1
|
Costa FP, Wiedenmann B, Schöll E, Tuszynski J. Emerging cancer therapies: targeting physiological networks and cellular bioelectrical differences with non-thermal systemic electromagnetic fields in the human body - a comprehensive review. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1483401. [PMID: 39720338 PMCID: PMC11666389 DOI: 10.3389/fnetp.2024.1483401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
A steadily increasing number of publications support the concept of physiological networks, and how cellular bioelectrical properties drive cell proliferation and cell synchronization. All cells, especially cancer cells, are known to possess characteristic electrical properties critical for physiological behavior, with major differences between normal and cancer cell counterparts. This opportunity can be explored as a novel treatment modality in Oncology. Cancer cells exhibit autonomous oscillations, deviating from normal rhythms. In this context, a shift from a static view of cellular processes is required for a better understanding of the dynamic connections between cellular metabolism, gene expression, cell signaling and membrane polarization as states in constant flux in realistic human models. In oncology, radiofrequency electromagnetic fields have produced sustained responses and improved quality of life in cancer patients with minimal side effects. This review aims to show how non-thermal systemic radiofrequency electromagnetic fields leads to promising therapeutic responses at cellular and tissue levels in humans, supporting this newly emerging cancer treatment modality with early favorable clinical experience specifically in advanced cancer.
Collapse
Affiliation(s)
| | | | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | - Jack Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
2
|
Fujikawa Y, Kawai H, Suzuki T, Kamiya H. Visualization of oxidized guanine nucleotides accumulation in living cells with split MutT. Nucleic Acids Res 2024; 52:6532-6542. [PMID: 38738661 PMCID: PMC11194108 DOI: 10.1093/nar/gkae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/14/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Cancer cells produce vast quantities of reactive oxygen species, leading to the accumulation of toxic nucleotides as 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). The human MTH1 protein catalyzes the hydrolysis of 8-oxo-dGTP, and cancer cells are dependent on MTH1 for their survival. MTH1 inhibitors are possible candidates for a class of anticancer drugs; however, a reliable screening system using live cells has not been developed. Here we report a visualization method for 8-oxo-dGTP and its related nucleotides in living cells. Escherichia coli MutT, a functional homologue of MTH1, is divided into the N-terminal (1-95) and C-terminal (96-129) parts (Mu95 and 96tT, respectively). Mu95 and 96tT were fused to Ash (assembly helper tag) and hAG (Azami Green), respectively, to visualize the nucleotides as fluorescent foci formed upon the Ash-hAG association. The foci were highly increased when human cells expressing Ash-Mu95 and hAG-96tT were treated with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-dGTP. The foci formation by 8-oxo-dG(TP) was strikingly enhanced by the MTH1 knockdown. Moreover, known MTH1 inhibitors and oxidizing reagents also increased foci. This is the first system that visualizes damaged nucleotides in living cells, provides an excellent detection method for the oxidized nucleotides and oxidative stress, and enables high throughput screening for MTH1 inhibitors.
Collapse
Affiliation(s)
- Yoshihiro Fujikawa
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hidehiko Kawai
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tetsuya Suzuki
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
3
|
Siani A, Infante-Teixeira L, d'Arcy R, Roberts IV, El Mohtadi F, Donno R, Tirelli N. Polysulfide nanoparticles inhibit fibroblast-to-myofibroblast transition via extracellular ROS scavenging and have potential anti-fibrotic properties. BIOMATERIALS ADVANCES 2023; 153:213537. [PMID: 37406516 DOI: 10.1016/j.bioadv.2023.213537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
This paper is about the effects of reactive oxygen species (ROS) - and of their nanoparticle-mediated extracellular removal - in the TGF-β1-induced differentiation of fibroblasts (human dermal fibroblasts - HDFa) to more contractile myofibroblasts, and in the maintenance of this phenotype. Here, poly(propylene sulfide) (PPS) nanoparticles have been employed on 2D and 3D in vitro models, showing extremely low toxicity and undergoing negligible internalization, thereby ensuring an extracellular-only action. Firstly, PPS nanoparticles abrogated ROS-mediated downstream molecular events such as glutathione oxidation, NF-κB activation, and heme oxidase-1 (HMOX) overexpression. Secondly, PPS nanoparticles were also capable to inhibit, prevent and reverse the TGF-β1-induced upregulation of key biomechanical elements, such as ED-a fibronectin (EF-A FN) and alpha-smooth muscle actin (α-SMA), respectively markers of protomyofibroblastic and of myofibroblastic differentiation. We also confirmed that ROS alone are ineffective promoters of the myofibroblastic transition, although their presence contributes to its stabilization. Finally, the particles also countered TGF-β1-induced matrix- and tissue-level phenomena, e.g., the upregulation of collagen type 1, the development of aberrant collagen type 1/3 ratios and the contracture of HDFa 3D-seeded fibrin constructs. In short, experimental data at molecular, cellular and tissue levels show a significant potential in the use of PPS nanoparticles as anti-fibrotic agents.
Collapse
Affiliation(s)
- Alessandro Siani
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK
| | - Lorena Infante-Teixeira
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Richard d'Arcy
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK; Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Iwan V Roberts
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK
| | - Farah El Mohtadi
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Sciences, Stopford Building, The University of Manchester, Manchester M13 9PL, UK; Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
4
|
Kuhn E, Natacci F, Corbo M, Pisani L, Ferrero S, Bulfamante G, Gambini D. The Contribution of Oxidative Stress to NF1-Altered Tumors. Antioxidants (Basel) 2023; 12:1557. [PMID: 37627552 PMCID: PMC10451967 DOI: 10.3390/antiox12081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The neurofibromatosis-1 gene (NF1) was initially characterized because its germline mutation is responsible for an inherited syndromic disease predisposing tumor development, in particular neurofibromas but also various malignancies. Recently, large-scale tumor sequencing efforts have demonstrated NF1 as one of the most frequently mutated genes in human cancer, being mutated in approximately 5-10% of all tumors, especially in malignant peripheral nerve sheath tumors and different skin tumors. NF1 acts as a tumor suppressor gene that encodes neurofibromin, a large protein that controls neoplastic transformation through several molecular mechanisms. On the other hand, neurofibromin loss due to NF1 biallelic inactivation induces tumorigenic hyperactivation of Ras and mTOR signaling pathways. Moreover, neurofibromin controls actin cytoskeleton structure and the metaphase-anaphase transition. Consequently, neurofibromin deficiency favors cell mobility and proliferation as well as chromosomal instability and aneuploidy, respectively. Growing evidence supports the role of oxidative stress in NF1-related tumorigenesis. Neurofibromin loss induces oxidative stress both directly and through Ras and mTOR signaling activation. Notably, innovative therapeutic approaches explore drug combinations that further increase reactive oxygen species to boost the oxidative unbalance of NF1-altered cancer cells. In our paper, we review NF1-related tumors and their pathogenesis, highlighting the twofold contribution of oxidative stress, both tumorigenic and therapeutic.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Natacci
- Medical Genetics Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Human Pathology and Molecular Pathology, TOMA Advanced Biomedical Assays S.p.A., 21052 Busto Arsizio, Italy
| | - Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| |
Collapse
|
5
|
Vitamin C Deficiency Reduces Neurogenesis and Proliferation in the SVZ and Lateral Ventricle Extensions of the Young Guinea Pig Brain. Antioxidants (Basel) 2022; 11:antiox11102030. [PMID: 36290753 PMCID: PMC9598632 DOI: 10.3390/antiox11102030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 12/04/2022] Open
Abstract
Although scurvy, the severe form of vitamin C deficiency, has been almost eradicated, the prevalence of subclinical vitamin C deficiency is much higher than previously estimated and its impact on human health might not be fully understood. Vitamin C is an essential molecule, especially in the central nervous system where it performs numerous, varied and critical functions, including modulation of neurogenesis and neuronal differentiation. Although it was originally considered to occur only in the embryonic brain, it is now widely accepted that neurogenesis also takes place in the adult brain. The subventricular zone (SVZ) is the neurogenic niche where the largest number of new neurons are born; however, the effect of vitamin C deficiency on neurogenesis in this key region of the adult brain is unknown. Therefore, through BrdU labeling, immunohistochemistry, confocal microscopy and transmission electron microscopy, we analyzed the proliferation and cellular composition of the SVZ and the lateral ventricle (LVE) of adult guinea pigs exposed to a vitamin-C-deficient diet for 14 and 21 days. We found that neuroblasts in the SVZ and LVE were progressively and significantly decreased as the days under vitamin C deficiency elapsed. The neuroblasts in the SVZ and LVE decreased by about 50% in animals with 21 days of deficiency; this was correlated with a reduction in BrdU positive cells in the SVZ and LVE. In addition, the reduction in neuroblasts was not restricted to a particular rostro–caudal area, but was observed throughout the LVE. We also found that vitamin C deficiency altered cellular morphology at the ultrastructural level, especially the cellular and nuclear morphology of ependymal cells of the LVE. Therefore, vitamin C is essential for the maintenance of the SVZ cell populations required for normal activity of the SVZ neurogenic niche in the adult guinea pig brain. Based on our results from the guinea pig brain, we postulate that vitamin C deficiency could also affect neurogenesis in the human brain.
Collapse
|
6
|
Al Khamici H, Sanchez VC, Yan H, Cataisson C, Michalowski AM, Yang HH, Li L, Lee MP, Huang J, Yuspa SH. The oxidoreductase CLIC4 is required to maintain mitochondrial function and resistance to exogenous oxidants in breast cancer cells. J Biol Chem 2022; 298:102275. [PMID: 35863434 PMCID: PMC9418444 DOI: 10.1016/j.jbc.2022.102275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023] Open
Abstract
The chloride intracellular channel-4 (CLIC4) is one of the six highly conserved proteins in the CLIC family that share high structural homology with GST-omega in the GST superfamily. While CLIC4 is a multifunctional protein that resides in multiple cellular compartments, the discovery of its enzymatic glutaredoxin-like activity in vitro suggested that it could function as an antioxidant. Here, we found that deleting CLIC4 from murine 6DT1 breast tumor cells using CRISPR enhanced the accumulation of reactive oxygen species (ROS) and sensitized cells to apoptosis in response to H2O2 as a ROS-inducing agent. In intact cells, H2O2 increased the expression of both CLIC4 mRNA and protein. In addition, increased superoxide production in 6DT1 cells lacking CLIC4 was associated with mitochondrial hyperactivity including increased mitochondrial membrane potential and mitochondrial organelle enlargement. In the absence of CLIC4, however, H2O2-induced apoptosis was associated with low expression and degradation of the antiapoptotic mitochondrial protein Bcl2 and the negative regulator of mitochondrial ROS, UCP2. Furthermore, transcriptomic profiling of H2O2-treated control and CLIC4-null cells revealed upregulation of genes associated with ROS-induced apoptosis and downregulation of genes that sustain mitochondrial functions. Accordingly, tumors that formed from transplantation of CLIC4-deficient 6DT1 cells were highly necrotic. These results highlight a critical role for CLIC4 in maintaining redox-homeostasis and mitochondrial functions in 6DT1 cells. Our findings also raise the possibility of targeting CLIC4 to increase cancer cell sensitivity to chemotherapeutic drugs that are based on elevating ROS in cancer cells.
Collapse
Affiliation(s)
- Heba Al Khamici
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Vanesa C Sanchez
- Office of Science, Division of Nonclinical Science, Center for Tobacco Products, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Hualong Yan
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Aleksandra M Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Luowei Li
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Center, National Institutes of Health. Bethesda, Maryland, USA.
| |
Collapse
|
7
|
Differential biological responses of adherent and non-adherent (cancer and non-cancerous) cells to variable extremely low frequency magnetic fields. Sci Rep 2022; 12:14225. [PMID: 35987807 PMCID: PMC9392794 DOI: 10.1038/s41598-022-18210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Extremely low-frequency electromagnetic field (ELF-EMF) induces biological effects on different cells through various signaling pathways. To study the impact of the ELF-EMF on living cells under an optimal physiological condition, we have designed and constructed a novel system that eliminates several limitations of other ELF-EMF systems. Apoptosis and cell number were assessed by flow cytometry and the Trypan Blue dye exclusion method, respectively. In vitro cell survival was evaluated by colony formation assay. The distribution of cells in the cell cycle, intracellular ROS level, and autophagy were analyzed by flow cytometer. Suspended cells differentiation was assessed by phagocytosis of latex particles and NBT reduction assay. Our results showed that response to the exposure to ELF-EMF is specific and depends on the biological state of the cell. For DU145, HUVEC, and K562 cell lines the optimum results were obtained at the frequency of 0.01 Hz, while for MDA-MB-231, the optimum response was obtained at 1 Hz. Long-term exposure to ELF-EMF in adherent cells effectively inhibited proliferation by arresting the cell population at the cell cycle G2/M phase and increased intracellular ROS level, leading to morphological changes and cell death. The K562 cells exposed to the ELF-EMF differentiate via induction of autophagy and decreasing the cell number. Our novel ELF-EMF instrument could change morphological and cell behaviors, including proliferation, differentiation, and cell death.
Collapse
|
8
|
Kim TH, Park JH, Park J, Son DM, Baek JY, Jang HJ, Jung WK, Byun Y, Kim SK, Park SK. Stereospecific inhibition of AMPK by (R)-crizotinib induced changes to the morphology and properties of cancer and cancer stem cell-like cells. Eur J Pharmacol 2021; 911:174525. [PMID: 34582848 DOI: 10.1016/j.ejphar.2021.174525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023]
Abstract
Crizotinib is used in the clinic for treating patients with ALK- or ROS1-positive non-small-cell lung carcinoma. The objective of the present study was to determine if crizotinib enantiomers could induce changes to the properties of cancer and cancer stem cell (CSC)-like cells at a high concentration (∼ 3 μM). While (R)-crizotinib induced changes in morphologies or sizes of cells, (S)-crizotinib did not. Pretreatment with (R)-crizotinib suppressed the proliferation of cancer or CSC-like cells in vitro and tumor growth in vivo. In vivo administration of (R)-crizotinib inhibited the growth of tumors formed from CSC-like cells by 72%. %. Along with the morphological changes induced by (R)-crizotinib, the expression levels of CD44 (NCI-H23 and HCT-15), ALDH1 (NCI-H460), nanog (PC-3), and Oct-4A (CSC-like cells), which appear to be specific marker proteins, were greatly changed, suggesting that changes in cellular properties accompanied the morphological changes in the cells. The expression levels of Snail, Slug, and E-cadherin were also greatly altered by (R)-crizotinib. Among several signal transduction molecules examined, AMPK phosphorylation appeared to be selectively inhibited by (R)-crizotinib. BML-275 (an AMPK inhibitor) and AMPKα2 siRNA efficiently induced morphological changes to all types of cells examined, suggesting that (R)-crizotinib might cause losses of characteristics of cancer or CSCs via inhibition of AMPK. These results indicate that (R)-crizotinib might be an effective anticancer agent that can cause alteration in cancer cell properties.
Collapse
Affiliation(s)
- Tae Hyun Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jong Hyeok Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Jooyeon Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Dong Min Son
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Ji-Young Baek
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Hee Jun Jang
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Won Ki Jung
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Korea University, Sejong, Republic of Korea; Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Movahedi F, Gu W, Soares CP, Xu ZP. Encapsulating Anti-Parasite Benzimidazole Drugs into Lipid-Coated Calcium Phosphate Nanoparticles to Efficiently Induce Skin Cancer Cell Apoptosis. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.693837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Benzimidazole (BMZ) family of anti-worm drugs has been now repurposed as anti-cancer drugs. However, offering a general reformulation method for these drugs is essential due to their hydrophobicity and low aqueous solubility. In this work, we developed a general approach to load typical BMZ drugs as tiny nanocrystals within lipid-coated calcium phosphate (LCP) nanoparticles. BMZ drug-loaded LCP nanoparticles increased their solubility in PBS by 100–200% and significantly enhanced the anti-cancer efficacy in the treatment of B16F0 melanoma cells. These drug-LCP nanoparticles induced much more cancer cell apoptosis, generated much more reactive oxygen species (ROS) and inhibited Bcl-2 expression of cancer cells. Moreover, BMZ drug-loaded LCP nanoparticles caused morphological change and extension disruption of cancer cells, and significantly reduced migration activity, representing high possibility for inhibition of tumor dissemination and metastasis. Very advantageously, BMZ drug-loaded LCP nanoparticles did not show any obvious toxicity, Bcl-2 inhibition and morphological changes in HEK293T healthy cells. In conclusion, BMZ drug-incorporated LCP nanoformulations may be a valuable nanomedicine that is able to inhibit primary tumors and prevent tumor dissemination with minimum side effects on healthy cells and tissues.
Collapse
|
10
|
Jung EJ, Paramanantham A, Kim HJ, Shin SC, Kim GS, Jung JM, Ryu CH, Hong SC, Chung KH, Kim CW, Lee WS. Artemisia annua L. Polyphenol-Induced Cell Death Is ROS-Independently Enhanced by Inhibition of JNK in HCT116 Colorectal Cancer Cells. Int J Mol Sci 2021; 22:1366. [PMID: 33573023 PMCID: PMC7866371 DOI: 10.3390/ijms22031366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is activated by chemotherapeutic reagents including natural plant polyphenols, and cell fate is determined by activated phospho-JNK as survival or death depending on stimuli and cell types. The purpose of this study was to elucidate the role of JNK on the anticancer effects of the Korean plant Artemisia annua L. (pKAL) polyphenols in p53 wild-type HCT116 human colorectal cancer cells. Cell morphology, protein expression levels, apoptosis/necrosis, reactive oxygen species (ROS), acidic vesicles, and granularity/DNA content were analyzed by phase-contrast microscopy; Western blot; and flow cytometry of annexin V/propidium iodide (PI)-, dichlorofluorescein (DCF)-, acridine orange (AO)-, and side scatter pulse height (SSC-H)/DNA content (PI)-stained cells. The results showed that pKAL induced morphological changes and necrosis or late apoptosis, which were associated with loss of plasma membrane/Golgi integrity, increased acidic vesicles and intracellular granularity, and decreased DNA content through downregulation of protein kinase B (Akt)/β-catenin/cyclophilin A/Golgi matrix protein 130 (GM130) and upregulation of phosphorylation of H2AX at Ser-139 (γ-H2AX)/p53/p21/Bak cleavage/phospho-JNK/p62/microtubule-associated protein 1 light chain 3B (LC3B)-I. Moreover, JNK inhibition by SP600125 enhanced ROS-independently pKAL-induced cell death through downregulation of p62 and upregulation of p53/p21/Bak cleavage despite a reduced state of DNA damage marker γ-H2AX. These findings indicate that phospho-JNK activated by pKAL inhibits p53-dependent cell death signaling and enhances DNA damage signaling, but cell fate is determined by phospho-JNK as survival rather than death in p53 wild-type HCT116 cells.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Anjugam Paramanantham
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea;
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Chung Ho Ryu
- Department of Food Technology, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Soon Chan Hong
- Department of Surgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Ky Hyun Chung
- Department of Urology, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Choong Won Kim
- Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52727, Korea;
| |
Collapse
|
11
|
Niu F, Li H, Xu X, Sun L, Gan N, Wang A. Ursodeoxycholic acid protects against lung injury induced by fat embolism syndrome. J Cell Mol Med 2020; 24:14626-14632. [PMID: 33145933 PMCID: PMC7754031 DOI: 10.1111/jcmm.15985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 09/03/2020] [Accepted: 09/29/2020] [Indexed: 11/27/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life‐threatening disease with a high mortality rate, which was a common complication of fat embolism syndrome (FES). Ursodeoxycholic acid (UDCA) has been reported to exert potent anti‐inflammatory effects under various conditions. In vivo, perinephric fat was injected via tail vein to establish a rat FES model, the anti‐inflammatory effects of UDCA on FES‐induced lung injury were investigated through histological examination, ELISA, qRT‐PCR, Western blot and immunofluorescence. In vitro, human lung microvascular endothelial cells (HPMECs) were employed to understand the protective effects of UDCA. The extent of ALI/ARDS was evaluated and validated by reduced PaO2/FiO2 ratios, increased lung wet/dry (W/D) ratios and impaired alveolar‐capillary barrier, up‐regulation of ALI‐related proteins in lung tissues (including myeloperoxidase [MPO], vascular cell adhesion molecule 1 [VCAM‐1], intercellular cell adhesion molecule‐1 [ICAM‐1]), elevated protein concentration and increased proinflammatory cytokines levels (TNF‐α and IL‐1β) in bronchoalveolar lavage fluid (BALF). Pre‐treatment with UDCA remarkably alleviated these pathologic and biochemical changes of FES‐induced ALI/ARDS; our data demonstrated that pre‐treatment with UDCA attenuated the pathologic and biochemical changes of FES‐induced ARDS, which provided a possible preventive therapy for lung injury caused by FES.
Collapse
Affiliation(s)
- Fangfang Niu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huafei Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.,School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaotao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lingling Sun
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ning Gan
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Identification of Two Kinase Inhibitors with Synergistic Toxicity with Low-Dose Hydrogen Peroxide in Colorectal Cancer Cells in vitro. Cancers (Basel) 2020; 12:cancers12010122. [PMID: 31906582 PMCID: PMC7016670 DOI: 10.3390/cancers12010122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma is among the most common types of cancers. With this disease, diffuse scattering in the abdominal area (peritoneal carcinosis) often occurs before diagnosis, making surgical removal of the entire malignant tissue impossible due to a large number of tumor nodules. Previous treatment options include radiation and its combination with intraperitoneal heat-induced chemotherapy (HIPEC). Both options have strong side effects and are often poor in therapeutic efficacy. Tumor cells often grow and proliferate dysregulated, with enzymes of the protein kinase family often playing a crucial role. The present study investigated whether a combination of protein kinase inhibitors and low-dose induction of oxidative stress (using hydrogen peroxide, H2O2) has an additive cytotoxic effect on murine, colorectal tumor cells (CT26). Protein kinase inhibitors from a library of 80 substances were used to investigate colorectal cancer cells for their activity, morphology, and immunogenicity (immunogenic cancer cell death, ICD) upon mono or combination. Toxic compounds identified in 2D cultures were confirmed in 3D cultures, and additive cytotoxicity was identified for the substances lavendustin A, GF109203X, and rapamycin. Toxicity was concomitant with cell cycle arrest, but except HMGB1, no increased expression of immunogenic markers was identified with the combination treatment. The results were validated for GF109203X and rapamycin but not lavendustin A in the 3D model of different colorectal (HT29, SW480) and pancreatic cancer cell lines (MiaPaca, Panc01). In conclusion, our in vitro data suggest that combining oxidative stress with chemotherapy would be conceivable to enhance antitumor efficacy in HIPEC.
Collapse
|
13
|
Wang X, Li W, Zhang N, Zheng X, Jing Z. Opportunities and challenges of co-targeting epidermal growth factor receptor and autophagy signaling in non-small cell lung cancer. Oncol Lett 2019; 18:499-506. [PMID: 31289521 DOI: 10.3892/ol.2019.10372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are a standard therapy for patients with non-small cell lung cancer (NSCLC) with sensitive mutations. However, acquired resistance emerges following a median of 6-12 months. Several studies demonstrated that EGFR-TKI-induced tumor microenvironment stresses and autophagy are important causes of resistance. The current review summarizes the molecular mechanisms involved in EGFR-mediated regulation of autophagy. The role of autophagy in EGFR-TKI treatment, which may serve a role in protection or cell death, was discussed. Furthermore, co-inhibiting EGFR and autophagy signaling as a rational therapeutic strategy in the treatment of patients with NSCLC was explored.
Collapse
Affiliation(s)
- Xiaoju Wang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Wenxin Li
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Ni Zhang
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Xiaoli Zheng
- Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Zhao Jing
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| |
Collapse
|
14
|
H 2O 2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel) 2019; 8:antiox8050126. [PMID: 31083324 PMCID: PMC6563055 DOI: 10.3390/antiox8050126] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022] Open
Abstract
Thyroid hormone synthesis requires adequate hydrogen peroxide (H2O2) production that is utilized as an oxidative agent during the synthesis of thyroxin (T4) and triiodothyronine (T3). Thyroid H2O2 is generated by a member of the family of NADPH oxidase enzymes (NOX-es), termed dual oxidase 2 (DUOX2). NOX/DUOX enzymes produce reactive oxygen species (ROS) as their unique enzymatic activity in a timely and spatially regulated manner and therefore, are important regulators of diverse physiological processes. By contrast, dysfunctional NOX/DUOX-derived ROS production is associated with pathological conditions. Inappropriate DUOX2-generated H2O2 production results in thyroid hypofunction in rodent models. Recent studies also indicate that ROS improperly released by NOX4, another member of the NOX family, are involved in thyroid carcinogenesis. This review focuses on the current knowledge concerning the redox regulation of thyroid hormonogenesis and cancer development with a specific emphasis on the NOX and DUOX enzymes in these processes.
Collapse
|
15
|
Flórido A, Saraiva N, Cerqueira S, Almeida N, Parsons M, Batinic-Haberle I, Miranda JP, Costa JG, Carrara G, Castro M, Oliveira NG, Fernandes AS. The manganese(III) porphyrin MnTnHex-2-PyP 5+ modulates intracellular ROS and breast cancer cell migration: Impact on doxorubicin-treated cells. Redox Biol 2018; 20:367-378. [PMID: 30408752 PMCID: PMC6222139 DOI: 10.1016/j.redox.2018.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022] Open
Abstract
Manganese(III) porphyrins (MnPs) are superoxide dismutase (SOD) mimics with demonstrated beneficial effects in cancer treatment in combination with chemo- and radiotherapy regimens. Despite the ongoing clinical trials, little is known about the effect of MnPs on metastasis, being therefore essential to understand how MnPs affect this process. In the present work, the impact of the MnP MnTnHex-2-PyP5+ in metastasis-related processes was assessed in breast cancer cells (MCF-7 and MDA-MB-231), alone or in combination with doxorubicin (dox). The co-treatment of cells with non-cytotoxic concentrations of MnP and dox altered intracellular ROS, increasing H2O2. While MnP alone did not modify cell migration, the co-exposure led to a reduction in collective cell migration and chemotaxis. In addition, the MnP reduced the dox-induced increase in random migration of MDA-MB-231 cells. Treatment with either MnP or dox decreased the proteolytic invasion of MDA-MB-231 cells, although the effect was more pronounced upon co-exposure with both compounds. Moreover, to explore the cellular mechanisms underlying the observed effects, cell adhesion, spreading, focal adhesions, and NF-κB activation were also studied. Although differential effects were observed according to the endpoints analysed, overall, the alterations induced by MnP in dox-treated cells were consistent with a therapeutically favorable outcome. MnPs are SOD mimics with potential therapeutic applications in cancer. The impact of an MnP on breast cancer metastasis-related processes was assessed. Treatment with MnP+dox decreased collective cell migration, chemotaxis and invasion. MnP also reduced the dox-induced increase in random migration of MDA-MB-231 cells. Combination of MnP with dox revealed therapeutically favorable effects.
Collapse
Affiliation(s)
- Ana Flórido
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Sara Cerqueira
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Nuno Almeida
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, England, UK
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - João G Costa
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa 1649-003, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, Lisboa 1749-024, Portugal.
| |
Collapse
|
16
|
Titova E, Shagieva G, Ivanova O, Domnina L, Domninskaya M, Strelkova O, Khromova N, Kopnin P, Chernyak B, Skulachev V, Dugina V. Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth. Cell Cycle 2018; 17:1797-1811. [PMID: 29995559 DOI: 10.1080/15384101.2018.1496748] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Mitochondria are important regulators of tumour growth and progression due to their specific role in cancer metabolism and modulation of apoptotic pathways. In this paper we describe that mitochondria-targeted antioxidant SkQ1 designed as a conjugate of decyl-triphenylphosphonium cation (TPP+) with plastoquinone, suppressed the growth of fibrosarcoma HT1080 and rhabdomyosarcoma RD tumour cells in culture and tumour growth of RD in xenograft nude mouse model. Under the same conditions, no detrimental effect of SkQ1 on cell growth of primary human subcutaneous fibroblasts was observed. The tumour growth suppression was shown to be a result of the antioxidant action of low nanomolar concentrations of SkQ1. We have revealed significant prolongation of mitosis induced by SkQ1 in both tumour cell cultures. Prolonged mitosis and apoptosis could be responsible for growth suppression after SkQ1 treatment in RD cells. Growth suppression in HT1080 cells was accompanied by the delay of telophase and cytokinesis, followed by multinuclear cells formation. The effects of SkQ1 on the cell cycle were proved to be at least partially mediated by inactivation of Aurora family kinases. ABBREVIATIONS TPP+: Triphenylphosphonium cation; ROS: Reactive oxygen species; mtROS: Mitochondrial reactive oxygen species; NAC: N-acetyl-L-cysteine; DCFH-DA: Dichlorodihydrofluorescein diacetate; APC: Anaphase promoting complex; ABPs: Actin-binding proteins; DMEM: Dulbecco's modified Eagle media; SDS: sodium dodecyl sulfate; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid.
Collapse
Affiliation(s)
- Ekaterina Titova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Galina Shagieva
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Olga Ivanova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Lidiya Domnina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Maria Domninskaya
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Olga Strelkova
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Natalya Khromova
- b Cancerogenesis Research Institute, Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Pavel Kopnin
- b Cancerogenesis Research Institute, Blokhin Russian Cancer Research Center , Moscow , Russia
| | - Boris Chernyak
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| | - Vladimir Skulachev
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia.,c Faculty of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , Russia
| | - Vera Dugina
- a Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , Russia
| |
Collapse
|
17
|
Kunkemoeller B, Kyriakides TR. Redox Signaling in Diabetic Wound Healing Regulates Extracellular Matrix Deposition. Antioxid Redox Signal 2017; 27:823-838. [PMID: 28699352 PMCID: PMC5647483 DOI: 10.1089/ars.2017.7263] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Impaired wound healing is a major complication of diabetes, and can lead to development of chronic foot ulcers in a significant number of patients. Despite the danger posed by poor healing, very few specific therapies exist, leaving patients at risk of hospitalization, amputation, and further decline in overall health. Recent Advances: Redox signaling is a key regulator of wound healing, especially through its influence on the extracellular matrix (ECM). Normal redox signaling is disrupted in diabetes leading to several pathological mechanisms that alter the balance between reactive oxygen species (ROS) generation and scavenging. Importantly, pathological oxidative stress can alter ECM structure and function. CRITICAL ISSUES There is limited understanding of the specific role of altered redox signaling in the diabetic wound, although there is evidence that ROS are involved in the underlying pathology. FUTURE DIRECTIONS Preclinical studies of antioxidant-based therapies for diabetic wound healing have yielded promising results. Redox-based therapeutics constitute a novel approach for the treatment of wounds in diabetes patients that deserve further investigation. Antioxid. Redox Signal. 27, 823-838.
Collapse
Affiliation(s)
- Britta Kunkemoeller
- 1 Department of Pathology, Yale University School of Medicine , New Haven, Connecticut
- 2 Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine , New Haven, Connecticut
| | - Themis R Kyriakides
- 1 Department of Pathology, Yale University School of Medicine , New Haven, Connecticut
- 2 Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine , New Haven, Connecticut
- 3 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| |
Collapse
|
18
|
Cho MG, Ahn JH, Choi HS, Lee JH. DNA double-strand breaks and Aurora B mislocalization induced by exposure of early mitotic cells to H 2O 2 appear to increase chromatin bridges and resultant cytokinesis failure. Free Radic Biol Med 2017; 108:129-145. [PMID: 28343997 DOI: 10.1016/j.freeradbiomed.2017.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/14/2023]
Abstract
Aneuploidy, an abnormal number of chromosomes that is a hallmark of cancer cells, can arise from tetraploid/binucleated cells through a failure of cytokinesis. Reactive oxygen species (ROS) have been implicated in various diseases, including cancer. However, the nature and role of ROS in cytokinesis progression and related mechanisms has not been clearly elucidated. Here, using time-lapse analysis of asynchronously growing cells and immunocytochemical analyses of synchronized cells, we found that hydrogen peroxide (H2O2) treatment at early mitosis (primarily prometaphase) significantly induced cytokinesis failure. Cytokinesis failure and the resultant formation of binucleated cells containing nucleoplasmic bridges (NPBs) seemed to be caused by increases in DNA double-strand breaks (DSBs) and subsequent unresolved chromatin bridges. We further found that H2O2 induced mislocalization of Aurora B during mitosis. All of these effects were attenuated by pretreatment with N-acetyl-L-cysteine (NAC) or overexpression of Catalase. Surprisingly, the PARP inhibitor PJ34 also reduced H2O2-induced Aurora B mislocalization and binucleated cell formation. Results of parallel experiments with etoposide, a topoisomerase IIα inhibitor that triggers DNA DSBs, suggested that both DNA DSBs and Aurora B mislocalization contribute to chromatin bridge formation. Aurora B mislocalization also appeared to weaken the "abscission checkpoint". Finally, we showed that KRAS-induced binucleated cell formation appeared to be also H2O2-dependent. In conclusion, we propose that a ROS, mainly H2O2 increases binucleation through unresolved chromatin bridges caused by DNA damage and mislocalization of Aurora B, the latter of which appears to augment the effect of DNA damage on chromatin bridge formation.
Collapse
Affiliation(s)
- Min-Guk Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, South Korea; Genomic Instability Research Center, Ajou University School of Medicine, Suwon 443-721, South Korea; Department of Biomedical Science, Graduate School of Ajou university, Suwon 443-721, South Korea.
| | - Ju-Hyun Ahn
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, South Korea; Genomic Instability Research Center, Ajou University School of Medicine, Suwon 443-721, South Korea; Department of Biomedical Science, Graduate School of Ajou university, Suwon 443-721, South Korea.
| | - Hee-Song Choi
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, South Korea; Genomic Instability Research Center, Ajou University School of Medicine, Suwon 443-721, South Korea; Department of Biomedical Science, Graduate School of Ajou university, Suwon 443-721, South Korea.
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, South Korea; Genomic Instability Research Center, Ajou University School of Medicine, Suwon 443-721, South Korea; Department of Biomedical Science, Graduate School of Ajou university, Suwon 443-721, South Korea.
| |
Collapse
|
19
|
Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med 2017; 104:144-164. [PMID: 28088622 DOI: 10.1016/j.freeradbiomed.2017.01.004] [Citation(s) in RCA: 651] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/16/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS), a group of highly reactive ions and molecules, are increasingly being appreciated as powerful signaling molecules involved in the regulation of a variety of biological processes. Indeed, their role is continuously being delineated in a variety of pathophysiological conditions. For instance, cancer cells are shown to have increased ROS levels in comparison to their normal counterparts. This is partly due to an enhanced metabolism and mitochondrial dysfunction in cancer cells. The escalated ROS generation in cancer cells contributes to the biochemical and molecular changes necessary for the tumor initiation, promotion and progression, as well as, tumor resistance to chemotherapy. Therefore, increased ROS in cancer cells may provide a unique opportunity to eliminate cancer cells via elevating ROS to highly toxic levels intracellularly, thereby, activating various ROS-induced cell death pathways, or inhibiting cancer cell resistance to chemotherapy. Such results can be achieved by using agents that either increase ROS generation, or inhibit antioxidant defense, or even a combination of both. In fact, a large variety of anticancer drugs, and some of those currently under clinical trials, effectively kill cancer cells and overcome drug resistance via enhancing ROS generation and/or impeding the antioxidant defense mechanism. This review focuses on our current understanding of the tumor promoting (tumorigenesis, angiogenesis, invasion and metastasis, and chemoresistance) and the tumor suppressive (apoptosis, autophagy, and necroptosis) functions of ROS, and highlights the potential mechanism(s) involved. It also sheds light on a very novel and an actively growing field of ROS-dependent cell death mechanism referred to as ferroptosis.
Collapse
Affiliation(s)
- Sehamuddin Galadari
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE; Al Jalila Foundation Research Centre, P.O. Box 300100, Dubai, UAE.
| | - Anees Rahman
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Siraj Pallichankandy
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| | - Faisal Thayyullathil
- Cell Signaling Laboratory, Department of Biochemistry, College of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
20
|
Park JH, Kim HK, Jung H, Kim KH, Kang MS, Hong JH, Yu BC, Park S, Seo SK, Choi IW, Kim SH, Kim N, Han J, Park SG. NecroX-5 prevents breast cancer metastasis by AKT inhibition via reducing intracellular calcium levels. Int J Oncol 2016; 50:185-192. [PMID: 27922686 DOI: 10.3892/ijo.2016.3789] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/28/2016] [Indexed: 11/06/2022] Open
Abstract
A major goal of breast cancer research is to prevent the molecular events that lead to tumour metastasis. It is well-established that both cytoplasmic and mitochondrial reactive oxygen species (ROS) play important roles in cell migration and metastasis. Accordingly, this study examined the molecular mechanisms of the anti-metastatic effects of NecroX-5, a mitochondrial ROS scavenger. NecroX-5 inhibited lung cancer metastasis by ameliorating migration in a mouse model. In human cancer cells, the inhibition of migration by NecroX-5 is cell type-dependent. We observed that the effect of NecroX-5 correlated with a reduction in mitochondrial ROS, but mitochondrial ROS reduction by MitoQ did not inhibit cell migration. NecroX-5 decreased intracellular calcium concentration by blocking Ca2+ influx, which mediated the inhibition of cell migration, AKT downregulation and the reduction of mitochondrial ROS levels. However, the reduction of mitochondrial ROS was not associated with supressed migration and AKT downregulation. Our study demonstrates the potential of NecroX-5 as an inhibitor of breast cancer metastasis.
Collapse
Affiliation(s)
- Jin-Hee Park
- Department of Microbiology and Immunology, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Hyoung Kyu Kim
- Department of Physiology, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Hana Jung
- Department of Microbiology and Immunology, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Ki Hyang Kim
- Department of Internal Medicine, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Mi Seon Kang
- Department of Pathology, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Jun Hyuk Hong
- Graduate School, Department of Preventive Medicine, Kosin University College of Medicine, Busan 602-702, Republic of Korea
| | - Byeng Chul Yu
- LG Life Science, Ltd., R&D Park, Daejeon 305-380, Republic of Korea
| | - Sungjae Park
- Department of Internal Medicine, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Il Whan Choi
- Department of Microbiology and Immunology, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Soon Ha Kim
- LG Life Science, Ltd., R&D Park, Daejeon 305-380, Republic of Korea
| | - Nari Kim
- Department of Physiology, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Jin Han
- Department of Physiology, INJE University College of Medicine, Busan 614-735, Republic of Korea
| | - Sae Gwang Park
- Department of Microbiology and Immunology, INJE University College of Medicine, Busan 614-735, Republic of Korea
| |
Collapse
|
21
|
Vallabhaneni KC, Hassler MY, Abraham A, Whitt J, Mo YY, Atfi A, Pochampally R. Mesenchymal Stem/Stromal Cells under Stress Increase Osteosarcoma Migration and Apoptosis Resistance via Extracellular Vesicle Mediated Communication. PLoS One 2016; 11:e0166027. [PMID: 27812189 PMCID: PMC5094708 DOI: 10.1371/journal.pone.0166027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Studies have shown that mesenchymal stem/stromal cells (MSCs) from bone marrow are involved in the growth and metastasis of solid tumors but the mechanism remains unclear in osteosarcoma (OS). Previous studies have raised the possibility that OS cells may receive support from associated MSCs in the nutrient deprived core of the tumors through the release of supportive macromolecules and growth factors either in vesicular or non-vesicular forms. In the present study, we used stressed mesenchymal stem cells (SD-MSCs), control MSCs and OS cells to examine the hypothesis that tumor-associated MSCs in nutrient deprived core provide pro-proliferative, anti-apoptotic, and metastatic support to nearby tumor cells. Assays to study of the effects of SD-MSC conditioned media revealed that OS cells maintained proliferation when compared to OS cells grown under serum-starved conditions alone. Furthermore, OS cells in MSCs and SD-MSC conditioned media were significantly resistant to apoptosis and an increased wound healing rate was observed in cells exposed to either conditioned media or EVs from MSCs and SD-MSCs. RT-PCR assays of OS cells incubated with extracellular vesicles (EVs) from SD-MSCs revealed microRNAs that could potentially target metabolism and metastasis associated genes as predicted by in silico algorithms, including monocarboxylate transporters, bone morphogenic receptor type 2, fibroblast growth factor 7, matrix metalloproteinase-1, and focal adhesion kinase-1. Changes in the expression levels of focal adhesion kinase, STK11 were confirmed by quantitative PCR assays. Together, these data indicate a tumor supportive role of MSCs in osteosarcoma growth that is strongly associated with the miRNA content of the EVs released from MSCs under conditions that mimic the nutrient deprived core of solid tumors.
Collapse
Affiliation(s)
- Krishna C. Vallabhaneni
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, United States of America
- Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Meeves-Yoni Hassler
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Anu Abraham
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Jason Whitt
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Yin-Yuan Mo
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, United States of America
- Department of Pharmacology-Toxicology, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Azeddine Atfi
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, United States of America
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, United States of America
| | - Radhika Pochampally
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS, United States of America
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, United States of America
- * E-mail:
| |
Collapse
|
22
|
Bessler WK, Hudson FZ, Zhang H, Harris V, Wang Y, Mund JA, Downing B, Ingram DA, Case J, Fulton DJ, Stansfield BK. Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans. Free Radic Biol Med 2016; 97:212-222. [PMID: 27266634 PMCID: PMC5765860 DOI: 10.1016/j.freeradbiomed.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions.
Collapse
Affiliation(s)
- Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Farlyn Z Hudson
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Hanfang Zhang
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Valerie Harris
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Yusi Wang
- Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Brandon Downing
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Jamie Case
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis 46202, United States; Scripps Clinic Medical Group, Center for Organ and Cell Transplantation, La Jolla, CA 92037, United States
| | - David J Fulton
- Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
23
|
Yue H, Yun Y, Gao R, Li G, Sang N. Winter Polycyclic Aromatic Hydrocarbon-Bound Particulate Matter from Peri-urban North China Promotes Lung Cancer Cell Metastasis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14484-93. [PMID: 26008712 DOI: 10.1021/es506280c] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
On the basis of the close relationship between human exposure to high concentrations of small particulate matter (PM) and increased lung cancer mortality, PM was recently designated as a Group I carcinogen. Considering that PM is highly heterogeneous, the potential health risks of PM promoting tumor metastasis in lung cancer, as well as its chemical characteristics, remain elusive. In the present study, we collected PM2.5 and PM10 in a peri-urban residential site of Taiyuan and determined the concentration and source of polycyclic aromatic hydrocarbons (PAHs). The results indicated that 18 PAHs, ranging from 38.21 to 269.69 ng/m(3) (for PM2.5) and from 44.34 to 340.78 ng/m(3) (for PM10), exhibited seasonal variations, and the PAHs in winter PM mainly originated from coal combustion. We calculated the benzo(a)pyrene-equivalent (BaPeq) and found that the PAH-bound PM in winter exhibited higher carcinogenic risks for humans. Following this result, in vitro bioassays demonstrated that PM2.5 and PM10 induced A549 cell migration and invasion, and the mechanism involved reactive oxygen species (ROS)-mediated epithelial-to-mesenchymal transition (EMT) activation and extracellular matrix (ECM) degradation. Our data indicate the potential risk for winter PAH-bound PM from peri-urban North China promoting lung cancer cell metastasis and reveal a mechanistic basis for treating, ameliorating, or preventing outcomes in polluted environments.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University , Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
24
|
Choi SH, Hong HK, Cho YB, Lee WY, Yoo HY. Identification of Sestrin3 Involved in the In vitro Resistance of Colorectal Cancer Cells to Irinotecan. PLoS One 2015; 10:e0126830. [PMID: 25973791 PMCID: PMC4431826 DOI: 10.1371/journal.pone.0126830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/08/2015] [Indexed: 01/26/2023] Open
Abstract
Irinotecan, an analogue of camptothecin, is frequently used as a single agent or in combination with other anticancer drugs for the treatment of colorectal cancer. However, the drug resistance of tumors is a major obstacle to successful cancer treatment. In this study, we established that cells acquire chronic resistance to irinotecan. We profiled their differential gene expression using microarray. After gene ontology (GO) and KEGG pathway analysis of the microarray data, we specifically investigated whether Sestrin3 could decrease irinotecan resistance. Our results revealed that Sestrin3 enhanced the anticancer effect of irinotecan in vitro in LoVo cells that had acquired resistance to irinotecan. Irinotecan-resistant LoVo cells showed lower reactive oxygen species (ROS) production than their irinotecan-sensitive parental cells. ROS production was increased by Sestrin3 knockdown in irinotecan-resistant LoVo cells. Our results indicate that Sestrin3 might be a good target to develop therapeutics that can help to overcome resistance to irinotecan.
Collapse
Affiliation(s)
- Seung Ho Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Hye Kyung Hong
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong Beom Cho
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea; Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae Yong Yoo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea; Samsung Biomedical Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
25
|
Mustafa EH, Mahmoud HT, Al-Hudhud MY, Abdalla MY, Ahmad IM, Yasin SR, Elkarmi AZ, Tahtamouni LH. 2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells. Asian Pac J Cancer Prev 2015; 16:3213-22. [DOI: 10.7314/apjcp.2015.16.8.3213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
26
|
Maya-Mendoza A, Ostrakova J, Kosar M, Hall A, Duskova P, Mistrik M, Merchut-Maya JM, Hodny Z, Bartkova J, Christensen C, Bartek J. Myc and Ras oncogenes engage different energy metabolism programs and evoke distinct patterns of oxidative and DNA replication stress. Mol Oncol 2014; 9:601-16. [PMID: 25435281 PMCID: PMC5528704 DOI: 10.1016/j.molonc.2014.11.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 10/28/2022] Open
Abstract
Both Myc and Ras oncogenes impact cellular metabolism, deregulate redox homeostasis and trigger DNA replication stress (RS) that compromises genomic integrity. However, how are such oncogene-induced effects evoked and temporally related, to what extent are these kinetic parameters shared by Myc and Ras, and how are these cellular changes linked with oncogene-induced cellular senescence in different cell context(s) remain poorly understood. Here, we addressed the above-mentioned open questions by multifaceted comparative analyses of human cellular models with inducible expression of c-Myc and H-RasV12 (Ras), two commonly deregulated oncoproteins operating in a functionally connected signaling network. Our study of DNA replication parameters using the DNA fiber approach and time-course assessment of perturbations in glycolytic flux, oxygen consumption and production of reactive oxygen species (ROS) revealed the following results. First, overabundance of nuclear Myc triggered RS promptly, already after one day of Myc induction, causing slow replication fork progression and fork asymmetry, even before any metabolic changes occurred. In contrast, Ras overexpression initially induced a burst of cell proliferation and increased the speed of replication fork progression. However, after several days of induction Ras caused bioenergetic metabolic changes that correlated with slower DNA replication fork progression and the ensuing cell cycle arrest, gradually leading to senescence. Second, the observed oncogene-induced RS and metabolic alterations were cell-type/context dependent, as shown by comparative analyses of normal human BJ fibroblasts versus U2-OS sarcoma cells. Third, the energy metabolic reprogramming triggered by Ras was more robust compared to impact of Myc. Fourth, the detected oncogene-induced oxidative stress was due to ROS (superoxide) of non-mitochondrial origin and mitochondrial OXPHOS was reduced (Crabtree effect). Overall, our study provides novel insights into oncogene-evoked metabolic reprogramming, replication and oxidative stress, with implications for mechanisms of tumorigenesis and potential targeting of oncogene addiction.
Collapse
Affiliation(s)
| | - Jitka Ostrakova
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Martin Kosar
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, CZ-142 20 Prague, Czech Republic
| | - Arnaldur Hall
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Pavlina Duskova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic
| | | | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, CZ-142 20 Prague, Czech Republic
| | - Jirina Bartkova
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | | | - Jiri Bartek
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark; Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, CZ-142 20 Prague, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, CZ-775 15 Olomouc, Czech Republic.
| |
Collapse
|
27
|
|
28
|
Wang P, Zeng Y, Liu T, Zhang C, Yu PW, Hao YX, Luo HX, Liu G. Chloride intracellular channel 1 regulates colon cancer cell migration and invasion through ROS/ERK pathway. World J Gastroenterol 2014; 20:2071-2078. [PMID: 24587680 PMCID: PMC3934477 DOI: 10.3748/wjg.v20.i8.2071] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 11/15/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanisms of chloride intracellular channel 1 (CLIC1) in the metastasis of colon cancer under hypoxia-reoxygenation (H-R) conditions. METHODS Fluorescent probes were used to detect reactive oxygen species (ROS) in LOVO cells. Wound healing assay and transwell assay were performed to examine the migration and invasion of LOVO cells. Expression of CLIC1 mRNA and protein, p-ERK, MMP-2 and MMP-9 proteins was analyzed by reverse transcription-polymerase chain reaction and Western blot. METHODS H-R treatment increased the intracellular ROS level in LOVO cells. The mRNA and protein expression of CLIC1 was elevated under H-R conditions. Functional inhibition of CLIC1 markedly decreased the H-R-enhanced ROS generation, cell migration, invasion and phosphorylation of ERK in treated LOVO cells. Additionally, the expression of MMP-2 and MMP-9 could be regulated by CLIC1-mediated ROS/ERK pathway. CONCLUSION Our results suggest that CLIC1 protein is involved in the metastasis of colon cancer LOVO cells via regulating the ROS/ERK pathway in the H-R process.
Collapse
|
29
|
Jutten B, Rouschop KMA. EGFR signaling and autophagy dependence for growth, survival, and therapy resistance. Cell Cycle 2013; 13:42-51. [PMID: 24335351 DOI: 10.4161/cc.27518] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is amplified or mutated in various human epithelial tumors. Its expression and activation leads to cell proliferation, differentiation, and survival. Consistently, EGFR amplification or expression of EGFR variant 3 (EGFRvIII) is associated with resistance to conventional cancer therapy through activation of pro-survival signaling and DNA-repair mechanisms. EGFR targeting has successfully been exploited as strategy to increase treatment efficacy. Nevertheless, these targeting strategies have only been proven effective in a limited percentage of human tumors. Recent knowledge indicates that EGFR deregulated tumors display differences in autophagy and dependence on autophagy for growth and survival and the use of autophagy to increase resistance to EGFR-targeting drugs. In this review the dependency on autophagy and its role in mediating resistance to EGFR-targeting agents will be discussed. Considering the current knowledge, autophagy inhibition could provide a novel strategy to enhance therapy efficacy in treatment of EGFR deregulated tumors.
Collapse
Affiliation(s)
- Barry Jutten
- Maastricht Radiation Oncology (MaastRO) Lab; GROW - School for Oncology and Developmental Biology; Maastricht University; Maastricht, the Netherlands
| | - Kasper M A Rouschop
- Maastricht Radiation Oncology (MaastRO) Lab; GROW - School for Oncology and Developmental Biology; Maastricht University; Maastricht, the Netherlands
| |
Collapse
|
30
|
Huang JS, Cho CY, Hong CC, Yan MD, Hsieh MC, Lay JD, Lai GM, Cheng AL, Chuang SE. Oxidative stress enhances Axl-mediated cell migration through an Akt1/Rac1-dependent mechanism. Free Radic Biol Med 2013; 65:1246-1256. [PMID: 24064382 DOI: 10.1016/j.freeradbiomed.2013.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 12/14/2022]
Abstract
Persistent oxidative stress is common in cancer cells because of abnormal generation of reactive oxygen species (ROS) and has been associated with malignant phenotypes, such as chemotherapy resistance and metastasis. Both overexpression of Axl and abnormal ROS elevation have been linked to cell transformation and increased cell migration. However, the relationship between Axl and ROS in malignant cell migration has not been previously evaluated. Using an in vitro human lung cancer model, we examined the redox state of lung adenocarcinoma cell lines of low metastatic (CL1-0) and high metastatic (CL1-5) potentials. Here we report that Axl activation elicits ROS accumulation through the oxidase-coupled small GTPase Rac1. We also observed that oxidative stress could activate Axl phosphorylation to synergistically enhance cell migration. Further, Axl signaling activated by H2O2 treatment results in enhancement of cell migration via a PI3K/Akt-dependent pathway. The kinase activity of Axl is required for the Axl-mediated cell migration and prolongs the half-life of phospho-Akt under oxidative stress. Finally, downregulation of Akt1, but not Akt2, by RNAi in Axl-overexpressing cells inhibits the amount of activated Rac1 and the ability to migrate induced by H2O2 treatment. Together, these results show that a novel Axl-signaling cascade induced by H2O2 treatment triggers cell migration through the PI3K/Akt1/Rac1 pathway. Elucidation of redox regulation in Axl-related malignant migration may provide new molecular insights into the mechanisms underlying tumor progression.
Collapse
Affiliation(s)
- Jhy-Shrian Huang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, Republic of China; Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Chun-Yu Cho
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, Republic of China
| | - Chih-Chen Hong
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, Republic of China
| | - Ming-De Yan
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, Republic of China
| | - Mao-Chih Hsieh
- Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan, Republic of China; Department of Surgery, Division of General Surgery, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Jong-Ding Lay
- Division of Basic Medical Sciences, National Taichung Nursing College, Taichung, Taiwan, Republic of China
| | - Gi-Ming Lai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, Republic of China; Center of Excellence for Cancer Research, Taipei Medical University, Taipei, Taiwan, Republic of China; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Ann-Lii Cheng
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, Republic of China; Department of Internal Medicine and Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Shuang-En Chuang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan Town, Miaoli County 350, Taiwan, Republic of China.
| |
Collapse
|
31
|
Park YH, Kim SU, Lee BK, Kim HS, Song IS, Shin HJ, Han YH, Chang KT, Kim JM, Lee DS, Kim YH, Choi CM, Kim BY, Yu DY. Prx I suppresses K-ras-driven lung tumorigenesis by opposing redox-sensitive ERK/cyclin D1 pathway. Antioxid Redox Signal 2013; 19. [PMID: 23186333 PMCID: PMC3704122 DOI: 10.1089/ars.2011.4421] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIMS Coupled responses of mutated K-ras and oxidative stress are often an important etiological factor in non-small-cell lung cancer (NSCLC). However, relatively few studies have examined the control mechanism of oxidative stress in oncogenic K-ras-driven NSCLC progression. Here, we studied whether the redox signaling pathway governed by peroxiredoxin I (Prx I) is involved in K-ras(G12D)-mediated lung adenocarcinogenesis. RESULTS Using human-lung adenocarcinoma tissues and lung-specific K-ras(G12D)-transgenic mice, we found that Prx I was significantly up-regulated in the tumor regions via activation of nuclear erythroid 2-related factor 2 (Nrf2) transcription. Interestingly, the increased reactive oxygen species (ROS) by null mutation of Prx I greatly promoted K-ras(G12D)-driven lung tumorigenesis in number and size, which appeared to require the activation of the ROS-dependent extracellular signal-regulated kinase (ERK)/cyclin D1 pathway. INNOVATION Taken together, these results suggest that Prx I functions as an Nrf2-dependently inducible tumor suppressant in K-ras-driven lung adenocarcinogenesis by opposing ROS/ERK/cyclin D1 pathway activation. CONCLUSION These findings provide a better understanding of oxidative stress-mediated lung tumorigenesis.
Collapse
Affiliation(s)
- Young-Ho Park
- Disease Model Research Laboratory, Aging Research Center , Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Thevenot PT, Saravia J, Jin N, Giaimo JD, Chustz RE, Mahne S, Kelley MA, Hebert VY, Dellinger B, Dugas TR, DeMayo FJ, Cormier SA. Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells. Am J Respir Cell Mol Biol 2013; 48:188-197. [PMID: 23087054 PMCID: PMC3604062 DOI: 10.1165/rcmb.2012-0052oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 09/26/2012] [Indexed: 11/24/2022] Open
Abstract
Environmentally persistent free radicals (EPFRs) in combustion-generated particulate matter (PM) are capable of inducing pulmonary pathologies and contributing to the development of environmental asthma. In vivo exposure of infant rats to EPFRs demonstrates their ability to induce airway hyperresponsiveness to methacholine, a hallmark of asthma. However, the mechanisms by which combustion-derived EPFRs elicit in vivo responses remain elusive. In this study, we used a chemically defined EPFR consisting of approximately 0.2 μm amorphrous silica containing 3% cupric oxide with the organic pollutant 1,2-dichlorobenzene (DCB-230). DCB-230 possesses similar radical content to urban-collected EPFRs but offers several advantages, including lack of contaminants and chemical uniformity. DCB-230 was readily taken up by BEAS-2B and at high doses (200 μg/cm(2)) caused substantial necrosis. At low doses (20 μg/cm(2)), DCB-230 particles caused lysosomal membrane permeabilization, oxidative stress, and lipid peroxidation within 24 hours of exposure. During this period, BEAS-2B underwent epithelial-to-mesenchymal transition (EMT), including loss of epithelial cell morphology, decreased E-cadherin expression, and increased α-smooth muscle actin (α-SMA) and collagen I production. Similar results were observed in neonatal air-liquid interface culture (i.e., disruption of epithelial integrity and EMT). Acute exposure of infant mice to DCB-230 resulted in EMT, as confirmed by lineage tracing studies and evidenced by coexpression of epithelial E-cadherin and mesenchymal α-SMA proteins in airway cells and increased SNAI1 expression in the lungs. EMT in neonatal mouse lungs after EPFR exposure may provide an explanation for epidemiological evidence supporting PM exposure and increased risk of asthma.
Collapse
Affiliation(s)
- Paul T. Thevenot
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jordy Saravia
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nili Jin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Joseph D. Giaimo
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Regina E. Chustz
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Sarah Mahne
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Matthew A. Kelley
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| | - Valeria Y. Hebert
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| | - Barry Dellinger
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana
| | - Tammy R. Dugas
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana; and
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Stephania A. Cormier
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
33
|
Mosca F, Narcisi V, Calzetta A, Gioia L, Finoia MG, Latini M, Tiscar PG. Effects of high temperature and exposure to air on mussel (Mytilus galloprovincialis, Lmk 1819) hemocyte phagocytosis: modulation of spreading and oxidative response. Tissue Cell 2013; 45:198-203. [PMID: 23375726 DOI: 10.1016/j.tice.2012.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
Abstract
Hemocytes are a critical component of the mussel defense system and the present study aims at investigating their spreading and oxidative properties during phagocytosis under in vivo experimental stress conditions. The spreading ability was measured by an automated cell analyzer on the basis of the circularity, a parameter corresponding to the hemocyte roundness. The oxidative activity was investigated by micromethod assay, measuring the respiratory burst as expression of the fluorescence generated by the oxidation of specific probe. Following the application of high temperature and exposure to air, there was evidence of negative modulation of spreading and oxidative response, as revealed by a cell roundness increase and fluorescence generation decrease. Therefore, the fall of respiratory burst appeared as matched with the inhibition of hemocyte morphological activation, suggesting a potential depression of the phagocytosis process and confirming the application of the circularity parameter as potential stress marker, both in experimental and field studies.
Collapse
Affiliation(s)
- Francesco Mosca
- Dipartimento di Scienze Biomediche Comparate, Università degli Studi di Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Suzuki N, Mittler R. Reactive oxygen species-dependent wound responses in animals and plants. Free Radic Biol Med 2012; 53:2269-76. [PMID: 23085520 DOI: 10.1016/j.freeradbiomed.2012.10.538] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/20/2023]
Abstract
Animals and plants evolved sophisticated mechanisms that regulate their responses to mechanical injury. Wound response in animals mainly promotes wound healing processes, nerve cell regeneration, and immune system responses at the vicinity of the wound site. In contrast, wound response in plants is primarily directed at sealing the wound site via deposition of various compounds and generating systemic signals that activate multiple defense mechanisms in remote tissues. Despite these differences between animals and plants, recent studies have shown that reactive oxygen species (ROS) play very common signaling and coordination roles in the wound responses of both systems. This review provides an update on recent findings related to ROS-regulated coordination of intercellular communications and signal transduction during wound response in plants and animals. In particular, differences and similarities in H2O2-dependent long-distance signaling between zebrafish and Arabidopsis thaliana are discussed.
Collapse
Affiliation(s)
- Nobuhiro Suzuki
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|
35
|
Chernyak BV, Antonenko YN, Galimov ER, Domnina LV, Dugina VB, Zvyagilskaya RA, Ivanova OY, Izyumov DS, Lyamzaev KG, Pustovidko AV, Rokitskaya TI, Rogov AG, Severina II, Simonyan RA, Skulachev MV, Tashlitsky VN, Titova EV, Trendeleva TA, Shagieva GS. Novel mitochondria-targeted compounds composed of natural constituents: Conjugates of plant alkaloids berberine and palmatine with plastoquinone. BIOCHEMISTRY (MOSCOW) 2012; 77:983-95. [DOI: 10.1134/s0006297912090040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Tochhawng L, Deng S, Pervaiz S, Yap CT. Redox regulation of cancer cell migration and invasion. Mitochondrion 2012; 13:246-53. [PMID: 22960576 DOI: 10.1016/j.mito.2012.08.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 08/03/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022]
Abstract
Cancer cell migration and invasion are the initial steps in metastasis. Through a series of cellular events, including cytoskeletal remodeling resulting in phenotype changes and degradation of the extracellular matrix, cells are able to detach from the primary tumor and metastasize to distant sites. These changes occur in response to intracellular signaling mechanisms triggered via cell surface receptor stimulation or signal amplification within the cell. Amongst the active molecules that participate in relaying cellular signals are the reactive oxygen species (ROS). Initially identified to participate in defense mechanisms to ward off invading pathogens, ROS are now considered to have important roles in several other biological processes including cancer development. In this report, we review recent evidence pointing towards the involvement of ROS in tumor progression. We discuss the biology of ROS and their roles at different stages during the process of cancer cell migration and invasion.
Collapse
|
37
|
Taulet N, Delorme-Walker VD, DerMardirossian C. Reactive oxygen species regulate protrusion efficiency by controlling actin dynamics. PLoS One 2012; 7:e41342. [PMID: 22876286 PMCID: PMC3410878 DOI: 10.1371/journal.pone.0041342] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/20/2012] [Indexed: 12/31/2022] Open
Abstract
Productive protrusions allowing motile cells to sense and migrate toward a chemotactic gradient of reactive oxygen species (ROS) require a tight control of the actin cytoskeleton. However, the mechanisms of how ROS affect cell protrusion and actin dynamics are not well elucidated yet. We show here that ROS induce the formation of a persistent protrusion. In migrating epithelial cells, protrusion of the leading edge requires the precise regulation of the lamellipodium and lamella F-actin networks. Using fluorescent speckle microscopy, we showed that, upon ROS stimulation, the F-actin retrograde flow is enhanced in the lamellipodium. This event coincides with an increase of cofilin activity, free barbed ends formation, Arp2/3 recruitment, and ERK activity at the cell edge. In addition, we observed an acceleration of the F-actin flow in the lamella of ROS-stimulated cells, which correlates with an enhancement of the cell contractility. Thus, this study demonstrates that ROS modulate both the lamellipodium and the lamella networks to control protrusion efficiency.
Collapse
Affiliation(s)
- Nicolas Taulet
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Violaine D. Delorme-Walker
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Céline DerMardirossian
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
Nakanome A, Brydun A, Matsumoto M, Ota K, Funayama R, Nakayama K, Ono M, Shiga K, Kobayashi T, Igarashi K. Bach1 is critical for the transformation of mouse embryonic fibroblasts by RasV12 and maintains ERK signaling. Oncogene 2012; 32:3231-45. [DOI: 10.1038/onc.2012.336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 06/07/2012] [Accepted: 06/20/2012] [Indexed: 12/23/2022]
|
39
|
Budanov AV. Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 2011; 15:1679-90. [PMID: 20712410 PMCID: PMC3151419 DOI: 10.1089/ars.2010.3530] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The tumor suppressor p53 protects organisms from most types of cancer through multiple mechanisms. The p53 gene encodes a stress-activated transcriptional factor that transcriptionally regulates a large set of genes with versatile functions. These p53-activated genes mitigate consequences of stress regulating cell viability, growth, proliferation, repair, and metabolism. Recently, we described a novel antioxidant function of p53, which is important for its tumor suppressor activity. Among the many antioxidant genes activated by p53, Sestrins (Sesns) are critical for suppression of reactive oxygen species (ROS) and protection from oxidative stress, transformation, and genomic instability. Sestrins can regulate ROS through their direct effect on antioxidant peroxiredoxin proteins and through the AMP-activated protein kinase-target of rapamycin signaling pathway. The AMP-activated protein kinase-target of rapamycin axis is critical for regulation of metabolism and autophagy, two processes associated with ROS production, and deregulation of this pathway increases vulnerability of the organism to stress, aging, and age-related diseases, including cancer. Recently, we have shown that inactivation of Sestrin in fly causes accumulation of age-associated damage. Hence, Sestrins can link p53 with aging and age-related diseases.
Collapse
Affiliation(s)
- Andrei V Budanov
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
40
|
Loo AEK, Ho R, Halliwell B. Mechanism of hydrogen peroxide-induced keratinocyte migration in a scratch-wound model. Free Radic Biol Med 2011; 51:884-92. [PMID: 21699973 DOI: 10.1016/j.freeradbiomed.2011.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 05/20/2011] [Accepted: 06/01/2011] [Indexed: 12/18/2022]
Abstract
Recent studies have shown that low concentrations of H(2)O(2) are produced endogenously by nonphagocytes after wounding. We observed that H(2)O(2) at such concentrations can stimulate proliferation as well as migration of keratinocytes in a scratch-wound assay. Both wounding and H(2)O(2) can induce phosphorylation of ERK1/2 via EGFR, but the activation of ERK1/2 by H(2)O(2) is more sustained and can last more than 8h. Sustained ERK1/2 activation is required for the increased proliferation and migration induced by H(2)O(2). The p38 MAPK was also found to be phosphorylated upon treatment with H(2)O(2) but it was not required for H(2)O(2)-induced migration or proliferation. Furthermore, it was observed that there is a cross talk between the ERK1/2 and the p38 pathways whereby inhibition of either pathway can lead to activation of the other. As a result, the motogenic effects of H(2)O(2) were further enhanced when p38 was inhibited. Our data are consistent with the view that H(2)O(2) may play an important signaling role in wound healing.
Collapse
Affiliation(s)
- Alvin Eng Kiat Loo
- Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 119077
| | | | | |
Collapse
|
41
|
Lisanti MP, Martinez-Outschoorn UE, Lin Z, Pavlides S, Whitaker-Menezes D, Pestell RG, Howell A, Sotgia F. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis: the seed and soil also needs "fertilizer". Cell Cycle 2011; 10:2440-9. [PMID: 21734470 PMCID: PMC3180186 DOI: 10.4161/cc.10.15.16870] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 06/18/2011] [Indexed: 01/13/2023] Open
Abstract
In 1889, Dr. Stephen Paget proposed the "seed and soil" hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary "fertilizer," by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other anti-oxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism.
Collapse
Affiliation(s)
- Michael P Lisanti
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Ma S, Ma CCH. Recent development in pleiotropic effects of statins on cardiovascular disease through regulation of transforming growth factor-beta superfamily. Cytokine Growth Factor Rev 2011; 22:167-75. [PMID: 21700485 DOI: 10.1016/j.cytogfr.2011.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/14/2011] [Accepted: 05/24/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are a drug class that reduce the level of cholesterol in the blood. As a result, statins are used to suppress the progression of cardiovascular disease. Evidence points to another component of statins involving the non-lipid effects of the drug class in preventing cardiovascular disease. One specific mediator of this action is the transforming growth factor β (TGF-β) superfamily. The TGF-β superfamily consists of proteins that include TGF-β and bone morphogenetic proteins (BMPs). These proteins regulate cellular pathways to mediate effects including immunomodulation, cell cycling, and angiogenesis. One pathway that mediates these effects is Ras. Moreover, within this pathway, different functions are possible depending on the activation of the specific receptor subtype. This review discusses the recent development of the non-lipid effects of statins in preventing cardiovascular disease progression by regulating Ras pathway of the TGF-β superfamily, especially RhoA/ROCK pathway. METHODS A systematic PubMed database search of all English-language articles up to 2011 was conducted using the following terms: statin, TGF-β, Ras, ROCK, GGPP, inducible nitric oxide synthase, endothelial nitric oxide synthase, actin filament formation, PPARγ, MMP-2, and human trials. CONCLUSION With better understanding of the pathway, various mediators were identified; some of these mediators are important biomarkers producing more specific and accurate assessment of the pleiotropic effects of statins. The review of human trials also highlights that more specific biomarkers are employed in recent studies, and the non-lipid effects on human subjects are more accurately documented. Confirmation of the accuracy of these biomarkers by further large-scale studies and further development of new biomarkers may prove an important path leading to better patient selection for treatment, and thus better cost-effectiveness may be achieved.
Collapse
Affiliation(s)
- Sze Ma
- King's College London School of Medicine, London SE1 7GL, United Kingdom
| | | |
Collapse
|
43
|
Kim MJ, Woo SJ, Yoon CH, Lee JS, An S, Choi YH, Hwang SG, Yoon G, Lee SJ. Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem 2011; 286:12924-32. [PMID: 21300795 PMCID: PMC3075639 DOI: 10.1074/jbc.m110.138958] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 01/11/2011] [Indexed: 12/13/2022] Open
Abstract
Autophagy has recently been implicated in both the prevention and progression of cancer. However, the molecular basis for the relationship between autophagy induction and the initial acquisition of malignancy is currently unknown. Here, we provide the first evidence that autophagy is essential for oncogenic K-Ras (K-Ras(V12))-induced malignant cell transformation. Retroviral expression of K-Ras(V12) induced autophagic vacuole formation and malignant transformation in human breast epithelial cells. Interestingly, pharmacological inhibition of autophagy completely blocked K-Ras(V12)-induced, anchorage-independent cell growth on soft agar. Both mRNA and protein levels of ATG5 and ATG7 (autophagy-specific genes 5 and 7, respectively) were increased in cells overexpressing K-Ras(V12). Targeted suppression of ATG5 or ATG7 expression by short hairpin (sh) RNA inhibited cell growth on soft agar and tumor formation in nude mice. Moreover, inhibition of reactive oxygen species (ROS) with antioxidants clearly attenuated K-Ras(V12)-induced ATG5 and ATG7 induction, autophagy, and malignant cell transformation. MAPK pathway components were activated in cells overexpressing K-Ras(V12), and inhibition of JNK blunted induction of ATG5 and ATG7 and subsequent autophagy. In addition, pretreatment with antioxidants completely inhibited K-Ras(V12)-induced JNK activation. Our results provide novel evidence that autophagy is critically involved in malignant transformation by oncogenic K-Ras and show that reactive oxygen species-mediated JNK activation plays a causal role in autophagy induction through up-regulation of ATG5 and ATG7.
Collapse
Affiliation(s)
- Min-Jung Kim
- From the Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
| | - Soo-Jung Woo
- From the Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
| | - Chang-Hwan Yoon
- From the Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
| | - Jae-Seong Lee
- From the Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
| | - Sungkwan An
- the Department of Microbiological Engineering, Kon-Kuk University, Seoul 143-701, Korea
| | - Yung-Hyun Choi
- the Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Korea
| | - Sang-Gu Hwang
- the Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea, and
| | - Gyesoon Yoon
- the Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443-721, Korea
| | - Su-Jae Lee
- From the Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea
| |
Collapse
|
44
|
Pan Q, Qiu WY, Huo YN, Yao YF, Lou MF. Low levels of hydrogen peroxide stimulate corneal epithelial cell adhesion, migration, and wound healing. Invest Ophthalmol Vis Sci 2011; 52:1723-34. [PMID: 21087961 DOI: 10.1167/iovs.10-5866] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE Intracellular reactive oxygen species have been reported to associate with growth factor and integrin signalings in promoting cell adhesion in many cell types. This study is to explore if exogenous H(2)O(2) at low levels can be beneficial to cell adhesion, migration, and wound healing. METHODS Primary rabbit corneal epithelial cells treated with 0-70 μM H(2)O(2) were tested for viability by MTT assay, adhesion by centrifugation assay, focal contacts of vinculin and F-actin by immunofluorescence, activated Src(pY416), EGF receptor (pY845), vinculin(pY1065), FAK(pY397), and FAK(pY576) by immunoblotting. Cell migration was examined with 0-50 μM H(2)O(2) using the scratch wound technique. Corneal wound healing of ex vivo pig model and in vivo mouse model was examined using H(2)O(2) with and without antioxidant N-acetylcysteine (NAC). RESULTS Compared with the untreated control, H(2)O(2) at 10-50 μM stimulated cell viability and facilitated adhesion and migration with clear induction of vinculin-rich focal adhesions and F-actin-containing stress fibers by increasing activated Src, FAK(pY576), and vinculin(pY1065). H(2)O(2) also increased phosphorylation of EGFR(Y845) parallel to that of activated Src, but both were eliminated by NAC and PP1 (Src inhibitor). Finally, H(2)O(2) induced faster wound healing in cornea both in vitro and in vivo, but the healing was diminished by NAC. CONCLUSIONS These findings suggest that H(2)O(2) at low levels promotes cell adhesion, migration, and wound healing in cornea cells or tissue, and the interaction of H(2)O(2) with Src plays a major role.
Collapse
Affiliation(s)
- Qing Pan
- Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | | | | | | | | |
Collapse
|
45
|
Miranda SG, Purdie NG, Osborne VR, Coomber BL, Cant JP. Selenomethionine increases proliferation and reduces apoptosis in bovine mammary epithelial cells under oxidative stress. J Dairy Sci 2011; 94:165-73. [PMID: 21183028 DOI: 10.3168/jds.2010-3366] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/06/2010] [Indexed: 11/19/2022]
Abstract
The decline in mammary epithelial cell number as lactation progresses may be due, in part, to oxidative stress. Selenium is an integral component of several antioxidant enzymes. The present study was conducted to examine the effect of oxidative stress and selenomethionine (SeMet) on morphology, viability, apoptosis, and proliferation of bovine mammary epithelial cells (BMEC) in primary culture. Cells were isolated from mammary glands of lactating dairy cows and grown for 3 d in a low-serum gel system containing lactogenic hormones and 0 or 100 μM H2O2 with 0, 10, 20, or 50 nM SeMet. Hydrogen peroxide stress increased intracellular H2O2 to 3 times control concentrations and induced a loss of cuboidal morphology, cell-cell contact, and viability of BMEC by 25%. Apoptotic cell number more than doubled during oxidative stress, but proliferating cell number was not affected. Supplementation with SeMet increased glutathione peroxidase activity 2-fold and restored intracellular H2O2 to control levels with a concomitant return of morphology and viability to normal. Apoptotic BMEC number was decreased 76% below control levels by SeMet and proliferating cell number was increased 4.2-fold. These findings suggest that SeMet modulated apoptosis and proliferation independently of a selenoprotein-mediated reduction of H2O2. In conclusion, SeMet supplementation protects BMEC from H2O2-induced apoptosis and increased proliferation and cell viability under conditions of oxidative stress.
Collapse
Affiliation(s)
- S G Miranda
- Department of Animal Science, University of Zulia, Maracaibo, Venezuela 4005
| | | | | | | | | |
Collapse
|
46
|
Choudhary S, Rathore K, Wang HCR. Differential induction of reactive oxygen species through Erk1/2 and Nox-1 by FK228 for selective apoptosis of oncogenic H-Ras-expressing human urinary bladder cancer J82 cells. J Cancer Res Clin Oncol 2011; 137:471-80. [PMID: 20473523 DOI: 10.1007/s00432-010-0910-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/29/2010] [Indexed: 11/26/2022]
Abstract
PURPOSE This study sought to reveal mechanisms for differential regulation of reactive oxygen species (ROS) in histone deacetylase inhibitor FK228-induced selective apoptosis of oncogenic H-Ras-expressing human cancer cells. METHODS Human urinary bladder cancer J82 and oncogenic H-Ras-expressing J82 cells were used to reveal FK228-induced differential Erk1/2 activation, Nox-1 elevation, ROS production, glutathione (GSH) depletion, caspase activation, and apoptosis. Specific inhibitors were used to suppress Nox-1 activity and ROS production. Mek1/2 inhibitor was used to suppress Erk1/2 activation. Validated-specific siRNAs were used to knock down Nox-1. ROS levels, GSH levels, and caspase-3/7 activities were measured by GSH assay, flow cytometry and luminescence assays, respectively. Western blot analysis determined levels of Erk1/2 and Nox-1. RESULTS Erk1/2, Nox-1, ROS, caspase-3/7, and cell death were differentially induced, whereas GSH was differentially depleted by FK228 in oncogenic H-Ras-expressing J82 versus parental cells. Blockage of the ERK pathway resulted in suppressing oncogenic H-Ras- and FK228-induced Nox-1 elevation, ROS production, caspase activation, and cell death. Knockdown of Nox-1 by specific siRNAs reduced FK228-induced ROS production, caspase activation, and cell death. CONCLUSION Oncogenic H-Ras expression and FK228 treatment synergistically induced the ERK pathway, resulting in differentially increased Nox-1 elevation, ROS production, and GSH depletion, leading to differential caspase activation and cell death in oncogenic H-Ras-expressing J82 versus parental cells.
Collapse
Affiliation(s)
- Shambhunath Choudhary
- Anticancer Molecular Oncology Laboratory, Department of Comparative Medicine, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
47
|
Abstract
Sestrins (Sesns) are a family of highly conserved stress-responsive proteins, transcriptionally regulated by p53 and forkhead transcription factor that exhibit oxidoreductase activity in vitro and can protect cells from oxidative stress. However, their major biochemical and physiological function does not appear to depend on their redox (reduction and oxidation) activity. Sesns promote activation of adenosine-5′-monophosphate (AMP)-dependent protein kinase in both mammals and flies. Stress-induced Sesn expression results in inhibition of the target of rapamycin complex 1 (TORC1) and the physiological and pathological implications of disrupting the Sesns-TORC1 crosstalk are now being unravelled. Detailing their mechanism of action and exploring their roles in human physiology point to exciting new insights to topics as diverse as stress, cancer, metabolism and aging.
Collapse
Affiliation(s)
- Andrei V Budanov
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
48
|
Popova EN, Pletjushkina OY, Dugina VB, Domnina LV, Ivanova OY, Izyumov DS, Skulachev VP, Chernyak BV. Scavenging of reactive oxygen species in mitochondria induces myofibroblast differentiation. Antioxid Redox Signal 2010; 13:1297-307. [PMID: 20446771 DOI: 10.1089/ars.2009.2949] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The goal of this study was to investigate the possible role of reactive oxygen species (ROS) in signaling, in modulation of the cytoskeleton, and in differentiation of fibroblasts. For this purpose, we have applied a novel mitochondria-targeted antioxidant: plastoquinone conjugated with decyltriphenylphosphonium (SkQ1). This antioxidant at nanomolar concentration prevented ROS accumulation and cell death induced by H(2)O(2) in fibroblasts. We found that scavenging of ROS produced by mitochondria activated the Rho/ROCK/LIMK signaling pathway that was followed by phosphorylation of cofilin and stabilization of actin stress fibers. The mitochondria-targeted antioxidant induced differentiation of human subcutaneous fibroblasts to myofibroblasts as revealed by expression of fibronectin isoform (EDA-FN) and smooth muscle actin (α-SMA). This effect was shown to be mediated by transforming growth factor β1 (TGFβ1), which was activated by matrix metalloprotease 9 (MMP9) in the culture medium. Scavenging of ROS stimulated secretion of MMP9 rather than its processing. The same effect was achieved by the nontargeted antioxidant Trolox at higher concentration, but the thiol antioxidant N-acetylcysteine (NAC) inhibited MMP activity and was not able to induce myofibroblast differentiation. The myofibroblast phenotype was supported due to autocrine TGFβ1-dependent stimulation after removal of SkQ1. It is concluded that ROS scavenging in mitochondria induces TGFβ1-dependent myofibroblast differentiation.
Collapse
Affiliation(s)
- Ekaterina N Popova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Luanpitpong S, Talbott SJ, Rojanasakul Y, Nimmannit U, Pongrakhananon V, Wang L, Chanvorachote P. Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. J Biol Chem 2010; 285:38832-40. [PMID: 20923773 DOI: 10.1074/jbc.m110.124958] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The acquired capability of tumor cells to migrate and invade neighboring tissues is associated with high metastatic potential and advanced stage of cancers. Recently, signaling molecules such as reactive oxygen species (ROS) and caveolin-1 (Cav-1) have been implicated in the aggressive behavior of cancer cells. However, the roles of specific ROS in cancer cell migration and Cav-1 regulation are unclear. We demonstrate here that Cav-1 plays an important role in the migration and invasion of human lung carcinoma H460 cells and that these effects are differentially regulated by cellular ROS. Using various known inhibitors and donors of ROS, we found that different ROS have different effects on Cav-1 expression and cell migration and invasion. Superoxide anion and hydrogen peroxide down-regulated Cav-1 expression and inhibited cell migration and invasion, whereas hydroxyl radical up-regulated the Cav-1 expression and promoted cell migration and invasion. The down-regulating effect of superoxide anion and hydrogen peroxide on Cav-1 is mediated through a transcription-independent mechanism that involves protein degradation via the ubiquitin-proteasome pathway. These results indicate the essential role of different ROS in cancer cell motility and through Cav-1 expression, which may provide a key mechanism controlling tumor progression and metastasis. The up-regulation of Cav-1 and cell motility by hydroxyl free radical suggests an important role of this ROS as a positive regulator of tumor progression.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Pharmaceutical Technology (International) Program, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
50
|
Shutova MS, Alexandrova AY. Normal and transformed fibroblast spreading: Role of microfilament polymerization and actin-myosin contractility. ACTA ACUST UNITED AC 2010. [DOI: 10.1134/s1990519x10010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|