1
|
ZHOU LIRONG, DI QINGGUO, SUN BAOHUA, WANG XIAOSHENG, LI MIN, SHI JIAN. MicroRNA-194 restrains the cell progression of non-small cell lung cancer by targeting human nuclear distribution protein C. Oncol Rep 2016; 35:3435-44. [DOI: 10.3892/or.2016.4708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
|
2
|
Fu Q, Wang W, Zhou T, Yang Y. Emerging roles of NudC family: from molecular regulation to clinical implications. SCIENCE CHINA-LIFE SCIENCES 2016; 59:455-62. [PMID: 26965524 DOI: 10.1007/s11427-016-5029-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022]
Abstract
Nuclear distribution gene C (NudC) was first found in Aspergillus nidulans as an upstream regulator of NudF, whose mammalian homolog is Lissencephaly 1 (Lis1). NudC is conserved from fungi to mammals. Vertebrate NudC has three homologs: NudC, NudC-like protein (NudCL), and NudC-like protein 2 (NudCL2). All members of the NudC family share a conserved p23 domain, which possesses chaperone activity both in conjunction with and independently of heat shock protein 90 (Hsp90). Our group and the others found that NudC homologs were involved in cell cycle regulation by stabilizing the components of the LIS1/dynein complex. Additionally, NudC plays important roles in cell migration, ciliogenesis, thrombopoiesis, and the inflammatory response. It has been reported that NudCL is essential for the stability of the dynein intermediate chain and ciliogenesis via its interaction with the dynein 2 complex. Our data showed that NudCL2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90 chaperone. The fourth distantly related member of the NudC family, CML66, a tumor-associated antigen in human leukemia, contains a p23 domain and appears to promote oncogenesis by regulating the IGF-1R-MAPK signaling pathway. In this review, we summarize our current knowledge of the NudC family and highlight its potential clinical relevance.
Collapse
Affiliation(s)
- Qiqin Fu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Wang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Wang Q, Sun R, Wu L, Huang J, Wang P, Yuan H, Qiu F, Xu X, Wu D, Yu Y, Liu X, Zhang Q. Identification and characterization of an alternative splice variant of Mpl with a high affinity for TPO and its activation of ERK1/2 signaling. Int J Biochem Cell Biol 2013; 45:2852-63. [PMID: 24144576 DOI: 10.1016/j.biocel.2013.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/16/2013] [Accepted: 09/20/2013] [Indexed: 11/29/2022]
Abstract
The thrombopoietin receptor is a crucial element in thrombopoietin-initiated signaling pathways, which stimulates the differentiation of normal hematopoietic progenitor cells, the maturation of megakaryocytes, and the generation of platelets. In this study, we identified a novel activating variant of thrombopoietin receptor, termed Mpl-D, in human megakaryoblastic leukemia Dami cells and demonstrated that the binding affinity of the Mpl-D receptor for thrombopoietin is enhanced. Cell cycle analysis revealed that in the presence of thrombopoietin, most Mpl-D expressing NIH3T3 (NIH3T3/Mpl-D) cells were prevalent in G1 phase while the S and G2/M populations were less frequently observed. Unexpectedly, thrombopoietin induced strong and prolonged ERK1/2 signaling in NIH3T3/Mpl-D cells compared with its receptor wild-type expressing NIH3T3 (NIH3T3/Mpl-F) cells. Further analysis of the mRNA levels of cyclin D1/D2 in NIH3T3/Mpl-D cells demonstrated markedly down-regulated expression compared to NIH3T3/Mpl-F cells in the presence of thrombopoietin. Thus, the prolonged activation of ERK1/2 by Mpl-D might lead to G1 cell cycle arrest through a profound reduction of cyclin D1/D2 in order to support cell survival without proliferation. We also provided tertiary structural basis for the Mpl-D and thrombopoietin interaction, which might provide insights into how Mpl-D effectively increases binding to thrombopoietin and significantly contributes to its specific signaling pathway. These results suggest a new paradigm for the regulation of cytokine receptor expression and function through the alternative splicing variant of Mpl in Dami cells, which may play a role in the pathogenesis of megakaryoblastic leukemia.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Xiao Y, Zheng Y, Tan P, Xu P, Zhang Q. Overexpression of nuclear distribution protein (hNUDC) causes pro-apoptosis and differentiation in Dami megakaryocytes. Cell Prolif 2013; 46:576-85. [PMID: 24010816 DOI: 10.1111/cpr.12055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/01/2013] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Overexpression of hNUDC, a member of the nuclear distribution protein family, reduces cell population growth in prostate cancer cell lines, concurrent with induced morphological change and enhanced polyploidization. These phenomena are also closely associated with terminal phases of megakaryocyte maturation. MATERIALS AND METHODS In Dami cells, MTT and trypan blue assays were used to investigate cell viability and proliferation effects of hNUDC, and flow cytometry was used to analyse cell cycle and DNA content. Real-time RT-PCR was employed to detect mRNA expression. Activations of caspase-3, ERK, Akt and Stat-5 were determined by immunoblotting. May-Grünwald-Giemsa staining was performed to reveal cell morphology. RESULTS AND CONCLUSION Functional studies using adenovirus-mediated hNUDC overexpression led to inhibition of megakaryocyte proliferation via cell cycle arrest in G2/M transition phase. This process could have been be mediated by upregulation of p21 and downregulation of its downstream targets, including cyclin B1, cyclin B2 and c-myc. Enhanced apoptosis in turn ensued, characterized by increased caspase-3 activation, upregulation of pro-apoptotic Bax and downregulation of anti-apoptotic Bcl-2. Furthermore, hNUDC overexpression elevated the level of megakaryocyte maturation, associated with increased polyploidy, cell morphological changes and increased expression of cell surface differentiation markers, including CD10, CD44, CD41 and CD61. Our results further suggest that the ERK signalling pathway was involved in hNUDC overexpression-induced apoptosis. Taken together, this study provides experimental evidence for overexpression of hNUDC in Dami cells and suggests that activation of apoptotic machinery may be involved in megakaryocytic differentiation.
Collapse
Affiliation(s)
- Y Xiao
- Key Laboratory of Gene Engineering of Education Ministry, School of Life Sciences, Zhongshan University, Guangzhou, 510275, China
| | | | | | | | | |
Collapse
|
5
|
Live-cell visualization of intracellular interaction between a nuclear migration protein (hNUDC) and the thrombopoietin receptor (Mpl). PLoS One 2012; 7:e51849. [PMID: 23284788 PMCID: PMC3524126 DOI: 10.1371/journal.pone.0051849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/07/2012] [Indexed: 11/29/2022] Open
Abstract
We previously demonstrated that endogenous hNUDC and Mpl co-localized in the perinuclear and cytoplasmic regions of megakaryocyte cells by indirect immunofluorescence. We further reported that hNUDC accumulated in the Golgi when NIH 3T3 cells were transfected with an hNUDC expression vector alone. However, co-transfection with hNUDC and Mpl expression vectors caused both proteins to co-localize predominantly in the cytosol. These observations led us to hypothesize that a complex containing hNUDC and Mpl may alter hNUDC subcellular location and induce its secretion. In the present study, we test this hypothesis by employing bimolecular fluorescence complementation (BiFC) to detect and visualize the complex formation of hNUDC/Mpl in living cells. We further examined in detail the subcellular locations of the hNUDC/Mpl complex by co-transfection of BiFC chimeras with known subcellular markers. The distribution of hNUDC/Mpl in the endoplasmic reticulum (ER), Golgi and cell surface was determined. Furthermore, the N-terminal 159 amino acids of hNUDC, but not C-terminal half, bound to Mpl in vivo and exhibited a similar localization pattern to that of full-length hNUDC in Cos-1 cells. Adenovirus-mediated overexpression of hNUDC or its N-terminal 159 residues in a human megakaryocyte cell line (Dami) resulted in increased levels of hNUDC or hNUDC(1-159) secretion. In contrast, depletion of Mpl by transfecting Dami cells with adenovirus bearing Mpl-targeting siRNA significantly blocked hNUDC secretion. Thus, we provide the first evidence that the N-terminal region of hNUDC contains all of the necessary information to complex with Mpl and traffic through the secretory pathway.
Collapse
|
6
|
The additive effects of combined murine nuclear migration protein with murine thrombopoietin in vitro and in vivo on normal and myelosuppressed mice. Int J Hematol 2011; 94:44-53. [DOI: 10.1007/s12185-011-0828-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/02/2011] [Accepted: 03/22/2011] [Indexed: 11/25/2022]
|
7
|
Zheng M, Cierpicki T, Burdette AJ, Utepbergenov D, Janczyk PŁ, Derewenda U, Stukenberg PT, Caldwell KA, Derewenda ZS. Structural features and chaperone activity of the NudC protein family. J Mol Biol 2011; 409:722-41. [PMID: 21530541 DOI: 10.1016/j.jmb.2011.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/07/2011] [Accepted: 04/07/2011] [Indexed: 11/19/2022]
Abstract
The NudC family consists of four conserved proteins with representatives in all eukaryotes. The archetypal nudC gene from Aspergillus nidulans is a member of the nud gene family that is involved in the maintenance of nuclear migration. This family also includes nudF, whose human orthologue, Lis1, codes for a protein essential for brain cortex development. Three paralogues of NudC are known in vertebrates: NudC, NudC-like (NudCL), and NudC-like 2 (NudCL2). The fourth distantly related member of the family, CML66, contains a NudC-like domain. The three principal NudC proteins have no catalytic activity but appear to play as yet poorly defined roles in proliferating and dividing cells. We present crystallographic and NMR studies of the human NudC protein and discuss the results in the context of structures recently deposited by structural genomics centers (i.e., NudCL and mouse NudCL2). All proteins share the same core CS domain characteristic of proteins acting either as cochaperones of Hsp90 or as independent small heat shock proteins. However, while NudC and NudCL dimerize via an N-terminally located coiled coil, the smaller NudCL2 lacks this motif and instead dimerizes as a result of unique domain swapping. We show that NudC and NudCL, but not NudCL2, inhibit the aggregation of several target proteins, consistent with an Hsp90-independent heat shock protein function. Importantly, and in contrast to several previous reports, none of the three proteins is able to form binary complexes with Lis1. The availability of structural information will be of help in further studies on the cellular functions of the NudC family.
Collapse
Affiliation(s)
- Meiying Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chen WM, Yu B, Zhang Q, Xu P. Identification of the residues in the extracellular domain of thrombopoietin receptor involved in the binding of thrombopoietin and a nuclear distribution protein (human NUDC). J Biol Chem 2010; 285:26697-709. [PMID: 20529857 PMCID: PMC2924112 DOI: 10.1074/jbc.m110.120956] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/06/2010] [Indexed: 11/06/2022] Open
Abstract
Thrombopoietin (TPO) and its receptor (Mpl) have long been associated with megakaryocyte proliferation, differentiation, and platelet formation. However, studies have also shown that the extracellular domain of Mpl (Mpl-EC) interacts with human (h) NUDC, a protein previously characterized as a human homolog of a fungal nuclear migration protein. This study was undertaken to further delineate the putative binding domain on the Mpl receptor. Using the yeast two-hybrid system assay and co-immunoprecipitation, we identified that within the Mpl-EC domain 1 (Mpl-EC-D1), amino acids 102-251 were strongly involved in ligand binding. We subsequently expressed five subdomains within this region with T7 phage display. Enzyme-linked immunosorbent binding assays identified a short stretch of peptide located between residues 206 and 251 as the minimum binding domain for both TPO and hNUDC. A series of sequential Ala replacement mutations in the region were subsequently used to identify the specific residues most involved in ligand binding. Our results point to two hydrophobic residues, Leu(228) and Leu(230), as having substantial effects on hNUDC binding. For TPO binding, mutations in residues Asp(235) and Leu(239) had the largest effect on binding efficacy. In addition, deletion of the conservative motif WGSWS reduced binding capacity for hNUDC but not for TPO. These separate binding sites on the Mpl receptor for TPO and hNUDC raise interesting implications for the cytokine-receptor interactions.
Collapse
Affiliation(s)
- Wei-Min Chen
- From the Key Laboratory of Gene Engineering of Education Ministry, Zhongshan University, Guangzhou 510275, China
| | - Bo Yu
- From the Key Laboratory of Gene Engineering of Education Ministry, Zhongshan University, Guangzhou 510275, China
| | - Qing Zhang
- From the Key Laboratory of Gene Engineering of Education Ministry, Zhongshan University, Guangzhou 510275, China
| | - Peilin Xu
- From the Key Laboratory of Gene Engineering of Education Ministry, Zhongshan University, Guangzhou 510275, China
| |
Collapse
|
9
|
Interference RNA (RNAi)-based silencing of endogenous thrombopoietin receptor (Mpl) in Dami cells resulted in decreased hNUDC-mediated megakaryocyte proliferation and differentiation. Exp Cell Res 2009; 315:3563-73. [DOI: 10.1016/j.yexcr.2009.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/22/2009] [Accepted: 06/22/2009] [Indexed: 02/02/2023]
|
10
|
Riera J, Lazo PS. The mammalian NudC-like genes: a family with functions other than regulating nuclear distribution. Cell Mol Life Sci 2009; 66:2383-90. [PMID: 19381437 PMCID: PMC11115750 DOI: 10.1007/s00018-009-0025-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/25/2009] [Accepted: 03/24/2009] [Indexed: 10/20/2022]
Abstract
Nuclear distribution gene C homolog (NudC) is a highly conserved gene. It has been identified in different species from fungi to mammals. The high degree of conservation, in special in the nudC domain, suggests that they are genes with essential functions. Most of the identified genes in the family have been implicated in cell division through the regulation of cytoplasmic dynein. As for mammalian genes, human NUDC has been implicated in the migration and proliferation of tumor cells and has therefore been considered a possible therapeutic target. There is evidence suggesting that mammalian NudC is also implicated in the regulation of the inflammatory response and in thrombopoiesis. The presence of these other functions not related to the interaction with molecular motors agrees with that these genes and their products are larger in size than their microbial orthologous, indicating that they have evolved to convey additional features.
Collapse
Affiliation(s)
- José Riera
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Campus del Cristo, 33071 Oviedo, Spain
| | - Pedro S. Lazo
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Campus del Cristo, 33071 Oviedo, Spain
| |
Collapse
|
11
|
hNUDC promotes the cell proliferation and differentiation in a leukemic cell line via activation of the thrombopoietin receptor (Mpl). Leukemia 2008; 22:1018-25. [PMID: 18288130 DOI: 10.1038/leu.2008.20] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have recently identified a human homolog of a fungal nuclear migration protein (hNUDC) that binds specifically with the extracellular domain of thrombopoietin receptor (Mpl). Preliminary studies with human CD34(+) cells cultured in serum-free medium and normal mice showed that hNUDC appears to act as a cytokine, triggering many of the same responses as thrombopoietin (TPO). More intriguingly, recent data gained using a NIH 3T3 system have demonstrated that hNUDC exerts its biological activities through activation of Mpl. In this study, we further compared the biological functions of hNUDC with TPO in an EPO-dependent UT-7 cell line that was engineered to express the thrombopoietin receptor (Mpl). These Mpl-expressing cells following stimulation by either hNUDC or TPO exhibited overlapping patterns of megakaryocytic proliferation and differentiation, manifested by cell morphological change, polyploidy and expression of CD41(+). Similar with TPO, hNUDC induced a sustained activation of the extracellular signal-regulated protein kinases-1 and -2 (ERK1/2) as well as p38 mitogen-activated kinase (p38 MAPK) pathways and these activations were inhibited in the presence of PD98059 or SB203580. Further evidence is provided that PD98059 or SB203580 inhibited hNUDC- or TPO-induced cell proliferation and differentiation, suggesting that ERK1/2 and p38 MAPK pathways are necessary in megakaryocyte development.
Collapse
|