that Rsf-1 was up-regulated in paclitaxel-resistant ovarian cancer cell lines, and Rsf-1 immunoreactivity in primary ovarian carcinoma tissues correlated with in vitro paclitaxel resistance. Ectopic expression of Rsf-1 significantly enhanced paclitaxel resistance in ovarian cancer cells. Down-regulation of hSNF2H or disruption of hSNF2H and Rsf-1 interaction enhanced paclitaxel sensitivity in tumor cells with Rsf-1 up-regulation. Rsf-1 expression altered expression in several genes and activated certain signaling pathways that may contribute to drug resistance. In conclusion, our results suggest that Rsf-1 is the major gene within the 11q13.5 amplicon that contributes to paclitaxel resistance, and the formation of the Rsf-1/hSNF2H complex is required for inducing this phenotype.
Collapse
Affiliation(s)
- Jung Hye Choi
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Chen L, Xuan J, Wang C, Shih IM, Wang Y, Zhang Z, Hoffman E, Clarke R. Knowledge-guided multi-scale independent component analysis for biomarker identification. BMC Bioinformatics 2008; 9:416. [PMID: 18837990 PMCID: PMC2576264 DOI: 10.1186/1471-2105-9-416] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 10/06/2008] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Many statistical methods have been proposed to identify disease biomarkers from gene expression profiles. However, from gene expression profile data alone, statistical methods often fail to identify biologically meaningful biomarkers related to a specific disease under study. In this paper, we develop a novel strategy, namely knowledge-guided multi-scale independent component analysis (ICA), to first infer regulatory signals and then identify biologically relevant biomarkers from microarray data. RESULTS Since gene expression levels reflect the joint effect of several underlying biological functions, disease-specific biomarkers may be involved in several distinct biological functions. To identify disease-specific biomarkers that provide unique mechanistic insights, a meta-data "knowledge gene pool" (KGP) is first constructed from multiple data sources to provide important information on the likely functions (such as gene ontology information) and regulatory events (such as promoter responsive elements) associated with potential genes of interest. The gene expression and biological meta data associated with the members of the KGP can then be used to guide subsequent analysis. ICA is then applied to multi-scale gene clusters to reveal regulatory modes reflecting the underlying biological mechanisms. Finally disease-specific biomarkers are extracted by their weighted connectivity scores associated with the extracted regulatory modes. A statistical significance test is used to evaluate the significance of transcription factor enrichment for the extracted gene set based on motif information. We applied the proposed method to yeast cell cycle microarray data and Rsf-1-induced ovarian cancer microarray data. The results show that our knowledge-guided ICA approach can extract biologically meaningful regulatory modes and outperform several baseline methods for biomarker identification. CONCLUSION We have proposed a novel method, namely knowledge-guided multi-scale ICA, to identify disease-specific biomarkers. The goal is to infer knowledge-relevant regulatory signals and then identify corresponding biomarkers through a multi-scale strategy. The approach has been successfully applied to two expression profiling experiments to demonstrate its improved performance in extracting biologically meaningful and disease-related biomarkers. More importantly, the proposed approach shows promising results to infer novel biomarkers for ovarian cancer and extend current knowledge.
Collapse
Affiliation(s)
- Li Chen
- Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sheu JJC, Choi JH, Yildiz I, Tsai FJ, Shaul Y, Wang TL, Shih IM. The roles of human sucrose nonfermenting protein 2 homologue in the tumor-promoting functions of Rsf-1. Cancer Res 2008; 68:4050-7. [PMID: 18519663 DOI: 10.1158/0008-5472.can-07-3240] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rsf-1 interacts with human sucrose nonfermenting protein 2 homologue (hSNF2H) to form a chromatin remodeling complex that participates in several biological processes. We have previously shown that Rsf-1 gene amplification was associated with the most aggressive type of ovarian cancer and cancer cells with Rsf-1 overexpression depended on Rsf-1 to survive. In this report, we determine if formation of the Rsf-1/hSNF2H complex could be one of the mechanisms contributing to tumor cell survival and growth in ovarian carcinomas. Based on immunohistochemistry, we found that Rsf-1 and hSNF2H were co-upregulated in ovarian cancer tissues. Ectopic expression of Rsf-1 in SKOV3 ovarian cancer cells with undetectable endogenous Rsf-1 expression enhanced hSNF2H protein levels and promoted SKOV3 tumor growth in a mouse xenograft model. Our studies also indicated that induction of Rsf-1 expression affected the molecular partnership of hSNF2H and translocated hSNF2H into nuclei where it colocalized with Rsf-1. Furthermore, analysis of Rsf-1 deletion mutants showed that the Rsf-D4 fragment contained the hSNF2H binding site based on coimmunoprecipitation and in vitro competition assays. As compared with other truncated mutants, expression of Rsf-D4 resulted in remarkable growth inhibition in ovarian cancer cells with Rsf-1 gene amplification and overexpression, but not in those without detectable Rsf-1 expression. The above findings suggest that interaction between Rsf-1 and hSNF2H may define a survival signal in those tumors overexpressing Rsf-1.
Collapse
Affiliation(s)
- Jim Jinn-Chyuan Sheu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Tagashira H, Shimotori T, Sakamoto N, Katahira M, Miyanoiri Y, Yamamoto T, Mitsunaga-Nakatsubo K, Shimada H, Kusunoki S, Akasaka K. Unichrom, a Novel Nuclear Matrix Protein, Binds to theArsInsulator and Canonical MARs. Zoolog Sci 2006; 23:9-21. [PMID: 16547401 DOI: 10.2108/zsj.23.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Eukaryotic genomic DNA is organized into loop structures by attachments to the nuclear matrix. These attachments to the nuclear matrix have been supposed to form the boundaries of chromosomal DNA. Insulators or boundary elements are defined by two characteristics: they interrupt promoter-enhancer communications when inserted between them, and they suppress the silencing of transgenes stably integrated into inactive chromosomal domains. We recently identified an insulator element in the upstream region of the sea urchin arylsulfatase (HpArs) gene that shows both enhancer blocking and suppression of position effects. Here, we report that Unichrom, originally identified by its G-stretch DNA binding capability, is a nuclear matrix protein that binds to the Ars insulator and canonical nuclear matrix attachment regions (MARs). We also show that Unichrom recognizes the minor groove of the AT-rich region within the Ars insulator, which may have a base-unpairing property, as well as the G-stretch DNA. Furthermore, Unichrom selectively interacts with poly(dG).poly(dC), poly(dA).poly(dT) and poly(dAT).poly(dAT), but not with poly(dGC).poly(dGC). Unichrom also shows high affinity for single-stranded G- and C-stretches. We discuss the DNA binding motif of Unichrom and the function of Unichrom in the nuclear matrix.
Collapse
Affiliation(s)
- Hideki Tagashira
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Saltman LH, Javed A, Ribadeneyra J, Hussain S, Young DW, Osdoby P, Amcheslavsky A, van Wijnen AJ, Stein JL, Stein GS, Lian JB, Bar-Shavit Z. Organization of transcriptional regulatory machinery in osteoclast nuclei: compartmentalization of Runx1. J Cell Physiol 2005; 204:871-80. [PMID: 15828028 DOI: 10.1002/jcp.20329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The osteoclast is a highly polarized multinucleated cell that resorbs bone. Using high resolution immunofluorescence microscopy, we demonstrated that all nuclei of an osteoclast are transcriptionally active. Each nucleus within the osteoclast contains punctately organized microenvironments where regulatory complexes that support transcriptional and post-transcriptional control reside. Functional equivalency of osteoclast nuclei is reflected by similar representation of regulatory proteins that support ribosomal RNA synthesis (nucleolin), mRNA transcription (RNA polymerase II, bromouridine triphosphate), processing of gene transcripts (SC35), signal transduction (NF-kappaB), and phenotypic gene expression (Runx1). Our results establish that gene regulatory machinery is architecturally associated and compartmentalized within intranuclear microenvironments of the multiple nuclei of osteoclasts to support physiologically responsive modifications in cellular structural and functional properties.
Collapse
Affiliation(s)
- Laura H Saltman
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|