1
|
Dong X, Xu G, Hong H, Zhang J, Cui Z, Yu Z. The zinc finger protein560(ZNF560) functions as a novel oncogenic gene in osteosarcoma. Sci Rep 2025; 15:79. [PMID: 39747304 PMCID: PMC11696763 DOI: 10.1038/s41598-024-79298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Abnormal expression of Zinc finger (ZNF) genes is commonly observed in osteosarcoma (OS), the most prevalent malignant bone tumor in children and teenagers. This project focused on the role of ZNF560 in the progress of OS. METHODS The published datasets including TCGA-SARC and GSE99671 was utilized to screen out the abnormal expression of ZNF560 and associated gene patterns in sarcoma and OS tissues. Prognosis value of ZNF560 was identified in TCGA-SARC and OS cohorts. In order to manipulate ZNF560 expression in HOS and MG63 osteosarcoma (OS) cells, genetic strategies such as shRNA constructs were utilized. The expression patterns of ZNF560 were analyzed through techniques such as immunohistochemistry, Western blotting, and qRT-PCR. RESULTS By analyzing data from both the GEO and the Cancer Genome Atlas (TCGA) databases, increased expression of ZNF560 in OS tissues was verified, which was significantly associated with poorer outcomes in osteosarcoma patients both in TCGA-SARC and our own OS cohorts. Additionally, downregulation of ZNF560 resulted in decreased cell viability, fewer colonies, and induced apoptosis of osteosarcoma cells. Moreover, ZNF560 was found to be essential for migration of human osteosarcoma HOS and MG63 cells. CONCLUSION Collectively, these findings suggest that ZNF560 has the potential to serve as a predictive biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Xiong Dong
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China
| | - Guanhua Xu
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China
| | - Hongxiang Hong
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China
| | - Jinlong Zhang
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China
| | - Zhiming Cui
- Spinal Surgery Department, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, P.R. China.
| | - ZiLiang Yu
- Department of Joint Surgery, The Second Affiliated Hospital of Nantong University, No. 666, ShengLi Road, Chongchuan District, Nantong, 226001, Jiangsu, P.R. China.
| |
Collapse
|
2
|
Zhang D, Liang P, Xia B, Wu J, Hu X. Comprehensive pan-cancer analysis of ZNF337 as a potential diagnostic, immunological, and prognostic biomarker. BMC Cancer 2024; 24:987. [PMID: 39123194 PMCID: PMC11313096 DOI: 10.1186/s12885-024-12703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Zinc Finger Protein 337 (ZNF337) is a novel Zinc Finger (ZNF) protein family member. However, the roles of ZNF337 in human cancers have not yet been investigated. METHODS In this study, with the aid of TCGA databases, GTEx databases, and online websites, we determined the expression levels of ZNF337 in pan-cancer and its potential value as a diagnostic and prognostic marker for pan-cancer and analyzed the relationship between ZNF337 expression and immune cell infiltration and immune checkpoint genes. We then focused our research on the potential of ZNF337 as a biomarker for diagnostic and prognostic in KIRC (kidney renal clear cell carcinoma) and validated in the E-MTAB-1980 database. Moreover, the expression of ZNF337 was detected through qRT-PCR and Western blotting (WB). CCK-8 experiment, colony formation experiment, and EDU experiment were performed to evaluate cell proliferation ability. Wound healing assay and transwell assay were used to analyze its migration ability. The qRT-PCR and WB were used to detect the expression of ZNF337 in tumor tissues and paracancerous tissues of KIRC patients. RESULTS The pan-cancer analysis revealed that abnormal ZNF337 expression was found in multiple human cancer types. ZNF337 had a high diagnostic value in pan-cancer and a significant association with the prognosis of certain cancers, indicating that ZNF337 may be a valuable prognostic biomarker for multiple cancers. Further analysis demonstrated that the expression level of ZNF337 displayed significant correlations with cancer-associated fibroblasts, immune cell infiltration, and immune checkpoint genes in many tumors. Additionally, ZNF337 was observed to have a high expression in KIRC. Its expression was significantly associated with poor prognosis [overall survival (OS), disease-specific survival (DSS)], age, TNM stage, histologic grade, and pathologic stage. The high ZNF337 expression was associated with poor prognosis in the E-MTAB-1980 validation cohort. The in vitro experiments suggested that the expression of ZNF337 in KIRC tumor tissues was higher than in adjacent tissues, and ZNF337 knockdown inhibited the proliferation and migration of KIRC cells, whereas overexpression of ZNF337 had the opposite effects. CONCLUSIONS ZNF337 might be an important prognostic and immunotherapeutic biomarker for pan-cancer, especially in KIRC.
Collapse
Affiliation(s)
- Dongxu Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, NO. 8 Gongti South Road, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Pu Liang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, 100015, China
| | - Bowen Xia
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, NO. 8 Gongti South Road, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jitao Wu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, NO. 8 Gongti South Road, Beijing, China.
- Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Olechnowicz A, Oleksiewicz U, Machnik M. KRAB-ZFPs and cancer stem cells identity. Genes Dis 2022. [PMID: 37492743 PMCID: PMC10363567 DOI: 10.1016/j.gendis.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies on carcinogenesis continue to provide new information about different disease-related processes. Among others, much research has focused on the involvement of cancer stem cells (CSCs) in tumor initiation and progression. Studying the similarities and differences between CSCs and physiological stem cells (SCs) allows for a better understanding of cancer biology. Recently, it was shown that stem cell identity is partially governed by the Krϋppel-associated box domain zinc finger proteins (KRAB-ZFPs), the biggest family of transcription regulators. Several KRAB-ZFP factors exert a known effect in tumor cells, acting as tumor suppressor genes (TSGs) or oncogenes, yet their role in CSCs is still poorly characterized. Here, we review recent studies regarding the influence of KRAB-ZFPs and their cofactor protein TRIM28 on CSCs phenotype, stemness features, migration and invasion potential, metastasis, and expression of parental markers.
Collapse
|
5
|
Valentini S, Gandolfi F, Carolo M, Dalfovo D, Pozza L, Romanel A. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1335-1350. [PMID: 35061909 PMCID: PMC8860573 DOI: 10.1093/nar/gkac024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
In the last years, many studies were able to identify associations between common genetic variants and complex diseases. However, the mechanistic biological links explaining these associations are still mostly unknown. Common variants are usually associated with a relatively small effect size, suggesting that interactions among multiple variants might be a major genetic component of complex diseases. Hence, elucidating the presence of functional relations among variants may be fundamental to identify putative variants’ interactions. To this aim, we developed Polympact, a web-based resource that allows to explore functional relations among human common variants by exploiting variants’ functional element landscape, their impact on transcription factor binding motifs, and their effect on transcript levels of protein-coding genes. Polympact characterizes over 18 million common variants and allows to explore putative relations by combining clustering analysis and innovative similarity and interaction network models. The properties of the network models were studied and the utility of Polympact was demonstrated by analysing the rich sets of Breast Cancer and Alzheimer's GWAS variants. We identified relations among multiple variants, suggesting putative interactions. Polympact is freely available at bcglab.cibio.unitn.it/polympact.
Collapse
Affiliation(s)
- Samuel Valentini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Gandolfi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mattia Carolo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Lara Pozza
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Romanel
- To whom correspondence should be addressed. Tel: +39 0461 285217; Fax: +39 0461 283937;
| |
Collapse
|
6
|
Cai L, Zhang Q, Du L, Zheng F. Silencing of miR-1246 Induces Cell Cycle Arrest and Apoptosis in Cisplatin-Resistant Ovarian Cancer Cells by Promoting ZNF23 Transcription. Cytogenet Genome Res 2021; 161:488-500. [PMID: 34923485 DOI: 10.1159/000520069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer (OC) is the most frequent cause of death among patients with gynecologic malignancies. In recent years, the development of cisplatin (DDP) resistance has become an important reason for the poor prognosis of OC patients. Therefore, it is vital to explore the mechanism of DDP resistance in OC. In this study, microRNA-1246 (miR-1246) expression in OC and DDP-resistant OC cells was determined by RT-qPCR, and chemosensitivity to DDP was assessed by the CCK-8 assay. A dual-luciferase reporter assay was performed to confirm the interaction between miR-1246 and zinc finger 23 (ZNF23), while changes in ZNF23 expression were monitored by RT-qPCR, immunofluorescence, and western blot assays. Moreover, cell proliferation, cycle phase, and apoptosis were determined by EdU staining, flow cytometry, TUNEL staining, and Hoechst staining. Our data showed that miR-1246 was highly expressed in DDP-resistant OVCAR-3 and TOV-112D cells. Functionally, overexpression of miR-1246 markedly enhanced DDP resistance and cell proliferation, and suppressed cell cycle arrest and apoptosis of OC cells. Inhibition of miR-1246 expression significantly attenuated DDP resistance and cell proliferation, and increased cell cycle arrest and apoptosis in DDP-resistant OC cells. Furthermore, ZNF23 was identified as a target gene of miR-1246, and ZNF23 protein expression was notably downregulated in DDP-resistant OC cells. Moreover, overexpression of miR-1246 significantly downregulated the ZNF23 levels in OVCAR-3 and TOV-112D cells, and inhibition of miR-1246 upregulated the ZNF23 levels in the DDP-resistant OVCAR-3 and TOV-112D cells. In conclusion, miR-1246 might be a novel regulator of DDP-resistant OC that functions by regulating ZNF23 expression in DDP-resistant cells, as well as cell proliferation, cell cycle progression, and apoptosis.
Collapse
Affiliation(s)
- Lu Cai
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.,Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Du
- Department of Obstetrics and Gynecology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Feiyun Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Adeel MM, Jiang H, Arega Y, Cao K, Lin D, Cao C, Cao G, Wu P, Li G. Structural Variations of the 3D Genome Architecture in Cervical Cancer Development. Front Cell Dev Biol 2021; 9:706375. [PMID: 34368157 PMCID: PMC8344058 DOI: 10.3389/fcell.2021.706375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Human papillomavirus (HPV) integration is the major contributor to cervical cancer (CC) development by inducing structural variations (SVs) in the human genome. SVs are directly associated with the three-dimensional (3D) genome structure leading to cancer development. The detection of SVs is not a trivial task, and several genome-wide techniques have greatly helped in the identification of SVs in the cancerous genome. However, in cervical cancer, precise prediction of SVs mainly translocations and their effects on 3D-genome and gene expression still need to be explored. Here, we have used high-throughput chromosome conformation capture (Hi-C) data of cervical cancer to detect the SVs, especially the translocations, and validated it through whole-genome sequencing (WGS) data. We found that the cervical cancer 3D-genome architecture rearranges itself as compared to that in the normal tissue, and 24% of the total genome switches their A/B compartments. Moreover, translocation detection from Hi-C data showed the presence of high-resolution t(4;7) (q13.1; q31.32) and t(1;16) (q21.2; q22.1) translocations, which disrupted the expression of the genes located at and nearby positions. Enrichment analysis suggested that the disrupted genes were mainly involved in controlling cervical cancer-related pathways. In summary, we detect the novel SVs through Hi-C data and unfold the association among genome-reorganization, translocations, and gene expression regulation. The results help understand the underlying pathogenicity mechanism of SVs in cervical cancer development and identify the targeted therapeutics against cervical cancer.
Collapse
Affiliation(s)
- Muhammad Muzammal Adeel
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hao Jiang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yibeltal Arega
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Kai Cao
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Canhui Cao
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Peng Wu
- Department of Gynecologic Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Jin XS, Ji TT, Shi ZC, Zhang QQ, Ye FP, Yu WL, Li RZ. Knockdown of ZNF479 inhibits proliferation and glycolysis of gastric cancer cells through regulating β-catenin/c-Myc signaling pathway. Kaohsiung J Med Sci 2021; 37:759-767. [PMID: 34042257 DOI: 10.1002/kjm2.12399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/09/2022] Open
Abstract
Gastric cancer is the fifth most common malignancy and the third most deadly tumor in the world. Zinc finger protein 479 (ZNF479) has been demonstrated to play crucial roles in hepatocellular carcinoma. However, the function of ZNF479 in gastric cancer remains to be clarified. The current study aimed to investigate the role of ZNF479 in gastric cancer progression and elucidate the potential molecular mechanism. In this study, Cell Count Kit-8 and colony formation assays demonstrated that knockdown of ZNF479 inhibited cell proliferation in AGS and SGC-7901 cells. Of note, knockdown of ZNF479 hinders tumor growth of xenograft tumor mice. What is more, knockdown of ZNF479 inhibited glucose uptake, lactate production, adenosine triphosphate level, and extracellular acidification ratio; increased oxygen consumption ratio in gastric cancer cells; and decreased the expression of glycolytic proteins both in vitro and in vivo. Furthermore, analysis mechanism suggests that ZNF479 participated in the regulation of gastric cancer progression through affecting the β-catenin/c-Myc signaling pathway. Collectively, ZNF479 plays a role as an oncogene through modulating β-catenin/c-Myc signaling pathway in the development of gastric cancer, which provides a new research target for future studies.
Collapse
Affiliation(s)
- Xiao-Sheng Jin
- Department of Gastroenterology, Ruian people's hospital, Rui'an City, China
| | - Ting-Ting Ji
- Department of Gastroenterology, Ruian people's hospital, Rui'an City, China
| | - Zheng-Chao Shi
- Department of Gastroenterology, Ruian people's hospital, Rui'an City, China
| | - Qing-Qing Zhang
- Department of Gastroenterology, Ruian people's hospital, Rui'an City, China
| | - Fang-Peng Ye
- Department of Gastroenterology, Ruian people's hospital, Rui'an City, China
| | - Wei-Lai Yu
- Department of Gastroenterology, Ruian people's hospital, Rui'an City, China
| | - Rong-Zhou Li
- Department of Gastroenterology, Ruian people's hospital, Rui'an City, China
| |
Collapse
|
9
|
Ye Q, Mohamed R, Dakhlallah D, Gencheva M, Hu G, Pearce MC, Kolluri SK, Marsh CB, Eubank TD, Ivanov AV, Guo NL. Molecular Analysis of ZNF71 KRAB in Non-Small-Cell Lung Cancer. Int J Mol Sci 2021; 22:3752. [PMID: 33916522 PMCID: PMC8038441 DOI: 10.3390/ijms22073752] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Our previous study found that zinc finger protein 71 (ZNF71) mRNA expression was associated with chemosensitivity and its protein expression was prognostic of non-small-cell lung cancer (NSCLC). The Krüppel associated box (KRAB) transcriptional repression domain is commonly present in human zinc finger proteins, which are linked to imprinting, silencing of repetitive elements, proliferation, apoptosis, and cancer. This study revealed that ZNF71 KRAB had a significantly higher expression than the ZNF71 KRAB-less isoform in NSCLC tumors (n = 197) and cell lines (n = 117). Patients with higher ZNF71 KRAB expression had a significantly worse survival outcome than patients with lower ZNF71 KRAB expression (log-rank p = 0.04; hazard ratio (HR): 1.686 [1.026, 2.771]), whereas ZNF71 overall and KRAB-less expression levels were not prognostic in the same patient cohort. ZNF71 KRAB expression was associated with epithelial-to-mesenchymal transition (EMT) in both patient tumors and cell lines. ZNF71 KRAB was overexpressed in NSCLC cell lines resistant to docetaxel and paclitaxel treatment compared to chemo-sensitive cell lines, consistent with its association with poor prognosis in patients. Therefore, ZNF71 KRAB isoform is a more effective prognostic factor than ZNF71 overall and KRAB-less expression for NSCLC. Functional analysis using CRISPR-Cas9 and RNA interference (RNAi) screening data indicated that a knockdown/knockout of ZNF71 did not significantly affect NSCLC cell proliferation in vitro.
Collapse
Affiliation(s)
- Qing Ye
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Rehab Mohamed
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
| | - Duaa Dakhlallah
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
- Institute of Global Health and Human Ecology, School of Sciences & Engineering, The American University of Cairo, New Cairo 11835, Egypt
| | - Marieta Gencheva
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
| | - Gangqing Hu
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
| | - Martin C. Pearce
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (M.C.P.); (S.K.K.)
| | - Siva Kumar Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; (M.C.P.); (S.K.K.)
| | - Clay B. Marsh
- Department of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26506, USA;
| | - Alexey V. Ivanov
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Nancy Lan Guo
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA; (Q.Y.); (R.M.); (D.D.); (G.H.); (T.D.E.); (A.V.I.)
- Department of Occupational and Environmental Health Sciences, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
10
|
KRAB-ZFP Transcriptional Regulators Acting as Oncogenes and Tumor Suppressors: An Overview. Int J Mol Sci 2021; 22:ijms22042212. [PMID: 33672287 PMCID: PMC7926519 DOI: 10.3390/ijms22042212] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Krüppel-associated box zinc finger proteins (KRAB-ZFPs) constitute the largest family of transcriptional factors exerting co-repressor functions in mammalian cells. In general, KRAB-ZFPs have a dual structure. They may bind to specific DNA sequences via zinc finger motifs and recruit a repressive complex through the KRAB domain. Such a complex mediates histone deacetylation, trimethylation of histone 3 at lysine 9 (H3K9me3), and subsequent heterochromatization. Nevertheless, apart from their repressive role, KRAB-ZFPs may also co-activate gene transcription, likely through interaction with other factors implicated in transcriptional control. KRAB-ZFPs play essential roles in various biological processes, including development, imprinting, retroelement silencing, and carcinogenesis. Cancer cells possess multiple genomic, epigenomic, and transcriptomic aberrations. A growing number of data indicates that the expression of many KRAB-ZFPs is altered in several tumor types, in which they may act as oncogenes or tumor suppressors. Hereby, we review the available literature describing the oncogenic and suppressive roles of various KRAB-ZFPs in cancer. We focused on their association with the clinicopathological features and treatment response, as well as their influence on the cancer cell phenotype. Moreover, we summarized the identified upstream and downstream molecular mechanisms that may govern the functioning of KRAB-ZFPs in a cancer setting.
Collapse
|
11
|
Wang C, Liu S, Kuang Y, Hu X, Fang X. Downregulation of ZNF365 by methylation predicts poor prognosis in patients with colorectal cancer by decreasing phospho-p53 (Ser15) expression. Oncol Lett 2020; 20:85. [PMID: 32863918 PMCID: PMC7436887 DOI: 10.3892/ol.2020.11946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/26/2020] [Indexed: 01/11/2023] Open
Abstract
ZNF365 is a transcription factor that plays important roles in different types of cancer, such as colorectal cancer, breast cancer and hepatocellular carcinoma. ZNF365 can promote stalled replication fork recovery to prevent genomic instability, which is a notable feature of sporadic and hereditary types of cancers. However, the function of ZNF365 in the tumor progression of colorectal cancer (CRC) remains unclear. Thus, immunohistochemical staining was used to investigate the association between ZNF365 expression and the clinicopathological characteristics of patients with colorectal cancer. The results demonstrated that ZNF365 protein was strongly expressed in the nucleus and cytoplasm of normal colorectal mucosa. Furthermore ZNF365, which is methylated and downregulated in most cancer cell lines and tissues, was significantly associated with lymph node metastasis (P=0.015), depth of invasion (P=0.031) and histopathological grading (P=0.042). A positive correlation was observed between ZNF365 expression and phosphorylated (P)-p53 (Ser15) protein expression (r=0.18; P=0.038). Survival analysis indicated that patients with high ZNF365 expression had a higher survival rate than those with low ZNF365 expression (P=0.009), suggesting that ZNF365 may be an independent prognostic factor for survival in colorectal cancer (P=0.046). Taken together, the results of the present study demonstrated that ZNF365 was frequently inactivated by promoter methylation and independently predicted poor prognosis in patients with colorectal cancer by downregulating P-p53 (Ser15) expression.
Collapse
Affiliation(s)
- Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shuiping Liu
- Department of Cancer Pharmacology and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310012, P.R. China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
12
|
Zhang J, Luo J, Jiang H, Xie T, Zheng J, Tian Y, Li R, Wang B, Lin J, Xu A, Huang X, Yuan Y. The Tumor Suppressor Role of Zinc Finger Protein 671 ( ZNF671) in Multiple Tumors Based on Cancer Single-Cell Sequencing. Front Oncol 2019; 9:1214. [PMID: 31781507 PMCID: PMC6857622 DOI: 10.3389/fonc.2019.01214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023] Open
Abstract
In humans, zinc finger protein 671 (ZNF671) is a type of transcription factor. However, the contribution of tumor heterogeneity to the functional role of ZNF671 remains unknown. The present study aimed to determine the functional states of ZNF671 in cancer single cells based on single-cell sequencing datasets (scRNA-seq). We collected cancer-related ZNF671 scRNA-seq datasets and analyzed ZNF671 in the datasets. We evaluated 14 functional states of ZNF671 in cancers and performed ZNF671 expression and function state correlation analysis. We further applied t-distributed stochastic neighbor embedding to describe the distribution of cancer cells and to explore the functional state of ZNF671 in cancer subgroups. We found that ZNF671 was downregulated in eight cancer-related ZNF671 scRNA-seq datasets. Functional analysis identified that ZNF671 might play a tumor suppressor role in cancer. The heterogeneous functional states of cell subgroups and correlation analysis showed that ZNF671 played tumor suppressor roles in heterogeneous cancer cell populations. Western blot and transwell assays identified that ZNF671 inhibited EMT, migration, and invasion of CNS cancers, lung cancer, melanoma, and breast carcinoma in vitro. These results from cancer single-cell sequencing indicated that ZNF671 played a tumor suppressor role in multiple tumors and may provide us with new insights into the role of ZNF671 for cancer treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jianli Luo
- Department of General Disease, Health Center of Shuichun Town, Shanwei, China
| | - Huali Jiang
- Department of Cardiovascularology, Tungwah Hospital of Sun Yat-sen University, Dongguan, China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieling Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Anan Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Liu W, Yuan W, Li X, Zhuang J, Mo X, Dai G, Wang Y, Chen J, Wan Y, Li Y, Zhu X, Chen Y, Luo S, Jiang Z, Shi Y, Chen F, Cao L, Ye X, Fan X, Zhu P, Zhang K, Wu X. ZNF424 Induces Apoptosis and Inhibits Proliferation in Lung Carcinoma Cells. Curr Mol Med 2019; 18:109-115. [PMID: 29974829 PMCID: PMC6225340 DOI: 10.2174/1566524018666180705113642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 11/22/2022]
Abstract
Background: Previously, we showed that the Zinc finger-containing transcription factor ZNF424 inhibits p21 transcription, which has been widely associated with various cancers. However, because the roles of ZNF424 in tumorigenesis have not been characterized, we correlated ZNF424 expression with tumorigenesis in lung cancer. Results: The present immunohistochemical analyses show significantly lower ZNF424 expression levels in 43 of 60 lung cancer tissues compared with adjacent tissues. Moreover, flow cytometry assays indicated that overexpression of ZNF424 induces apoptosis in A549 human lung carcinoma cells, and overexpression of ZNF424 significantly increases numbers of G1 phase cells and decreases numbers of S phase cells, suggesting that ZNF424 inhibits proliferation. Western Blot analyses show that overexpression of ZNF424 decreases protein expression levels of the mitogen-activated protein kinase (MAPK) signaling proteins P-P38 and P-ERK in A549 cells. Conclusion: These are the first data to associate ZNF424 with tumorigenesis and demonstrate an inhibitory role in lung cancer, indicating the potential of ZNF424 expression as a diagnostic marker of lung tumorigenesis.
Collapse
Affiliation(s)
- W Liu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - W Yuan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Li
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xianga School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - J Zhuang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - X Mo
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - G Dai
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - J Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Y Wan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Li
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Y Chen
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - S Luo
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Z Jiang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Y Shi
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - F Chen
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - L Cao
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Ye
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - X Fan
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - P Zhu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - K Zhang
- The National Clinical Research Center for Geriatrics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - X Wu
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, Key Laboratory of MOE for Development Biology and Protein Chemistry, The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
14
|
Gerhard GS, Bann DV, Broach J, Goldenberg D. Pitfalls of exome sequencing: a case study of the attribution of HABP2 rs7080536 in familial non-medullary thyroid cancer. NPJ Genom Med 2017; 2:8. [PMID: 28884020 PMCID: PMC5584869 DOI: 10.1038/s41525-017-0011-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing using exome capture is a common approach used for analysis of familial cancer syndromes. Despite the development of robust computational algorithms, the accrued experience of analyzing exome data sets and published guidelines, the analytical process remains an ad hoc series of important decisions and interpretations that require significant oversight. Processes and tools used for sequence data generation have matured and are standardized to a significant degree. For the remainder of the analytical pipeline, however, the results can be highly dependent on the choices made and careful review of results. We used primary exome sequence data, generously provided by the corresponding author, from a family with highly penetrant familial non-medullary thyroid cancer reported to be caused by HABP2 rs7080536 to review the importance of several key steps in the application of exome sequencing for discovery of new familial cancer genes. Differences in allele frequencies across populations, probabilities of familial segregation, functional impact predictions, corroborating biological support, and inconsistent replication studies can play major roles in influencing interpretation of results. In the case of HABP2 rs7080536 and familial non-medullary thyroid cancer, these factors led to the conclusion of an association that most data and our re-analysis fail to support, although larger studies from diverse populations will be needed to definitively determine its role.
Collapse
Affiliation(s)
- Glenn S. Gerhard
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140 USA
| | | | - James Broach
- Penn State College of Medicine, Hershey, PA 17033 USA
| | | |
Collapse
|
15
|
Cesaro E, Sodaro G, Montano G, Grosso M, Lupo A, Costanzo P. The Complex Role of the ZNF224 Transcription Factor in Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:191-222. [PMID: 28215224 DOI: 10.1016/bs.apcsb.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ZNF224 is a member of the Kruppel-associated box zinc finger proteins (KRAB-ZFPs) family. It was originally identified as a transcriptional repressor involved in gene-specific silencing through the recruitment of the corepressor KAP1, chromatin-modifying activities, and the arginine methyltransferase PRMT5 on the promoter of its target genes. Recent findings indicate that ZNF224 can behave both as a tumor suppressor or an oncogene in different human cancers. The transcriptional regulatory properties of ZNF224 in these systems appear to be complex and influenced by specific sets of interactors. ZNF224 can also act as a transcription cofactor for other DNA-binding proteins. A role for ZNF224 in transcriptional activation has also emerged. Here, we review the state of the literature supporting both roles of ZNF224 in cancer. We also examine the functional activity of ZNF224 as a transcription factor and the influence of protein partners on its dual behavior. Increasing information on the mechanism through which ZNF224 can operate could lead to the identification of agents capable of modulating ZNF224 function, thus potentially paving the way to new therapeutic strategies for treatment of cancer.
Collapse
Affiliation(s)
- E Cesaro
- University of Naples Federico II, Naples, Italy
| | - G Sodaro
- University of Naples Federico II, Naples, Italy
| | - G Montano
- BioMedical Center, Lund University, Lund, Sweden
| | - M Grosso
- University of Naples Federico II, Naples, Italy
| | - A Lupo
- University of Sannio, Benevento, Italy
| | - P Costanzo
- University of Naples Federico II, Naples, Italy.
| |
Collapse
|
16
|
Yeh CM, Chen PC, Hsieh HY, Jou YC, Lin CT, Tsai MH, Huang WY, Wang YT, Lin RI, Chen SS, Tung CL, Wu SF, Chang DC, Shen CH, Hsu CD, Chan MWY. Methylomics analysis identifies ZNF671 as an epigenetically repressed novel tumor suppressor and a potential non-invasive biomarker for the detection of urothelial carcinoma. Oncotarget 2016; 6:29555-72. [PMID: 26320192 PMCID: PMC4745746 DOI: 10.18632/oncotarget.4986] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/16/2015] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanism underlying the lethal phenomenon of urothelial carcinoma (UC) tumor recurrence remains unresolved. Here, by methylation microarray, we identified promoter methylation of the zinc-finger protein gene, ZNF671 in bladder UC tumor tissue samples, a finding that was independently validated by bisulphite pyrosequencing in cell lines and tissue samples. Subsequent assays including treatment with epigenetic depressive agents and in vitro methylation showed ZNF671 methylation to result in its transcriptional repression. ZNF671 re-expression in UC cell lines, via ectopic expression, inhibited tumor growth and invasion, in possible conjunction with downregulation of cancer stem cell markers (c-KIT, NANOG, OCT4). Clinically, high ZNF671 methylation in UC tumor tissues (n=96; 63 bladder, 33 upper urinary tract) associated with tumor grade and poor locoregional disease-free survival. Quantitative MSP analysis in a training (n=97) and test (n=61) sets of voided urine samples from bladder UC patients revealed a sensitivity and specificity of 42%-48% and 89%-92.8%, respectively, for UC cancer detection. Moreover, combining DNA methylation of ZNF671 and 2 other genes (IRF8 and sFRP1) further increased the sensitivity to 96.2%, suggesting a possible three-gene UC biomarker. In summary, ZNF671, an epigenetically silenced novel tumor suppressor, represents a potential predictor for UC relapse and non-invasive biomarker that could assist in UC clinical decision-making.
Collapse
Affiliation(s)
- Chia-Ming Yeh
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Pi-Che Chen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Hsiao-Yen Hsieh
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Chang-Te Lin
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Ming-Hsuan Tsai
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Wen-Yu Huang
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Yi-Ting Wang
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Ru-Inn Lin
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Departments of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Chia Yi, Taiwan
| | - Szu-Shan Chen
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Shu-Fen Wu
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - D Ching Chang
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Cheng-Da Hsu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Michael W Y Chan
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| |
Collapse
|
17
|
Yuki R, Aoyama K, Kubota S, Yamaguchi N, Kubota S, Hasegawa H, Morii M, Huang X, Liu K, Williams R, Fukuda MN, Yamaguchi N. Overexpression of zinc-finger protein 777 (ZNF777) inhibits proliferation at low cell density through down-regulation of FAM129A. J Cell Biochem 2016; 116:954-68. [PMID: 25560148 DOI: 10.1002/jcb.25046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023]
Abstract
Krüppel-associated box-containing zinc finger proteins (KRAB-ZFPs) regulate a wide range of cellular processes. KRAB-ZFPs have a KRAB domain, which binds to transcriptional corepressors, and a zinc finger domain, which binds to DNA to activate or repress gene transcription. Here, we characterize ZNF777, a member of KRAB-ZFPs. We show that ZNF777 localizes to the nucleus and inducible overexpression of ZNF777 inhibits cell proliferation in a manner dependent on its zinc finger domain but independent of its KRAB domain. Intriguingly, ZNF777 overexpression drastically inhibits cell proliferation at low cell density but slightly inhibits cell proliferation at high cell density. Furthermore, ZNF777 overexpression decreases the mRNA level of FAM129A irrespective of cell density. Importantly, the protein level of FAM129A strongly decreases at low cell density, but at high cell density the protein level of FAM129A does not decrease to that observed at low cell density. ZNF777-mediated inhibition of cell proliferation is attenuated by overexpression of FAM129A at low cell density. Furthermore, ZNF777-mediated down-regulation of FAM129A induces moderate levels of the cyclin-dependent kinase inhibitor p21. These results suggest that ZNF777 overexpression inhibits cell proliferation at low cell density and that p21 induction by ZNF777-mediated down-regulation of FAM129A plays a role in inhibition of cell proliferation.
Collapse
Affiliation(s)
- Ryuzaburo Yuki
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Venturini L, Stadler M, Manukjan G, Scherr M, Schlegelberger B, Steinemann D, Ganser A. The stem cell zinc finger 1 (SZF1)/ZNF589 protein has a human-specific evolutionary nucleotide DNA change and acts as a regulator of cell viability in the hematopoietic system. Exp Hematol 2015; 44:257-68. [PMID: 26738774 DOI: 10.1016/j.exphem.2015.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 01/19/2023]
Abstract
The stem cell zinc finger 1 (SZF1)/ZNF589 protein belongs to the large family of Krüppel-associated box domain-zinc finger (KRAB-ZNF) transcription factors, which are present only in higher vertebrates and epigenetically repress transcription by recruiting chromatin-modifying complexes to the promoter regions of their respective target genes. Although the distinct biological functions of most KRAB-ZNF proteins remain unknown, recent publications indicate their implication in fundamental processes, such as cell proliferation, apoptosis, differentiation, development, and tumorigenesis. SZF1/ZNF589 was first identified as a gene with SZF1-1 isoform specifically expressed in CD34(+) hematopoietic cells, strongly suggesting a role in epigenetic control of gene expression in hematopoietic stem/progenitor cells (HSPCs). However, the function of SZF1/ZNF589 in hematopoiesis has not yet been elucidated. Our study reveals SZF1/ZNF589 as a gene with a human-specific nucleotide DNA-change, conferring potential species-specific functional properties. Through shRNA-mediated loss-of-function experiments, we found that changes in expression of fundamental apoptosis-controlling genes are induced on SZF1/ZNF589 knockdown, resulting in inhibited growth of hematopoietic cell lines and decreased progenitor potential of primary human bone marrow CD34(+) cells. Moreover, we found that the SZF1/ZNF589 gene is differentially regulated during hypoxia in CD34(+) HSPCs in a cytokine-dependent manner, implicating its possible involvement in the maintenance of the hypoxic physiologic status of hematopoietic stem cells. Our results establish the role of SZF1/ZNF589 as a new functional regulator of the hematopoietic system.
Collapse
Affiliation(s)
- Letizia Venturini
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Georgi Manukjan
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Michaela Scherr
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Huang T, Shu Y, Cai YD. Genetic differences among ethnic groups. BMC Genomics 2015; 16:1093. [PMID: 26690364 PMCID: PMC4687076 DOI: 10.1186/s12864-015-2328-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Many differences between different ethnic groups have been observed, such as skin color, eye color, height, susceptibility to some diseases, and response to certain drugs. However, the genetic bases of such differences have been under-investigated. Since the HapMap project, large-scale genotype data from Caucasian, African and Asian population samples have been available. The project found that these populations were located in different areas of the PCA (Principal Component Analysis) plot. However, as an unsupervised method, PCA does not measure the differences in each single nucleotide polymorphism (SNP) among populations. RESULTS We applied an advanced mutual information-based feature selection method to detect associations between SNP status and ethnic groups using the latest HapMap Phase 3 release version 3, which included more sub-populations. A total of 299 SNPs were identified, and they can accurately predicted the ethnicity of all HapMap populations. The 10-fold cross validation accuracy of the SMO (sequential minimal optimization) model on training dataset was 0.901, and the accuracy on independent test dataset was 0.895. CONCLUSIONS In-depth functional analysis of these SNPs and their nearby genes revealed the genetic bases of skin and eye color differences among populations.
Collapse
Affiliation(s)
- Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.
| | - Yang Shu
- Sate Key Laboratory of Biotherapy, Sichuan University, Sichuan, 610041, P. R. China.
| | - Yu-Dong Cai
- College of Life Science, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
20
|
Jonsson P, Coarfa C, Mesmar F, Raz T, Rajapakshe K, Thompson JF, Gunaratne PH, Williams C. Single-Molecule Sequencing Reveals Estrogen-Regulated Clinically Relevant lncRNAs in Breast Cancer. Mol Endocrinol 2015; 29:1634-45. [PMID: 26426411 DOI: 10.1210/me.2015-1153] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Estrogen receptor (ER)α-positive tumors are commonly treated with ERα antagonists or inhibitors of estrogen synthesis, but most tumors develop resistance, and we need to better understand the pathways that underlie the proliferative and tumorigenic role of this estrogen-activated transcription factor. We here present the first single-molecule sequencing of the estradiol-induced ERα transcriptome in the luminal A-type human breast cancer cell lines MCF7 and T47D. Sequencing libraries were prepared from the polyadenylated RNA fraction after 8 hours of estrogen or vehicle treatment. Single-molecule sequencing was carried out in biological and technical replicates and differentially expressed genes were defined and analyzed for enriched processes. Correlation analysis with clinical expression and survival were performed, and follow-up experiments carried out using time series, chromatin immunoprecipitation and quantitative real-time PCR. We uncovered that ERα in addition to regulating approximately 2000 protein-coding genes, also regulated up to 1000 long noncoding RNAs (lncRNAs). Most of these were up-regulated, and 178 lncRNAs were regulated in both cell lines. We demonstrate that Long Intergenic Non-protein Coding RNA 1016 (LINC01016) and LINC00160 are direct transcriptional targets of ERα, correlate with ERα expression in clinical samples, and show prognostic significance in relation to breast cancer survival. We show that silencing of LINC00160 results in reduced proliferation, demonstrating that lncRNA expression have functional consequences. Our findings suggest that ERα regulation of lncRNAs is clinically relevant and that their functions and potential use as biomarkers for endocrine response are important to explore.
Collapse
Affiliation(s)
- Philip Jonsson
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Cristian Coarfa
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Fahmi Mesmar
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Tal Raz
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Kimal Rajapakshe
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - John F Thompson
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Preethi H Gunaratne
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| | - Cecilia Williams
- Center for Nuclear Receptors and Cell Signaling (P.J., F.M., C.W.), Department of Biology and Biochemistry, and Department of Biology and Biochemistry (P.H.G.), University of Houston, Houston, Texas 77204; Molecular and Human Genetics (C.C., K.R.) and Human Genome Sequencing Center (P.H.G.), Baylor College of Medicine, Houston, Texas 77030; Helicos Biosciences (T.R., J.F.T.), Cambridge, Massachusetts 02139; SciLifeLab, School of Biotechnology (C.W.), The Royal Institute of Technology-KTH, 17121 Solna, Sweden; and Department of Biosciences and Nutrition (C.W.), Novum, Karolinska Institutet, 14183 Stockholm, Sweden
| |
Collapse
|
21
|
Zhang Y, Li Q, Wu F, Zhou R, Qi Y, Su N, Chen L, Xu S, Jiang T, Zhang C, Cheng G, Chen X, Kong D, Wang Y, Zhang T, Zi J, Wei W, Gao Y, Zhen B, Xiong Z, Wu S, Yang P, Wang Q, Wen B, He F, Xu P, Liu S. Tissue-Based Proteogenomics Reveals that Human Testis Endows Plentiful Missing Proteins. J Proteome Res 2015; 14:3583-94. [DOI: 10.1021/acs.jproteome.5b00435] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Institute of Microbiology, Chinese Academy of Science, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qidan Li
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- BGI-Shenzhen, Shenzhen 518083, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feilin Wu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Life Science
College, Southwest Forestry University, Kunming 650224, P. R, China
| | - Ruo Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yingzi Qi
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Na Su
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Lingsheng Chen
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- State
Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China
| | | | - Tao Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chengpu Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | | | - Xinguo Chen
- Institute of Organ Transportation, General Hospital of Chinese People’s Armed Police Forces, Beijing 100039, China
| | - Degang Kong
- General
Surgery Dept., Capital Medical University Affiliated Beijing YouAn Hospital, Beijing 100069, China
| | | | - Tao Zhang
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Jin Zi
- BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Wei
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yuan Gao
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Bei Zhen
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Zhi Xiong
- Life Science
College, Southwest Forestry University, Kunming 650224, P. R, China
| | - Songfeng Wu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Pengyuan Yang
- Institutes
of Biomedical Sciences, Department of Chemistry and Zhongshan Hospital, Fudan University, 130 DongAn Road, Shanghai 200032, China
| | - Quanhui Wang
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- BGI-Shenzhen, Shenzhen 518083, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fuchu He
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Ping Xu
- State
Key Laboratory of Proteomics, Beijing Proteome Research Center, National
Engineering Research Center for Protein Drugs, National Center for
Protein Sciences, Beijing Institute of Radiation Medicine, Beijing 102206, China
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siqi Liu
- CAS
Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- BGI-Shenzhen, Shenzhen 518083, China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Gao S, Hsieh CL, Zhou J, Shemshedini L. Zinc Finger 280B regulates sGCα1 and p53 in prostate cancer cells. PLoS One 2013; 8:e78766. [PMID: 24236047 PMCID: PMC3827277 DOI: 10.1371/journal.pone.0078766] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022] Open
Abstract
The Zinc Finger (ZNF) 280B protein was identified as an unexpected target of an shRNA designed for sGCα1. Further analysis showed that these two proteins are connected in another way, with 280B up-regulation of sGCα1 expression. Knock-down and over-expression experiments showed that 280B serves pro-growth and pro-survival functions in prostate cancer. Surprisingly however, these pro-cancer functions of 280B are not mediated by sGCα1, which itself has similar functions in prostate cancer, but by down-regulated p53. The p53 protein is a second target of 280B in prostate cancer, but unlike sGCα1, p53 is down-regulated by 280B. 280B induces p53 nuclear export, leading to subsequent proteasomal degradation. The protein responsible for p53 regulation by 280B is Mdm2, the E3 ubiquitin ligase that promotes p53 degradation by inducing its nuclear export. We show here that 280B up-regulates expression of Mdm2 in prostate cancer cells, and this regulation is via the Mdm2 promoter. To demonstrate an in vivo relevance to this interaction, expression studies show that 280B protein levels are up-regulated in prostate cancer and these levels correspond to reduced levels of p53. Thus, by enhancing the expression of Mdm2, the uncharacterized 280B protein provides a novel mechanism of p53 suppression in prostate cancer.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Chen-Lin Hsieh
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Jun Zhou
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Lirim Shemshedini
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Montano G, Cesaro E, Fattore L, Vidovic K, Palladino C, Crescitelli R, Izzo P, Turco MC, Costanzo P. Role of WT1-ZNF224 interaction in the expression of apoptosis-regulating genes. Hum Mol Genet 2013; 22:1771-82. [PMID: 23362234 DOI: 10.1093/hmg/ddt027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The transcription factor Wilms' tumor gene 1, WT1, is implicated both in normal developmental processes and in the generation of a variety of solid tumors and hematological malignancies. Physical interactions of other cellular proteins with WT1 are known to modulate its function. We previously identified the Krüppel-like zinc-finger protein, ZNF224, as a novel human WT1-associating protein that enhances the transcriptional activation of the human vitamin D receptor promoter by WT1. Here, we have analyzed the effects of WT1-ZNF224 interaction on the expression of apoptosis-regulating genes in the chronic myelogenous leukemia (CML) K562 cell line. The results demonstrated that ZNF224 acts in fine tuning of WT1-dependent control of gene expression, acting as a co-activator of WT1 in the regulation of proapoptotic genes and suppressing WT1 mediated transactivation of antiapoptotitc genes. Moreover, the DNA damaging drug cytosine arabinoside (ara-C) induces expression of ZNF224 in K562 cells and this induction enhances cell apoptotic response to ara-C. These findings suggest that ZNF224 can be a mediator of DNA damage-induced apoptosis in leukemia cells.
Collapse
Affiliation(s)
- Giorgia Montano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nowick K, Carneiro M, Faria R. A prominent role of KRAB-ZNF transcription factors in mammalian speciation? Trends Genet 2012; 29:130-9. [PMID: 23253430 DOI: 10.1016/j.tig.2012.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 12/29/2022]
Abstract
The mechanisms of speciation have been one of the most debated topics in evolutionary biology. Among all reproductive barriers, postzygotic reproductive isolation is perhaps the one that has attracted the most attention from geneticists. Despite remarkable advances in the identification of loci involved in Drosophila speciation, little is known about the genes, functions, and biochemical interactions of the molecules underlying hybrid sterility and inviability in mammals. Here, we discuss the main evolutionary and molecular features that make transcription factors (TFs), especially the family of zinc finger proteins with a Krüppel-associated box domain (KRAB-ZNF), strong candidates to play an important role in postzygotic reproductive isolation. Motivated by the recent identification of the gene encoding PR domain zinc finger protein 9 (Prdm9; a KRAB-ZNF gene) as the first hybrid sterility gene identified in mammals, we further propose integrative approaches to study KRAB-ZNF genes with the main goal of characterizing the molecular pathways and interactions involved in hybrid incompatibilities.
Collapse
Affiliation(s)
- Katja Nowick
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | |
Collapse
|
25
|
Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC PLANT BIOLOGY 2012; 12:110. [PMID: 22817809 PMCID: PMC3483692 DOI: 10.1186/1471-2229-12-110] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 07/20/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Somatic embryogenesis (SE), by which somatic cells of higher plants can dedifferentiate and reorganize into new plants, is a notable illustration of cell totipotency. However, the precise molecular mechanisms regulating SE remain unclear. To characterize the molecular events of this unique process, transcriptome analysis, in combination with biochemical and histological approaches, were conducted in cotton, a typical plant species in SE. Genome-wide profiling of gene expression allowed the identification of novel molecular markers characteristic of this developmental process. RESULTS RNA-Seq was used to identify 5,076 differentially expressed genes during cotton SE. Expression profile and functional assignments of these genes indicated significant transcriptional complexity during this process, associated with morphological, histological changes and endogenous indole-3-acetic acid (IAA) alteration. Bioinformatics analysis showed that the genes were enriched for basic processes such as metabolic pathways and biosynthesis of secondary metabolites. Unigenes were abundant for the functions of protein binding and hydrolase activity. Transcription factor-encoding genes were found to be differentially regulated during SE. The complex pathways of auxin abundance, transport and response with differentially regulated genes revealed that the auxin-related transcripts belonged to IAA biosynthesis, indole-3-butyric acid (IBA) metabolism, IAA conjugate metabolism, auxin transport, auxin-responsive protein/indoleacetic acid-induced protein (Aux/IAA), auxin response factor (ARF), small auxin-up RNA (SAUR), Aux/IAA degradation, and other auxin-related proteins, which allow an intricate system of auxin utilization to achieve multiple purposes in SE. Quantitative real-time PCR (qRT-PCR) was performed on selected genes with different expression patterns and functional assignments were made to demonstrate the utility of RNA-Seq for gene expression profiles during cotton SE. CONCLUSION We report here the first comprehensive analysis of transcriptome dynamics that may serve as a gene expression profile blueprint in cotton SE. Our main goal was to adapt the RNA-Seq technology to this notable development process and to analyse the gene expression profile. Complex auxin signalling pathway and transcription regulation were highlighted. Together with biochemical and histological approaches, this study provides comprehensive gene expression data sets for cotton SE that serve as an important platform resource for further functional studies in plant embryogenesis.
Collapse
Affiliation(s)
- Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Fangyan Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Yunchao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jiao Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| |
Collapse
|
26
|
Soupene E, Rothschild J, Kuypers FA, Dean D. Eukaryotic protein recruitment into the Chlamydia inclusion: implications for survival and growth. PLoS One 2012; 7:e36843. [PMID: 22590624 PMCID: PMC3348897 DOI: 10.1371/journal.pone.0036843] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/16/2012] [Indexed: 11/28/2022] Open
Abstract
Chlamydia trachomatis (Ct) is an obligate intracellular human pathogen that multiplies within a parasitophorous vacuole called an inclusion. We report that the location of several host-cell proteins present in the cytosol, the nucleus, and membranes was altered during Ct development. The acyl-CoA synthetase enzyme ACSL3 and the soluble acyl-CoA binding protein ACBD6 were mobilized from organelle membranes and the nucleus, respectively, into the lumen of the inclusion. The nuclear protein ZNF23, a pro-apoptosis factor, was also translocated into the inclusion lumen. ZNF23, among other proteins, might be targeted by Ct to inhibit host cell apoptosis, thereby enabling bacterial survival. In contrast, the acyl-CoA:lysophosphatidylcholine acyltransferase LPCAT1, an endoplasmic reticulum membrane protein, was recruited to the inclusion membrane. The coordinated action of ACBD6, ACSL3 and LPCAT1 likely supports remodeling and scavenging of host lipids into bacterial-specific moieties essential to Ct growth. To our knowledge, these are the first identified host proteins known to be intercepted and translocated into the inclusion.
Collapse
Affiliation(s)
- Eric Soupene
- Center for Sickle Cell Disease and Thalassemia, Children's Hospital Oakland Research Institute, Oakland, California, United States of America.
| | | | | | | |
Collapse
|
27
|
Scherneck S, Vogel H, Nestler M, Kluge R, Schürmann A, Joost HG. Role of zinc finger transcription factor zfp69 in body fat storage and diabetes susceptibility of mice. Results Probl Cell Differ 2011; 52:57-68. [PMID: 20865372 DOI: 10.1007/978-3-642-14426-4_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Type 2 diabetes is a polygenic disease resulting from a combination of different disease alleles reflecting obesity, insulin resistance, and hyperglycemia. Using a positional cloning strategy with different inbred strains of mice, we mapped a disease locus for obesity-associated diabetes on chromosome 4. We analyzed all genes in this region and identified distinct differences in the expression levels of the transcription factor Zfp69. The expression of this gene mediated diabetes progression in a leptin-deficient congenic mouse line. The animals developed a disease pattern of hyperglycemia, reduced gonadal fat mass, and increased plasma and liver triglycerides, resembling a potential defect in triglyceride storage . In order to elucidate the impact of the human ortholog of Zfp69 in the development of type 2 diabetes, we tested its mRNA expression in human white adipose tissue. Consistent with the mouse data, mRNA-expression was significantly higher in diabetic subjects than in unaffected controls.
Collapse
Affiliation(s)
- Stephan Scherneck
- German Institute of Human Nutrition Potsdam-Rehbrücke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Cheng Y, Geng H, Cheng SH, Liang P, Bai Y, Li J, Srivastava G, Ng MH, Fukagawa T, Wu X, Chan AT, Tao Q. KRAB Zinc Finger Protein ZNF382 Is a Proapoptotic Tumor Suppressor That Represses Multiple Oncogenes and Is Commonly Silenced in Multiple Carcinomas. Cancer Res 2010; 70:6516-26. [DOI: 10.1158/0008-5472.can-09-4566] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
MA ZF, YANG D, HE FC, JIANG Y. Review for the regulatory functions of KRAB zinc finger proteins in embryonic development and tumorgenesis of higher vertebrates. YI CHUAN = HEREDITAS 2010; 32:431-6. [DOI: 10.3724/sp.j.1005.2010.00431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Li Y, Yan J, Kim I, Liu C, Huo K, Rao H. Rad4 regulates protein turnover at a postubiquitylation step. Mol Biol Cell 2010; 21:177-85. [PMID: 19889839 PMCID: PMC2801711 DOI: 10.1091/mbc.e09-04-0305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 10/06/2009] [Accepted: 10/23/2009] [Indexed: 11/11/2022] Open
Abstract
The ubiquitin (Ub)-binding protein Rad23 plays an important role in facilitating the transfer of substrates to the proteasome. However, the mechanism underlying Rad23's function in proteolysis remains unknown. Here, we demonstrate that Rad4, a Rad23-binding protein, also regulates ubiquitylated substrate turnover. Rad4 was known previously only as a key repair factor that directly recognizes DNA damage and initiates DNA repair. Our results, however, reveal a novel function of Rad4. We found that Rad4 and Rad23 share several common substrates. Substrates in rad4Delta cells are ubiquitylated, indicating that Rad4 regulates a postubiquitylation event. Moreover, we found that Rad4 participates in the Rad23-Ufd2 pathway, but not the Rad23-Png1 pathway, consistent with previous findings that Png1 and Rad4 or Ufd2 form separate Rad23 complexes. The Rad4-binding domain is crucial for the functioning of Rad23 in degradation, suggesting that Rad4 and Rad23 work together in proteolysis. It is interesting to note that upon DNA damage, Rad4 becomes concentrated in the nucleus and degradation of the nonnuclear protein Pex29 is compromised, further suggesting that Rad4 may influence the coordination of various cellular processes. Our findings will help to unravel the detailed mechanisms underlying the roles of Rad23 and Rad4 in proteolysis and also the interplay between DNA repair and proteolysis.
Collapse
Affiliation(s)
- Yue Li
- *Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245; and
| | - Jing Yan
- *Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245; and
- The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China
| | - Ikjin Kim
- *Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245; and
| | - Chang Liu
- *Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245; and
| | - Keke Huo
- The State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China
| | - Hai Rao
- *Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78245; and
| |
Collapse
|
31
|
Yang L, Zhang L, Wu Q, Boyd DD. Unbiased screening for transcriptional targets of ZKSCAN3 identifies integrin beta 4 and vascular endothelial growth factor as downstream targets. J Biol Chem 2008; 283:35295-304. [PMID: 18940803 DOI: 10.1074/jbc.m806965200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously described the novel zinc finger protein ZKSCAN3 as a new "driver" of colon cancer progression. To investigate the underlying mechanism and because the predicted structural features (tandem zinc fingers) are often present in transcription factors, we hypothesized that ZKSCAN3 regulates the expression of a gene(s) favoring tumor progression. We employed unbiased screening to identify a DNA binding motif and candidate downstream genes. Cyclic amplification and selection of targets using a random oligonucleotide library and ZKSCAN3 protein identified KRDGGG as the DNA recognition motif. In expression profiling, 204 genes were induced 2-29-fold, and 76 genes reduced 2-5-fold by ZKSCAN3. To enrich for direct targets, we eliminated genes under-represented (<3) for the ZKSCAN3 binding motif (identified by CAST-ing) in 2 kilobases of regulatory sequence. Up-regulated putative downstream targets included genes contributing to growth (c-Met-related tyrosine kinase (MST1R), MEK2; the guanine nucleotide exchanger RasGRP2, insulin-like growth factor-2, integrin beta 4), cell migration (MST1R), angiogenesis (vascular endothelial growth factor), and proteolysis (MMP26; cathepsin D; PRSS3 (protease serine 3)). We pursued integrin beta 4 (induced up to 6-fold) as a candidate target because it promotes breast cancer tumorigenicity and stimulates phosphatidyl 3-kinase implicated in colorectal cancer progression. ZKSCAN3 overexpression/silencing modulated integrin beta 4 expression, confirming the array analysis. Moreover, ZKSCAN3 bound to the integrin beta 4 promoter in vitro and in vivo, and the integrin beta 4-derived ZKSCAN3 motif fused upstream of a tk-Luc reporter conferred ZKSCAN3 sensitivity. Integrin beta 4 knockdown by short hairpin RNA countered ZKSCAN3-augmented anchorage-independent colony formation. We also demonstrate vascular endothelial growth factor as a direct ZKSCAN3 target. Thus, ZKSCAN3 regulates the expression of several genes favoring tumor progression including integrin beta 4.
Collapse
Affiliation(s)
- Lin Yang
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
32
|
ZNF23 induces apoptosis in human ovarian cancer cells. Cancer Lett 2008; 266:135-43. [PMID: 18384939 DOI: 10.1016/j.canlet.2008.02.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 02/17/2008] [Accepted: 02/19/2008] [Indexed: 01/29/2023]
Abstract
We recently reported that the level of ZNF23, a KRAB-containing zinc finger protein, is reduced in human cancers and it inhibits cell growth by inducing cell cycle arrest. Here we showed that ZNF23 also induces apoptosis in ovarian cancer cells. The protein level of ZNF23 in ovarian cancers was greatly down-regulated compared with that in the normal ovaries. Introduction of ZNF23 into ovarian cancer cells led to apoptosis as demonstrated by activation of caspase-3, nuclear condensation and formation of a sub-G1 peak. This apoptotic process was correlated with loss in mitochondrial membrane potential, cytochrome c release and caspase-9 activation. Furthermore, ZNF23 induced apoptosis partially via down-regulation of Bcl-XL. Thus, our results suggest that ZNF23 may also induce apoptosis to suppress tumor cell growth and points to the possibility that its down-regulation might facilitate ovarian cancer cell survival.
Collapse
|