1
|
Chen Q, Zhang H, Yang Y, Zhang S, Wang J, Zhang D, Yu H. Metformin Attenuates UVA-Induced Skin Photoaging by Suppressing Mitophagy and the PI3K/AKT/mTOR Pathway. Int J Mol Sci 2022; 23:ijms23136960. [PMID: 35805987 PMCID: PMC9266365 DOI: 10.3390/ijms23136960] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Ultraviolet (UV) radiation is a major cause of photoaging that can induce DNA damage, oxidative stress, and cellular aging. Metformin (MF) can repair DNA damage, scavenge reactive oxygen species (ROS), and protect cells. However, the mechanism by which MF inhibits cell senescence in chronic skin damage induced by UVA is unclear. In this study, human foreskin fibroblasts (HFFs) treated with UVA were used as an in vitro model and UVA-induced skin photoaging in Kunming mice was used as an in vivo model to investigate the potential skin protective mechanism of MF. The results revealed that MF treatment attenuated UVA-induced cell viability, skin aging, and activation of the PI3K/AKT/mTOR signaling pathway. Furthermore, MF treatment alleviated the mitochondrial oxidative stress and decreased mitophagy. Knockdown of Parkin by siRNA increased the clearance of MF in senescent cells. The treatment of Kunming mice with MF at a dose of 10 mg/kg/day significantly reduced UVA-induced skin roughness, epidermal thinning, collagen degradation, and skin aging. In conclusion, our experimental results suggest that MF exerts anti-photoaging effects by inhibiting mitophagy and the PI3K/AKT/mTOR signaling pathway. Therefore, our study improves the current understanding of the protective mechanism of MF against photoaging.
Collapse
Affiliation(s)
- Qiuyan Chen
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Yimeng Yang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Shuming Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Jilin University, Changchun 130021, China;
| | - Dawei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
| | - Huimei Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.C.); (H.Z.); (Y.Y.); (S.Z.); (D.Z.)
- Correspondence: ; Tel.: +86-0-431-8561-9485
| |
Collapse
|
2
|
Aguilera MO, Robledo E, Melani M, Wappner P, Colombo MI. FKBP8 is a novel molecule that participates in the regulation of the autophagic pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119212. [PMID: 35090967 DOI: 10.1016/j.bbamcr.2022.119212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 12/28/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Autophagy is a homeostatic process by which misfolded proteins, organelles and cytoplasmic material are engulfed in autophagosomal vesicles and degraded through a lisosomal pathway. FKBP8 is a member of the FK506-binding proteins family (FKBP) usually found in mitochondria and the endoplasmic reticulum. This protein plays a critical role in cell functions such as protein trafficking and folding. In the present report we demonstrate that the depletion of FKBP8 abrogated autophagy activation induced by starvation, whereas the overexpression of this protein triggered the autophagy cascade. We found that FKBP8 co-localizes with ATG14L and BECN1, both members of the VPS34 lipid kinase complex, which regulates the initial steps in the autophagosome formation process. We have also demonstrated that FKBP8 is necessary for VPS34 activity. Our findings indicate that the regulatory function of FKBP8 in the autophagy process depends of its transmembrane domain. Surprisingly, this protein was not found in autophagosomal vesicles, which reinforces the notion that the FKBP8 only participates in the initial steps of the autophagosome formation process. Taken together, our data provide evidence that FKBP8 modulates the early steps of the autophagosome formation event by interacting with the VPS34 lipid kinase complex. SUMMARY: In this article, the protein FKBP38 is reported to be a novel modulator of the initial steps of the autophagic pathway, specifically in starvation-induced autophagy. FKBP38 interacts with the VPS34 lipid kinase complex, with the transmembrane domain of FKBP38 being critical for its biological function.
Collapse
Affiliation(s)
- Milton Osmar Aguilera
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina; Microbiología, Parasitología e Inmunología, Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Esteban Robledo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Mariana Melani
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Instituto Leloir, Buenos Aires, Argentina; Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Wappner
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Instituto Leloir, Buenos Aires, Argentina
| | - María Isabel Colombo
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina; Laboratorio de Mecanismos Moleculares Implicados en el Tráfico Vesicular y la Autofagia, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina.
| |
Collapse
|
3
|
Hu Y, Xie X, Yang L, Wang A. A Comprehensive View on the Host Factors and Viral Proteins Associated With Porcine Epidemic Diarrhea Virus Infection. Front Microbiol 2021; 12:762358. [PMID: 34950116 PMCID: PMC8688245 DOI: 10.3389/fmicb.2021.762358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a coronavirus pathogen of the pig intestinal tract, can cause fatal watery diarrhea in piglets, thereby causing huge economic losses to swine industries around the world. The pathogenesis of PEDV has intensively been studied; however, the viral proteins of PEDV and the host factors in target cells, as well as their interactions, which are the foundation of the molecular mechanisms of viral infection, remain to be summarized and updated. PEDV has multiple important structural and functional proteins, which play various roles in the process of virus infection. Among them, the S and N proteins play vital roles in biological processes related to PEDV survival via interacting with the host cell proteins. Meanwhile, a number of host factors including receptors are required for the infection of PEDV via interacting with the viral proteins, thereby affecting the reproduction of PEDV and contributing to its life cycle. In this review, we provide an updated understanding of viral proteins and host factors, as well as their interactions in terms of PEDV infection. Additionally, the effects of cellular factors, events, and signaling pathways on PEDV infection are also discussed. Thus, these comprehensive and profound insights should facilitate for the further investigations, control, and prevention of PEDV infection.
Collapse
Affiliation(s)
- Yi Hu
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiaohong Xie
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Lingchen Yang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Aibing Wang
- Laboratory of Animal Disease Prevention and Control and Animal Model, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,PCB Biotechnology, LLC, Rockville, MD, United States
| |
Collapse
|
4
|
Dong S, Wang R, Yu R, Chen B, Si F, Xie C, Li Z. Identification of cellular proteins interacting with PEDV M protein through APEX2 labeling. J Proteomics 2021; 240:104191. [PMID: 33757879 PMCID: PMC7980486 DOI: 10.1016/j.jprot.2021.104191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/24/2022]
Abstract
Membrane (M) proteins of coronaviruses are the most abundant component of the virus envelope and play crucial roles in virus assembly, virus budding and the regulation of host immunity. To understand more about these functions in the context of PEDV M protein, forty host cell proteins interacting with the M protein were identified in the present study by exploiting the proximity-labeling enzyme APEX2 (a mutant soybean ascorbate peroxidase). Bioinformatic analysis showed that the identified host cell proteins were related to fifty-four signal pathways and a wide diversity of biological processes. Interaction between M and five of the identified proteins (RIG-I, PPID, NHE-RF1, S100A11, CLDN4) was confirmed by co-immunoprecipitation (Co-IP). In addition, knockdown of PPID and S100A11 genes by siRNA significantly improved virus production, indicating that the proteins encoded by the two genes were interfering with or down-regulating virus replication in infected cells. Identification of the host cell proteins accomplished in this study provides new information about the mechanisms underlying PEDV replication and immune evasion. SIGNIFICANCE: PEDV M protein is an essential structural protein implicated in viral infection, replication and assembly although the precise mechanisms underlying these functions remain enigmatic. In this study, we have identified 40 host cell proteins that interact with PEDV M protein using the proximity-labeling enzyme APEX2. Co-immunoprecipitation subsequently confirmed interactions between PEDV M protein and five host cell proteins, two of which (S100A11 and PPID) were involved in down-regulating virus replication in infected cells. This study is significant in that it formulates a strategy to provide new information about the mechanisms relating to the novel functions of PEDV M protein.
Collapse
Affiliation(s)
- Shijuan Dong
- Institute of Animal Science and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China,Shanghai Engineering Research Center of Breeding Pigs, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China
| | - Ruiyang Wang
- Institute of Animal Science and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China
| | - Ruisong Yu
- Institute of Animal Science and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China
| | - Bingqing Chen
- Institute of Animal Science and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China,Shanghai Engineering Research Center of Breeding Pigs, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China
| | - Fusheng Si
- Institute of Animal Science and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China,Shanghai Engineering Research Center of Breeding Pigs, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China
| | - Chunfang Xie
- Institute of Animal Science and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China
| | - Zhen Li
- Institute of Animal Science and Veterinary Science, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China; Shanghai Engineering Research Center of Breeding Pigs, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, PR China.
| |
Collapse
|
5
|
Chairta P, Nicolaou P, Sokratous K, Galant C, Houssiau F, Oulas A, Spyrou GM, Alarcon-Riquelme ME, Lauwerys BR, Christodoulou K. Comparative analysis of affected and unaffected areas of systemic sclerosis skin biopsies by high-throughput proteomic approaches. Arthritis Res Ther 2020; 22:107. [PMID: 32381114 PMCID: PMC7206756 DOI: 10.1186/s13075-020-02196-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Pathogenesis and aetiology of systemic sclerosis (SSc) are currently unclear, thus rendering disease prognosis, diagnosis and treatment challenging. The aim of this study was to use paired skin biopsy samples from affected and unaffected areas of the same patient, in order to compare the proteomes and identify biomarkers and pathways which are associated with SSc pathogenesis. Methods Biopsies were obtained from affected and unaffected skin areas of SSc patients. Samples were cryo-pulverised and proteins were extracted and analysed using mass spectrometry (MS) discovery analysis. Differentially expressed proteins were revealed after analysis with the Progenesis QIp software. Pathway analysis was performed using the Enrichr Web server. Using specific criteria, fifteen proteins were selected for further validation with targeted-MS analysis. Results Proteomic analysis led to the identification and quantification of approximately 2000 non-redundant proteins. Statistical analysis showed that 169 of these proteins were significantly differentially expressed in affected versus unaffected tissues. Pathway analyses showed that these proteins are involved in multiple pathways that are associated with autoimmune diseases (AIDs) and fibrosis. Fifteen of these proteins were further investigated using targeted-MS approaches, and five of them were confirmed to be significantly differentially expressed in SSc affected versus unaffected skin biopsies. Conclusion Using MS-based proteomics analysis of human skin biopsies from patients with SSc, we identified a number of proteins and pathways that might be involved in SSc progression and pathogenesis. Fifteen of these proteins were further validated, and results suggest that five of them may serve as potential biomarkers for SSc.
Collapse
Affiliation(s)
- Paraskevi Chairta
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Neurogenetics Department, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Paschalis Nicolaou
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Neurogenetics Department, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Kleitos Sokratous
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Bioinformatics ERA Chair, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Present Address: OMass Therapeutics, The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | - Christine Galant
- Department of Pathology, Université catholique de Louvain, Bruxelles, Belgium
| | - Frédéric Houssiau
- Rheumatology Department, Cliniques Universitaires Saint-Luc, Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Université catholique de Louvain, Bruxelles, Belgium
| | - Anastasis Oulas
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Bioinformatics ERA Chair, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - George M Spyrou
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus.,Bioinformatics ERA Chair, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus
| | - Marta E Alarcon-Riquelme
- Area of Medical Genomics, Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica (GENyO), Parque Tenológico de la Salud Fundación (PTS) Granada, Spain; Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | - Bernard R Lauwerys
- Department of Pathology, Université catholique de Louvain, Bruxelles, Belgium
| | - Kyproula Christodoulou
- Cyprus School of Molecular Medicine, 6 Iroon Avenue, 2371, Nicosia, Cyprus. .,Neurogenetics Department, Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371, Nicosia, Cyprus.
| |
Collapse
|
6
|
Cullinane D, Gkika KS, Byrne A, Keyes TE. Photostable NIR emitting ruthenium(II) conjugates; uptake and biological activity in live cells. J Inorg Biochem 2020; 207:111032. [PMID: 32311630 DOI: 10.1016/j.jinorgbio.2020.111032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023]
Abstract
A photostable Ru(2,2-biquinoline)2(3-(2-pyridyl)-5-(4-carboxyphenyl)-1,2,4-triazolate) (Ru(biq)2(trzbenzCOOH)) complex that exhibits near-infrared (NIR) emission centred at 786 nm is reported. The parent complex was conjugated via amide coupling to a cell-penetrating peptide sequence octa-arginine (R8), and two signal peptide sequences; the nuclear localizing sequence (NLS) VQRKRQKLMP and the mitochondria penetrating peptide (MPP) FrFKFrFK(Ac) (r = D isomer of arginine, Ac = terminal lysine amine acetyl blocked). Notably, none of the peptide conjugates were cell-permeable as chloride salts but efficient and rapid membrane permeation was observed post ion exchange with perchlorate counterion. Also, surprisingly, all three peptide conjugates exhibited potent dark cytotoxicity in both CHO and HeLa cell lines. The peptide conjugates induce cell death through a caspase dependent apoptotic pathway. At the minimum concentration of dye (approx. 15 μM) required for cell imaging, only 20% of the cells were viable after a 24 h incubation period. To overcome cytotoxicity, the parent complex was PEGylated; this dramatically decreased cytotoxicity, where 50% of cells were viable even at 150 μM concentration after 24 h. Confocal luminescence microscopy indicated that all four bioconjugates, peptides in perchlorate form and polyethylene glycol (PEG) in chloride form, were rapidly internalized within the cell. However, interestingly the precise localisation by the signal peptides observed in related complexes was not observed here and the peptide conjugates were unsuitable as luminescent probes for cell microscopy due to their high cell toxicity. The poor targeting of signal peptides in this instance is attributed to the high lipophilicity of the metal centre.
Collapse
Affiliation(s)
- David Cullinane
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Karmel Sofia Gkika
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Aisling Byrne
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | - Tia E Keyes
- School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
7
|
Volk M, Maver A, Hodžić A, Lovrečić L, Peterlin B. Transcriptome Profiling Uncovers Potential Common Mechanisms in Fetal Trisomies 18 and 21. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:565-570. [PMID: 29049012 PMCID: PMC5655413 DOI: 10.1089/omi.2017.0123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human trisomies have recently been investigated using transcriptomics approaches to identify the gene expression (GE) signatures characteristic of each of these specific aneuploidy conditions. We hypothesized that the viability of cells with gross genomic imbalances might be associated with the activation of resilience mechanisms that are common to different trisomies and that are reflected by specific shared GE patterns. We report in this article our microarray GE analyses of amniocytes from fetuses with viable trisomy conditions, trisomy 21 or trisomy 18, to detect such common expression signatures. Comparative analysis of significantly differentially expressed genes in trisomies 18 and 21 revealed six dysregulated genes common to both: OTUD5, ADAMTSL1, TADA2A, PPID, PIAS2, and MAPRE2. These genes are involved in ubiquitination, protein folding, cell proliferation, and apoptosis. Pathway-based enrichment analyses demonstrated that both trisomies showed dysregulation of the PI3K/AKT pathway, cell cycle G2/M DNA damage checkpoint regulation, and cell death and survival, as well as inhibition of the upstream regulator TP53. Our data collectively suggest that trisomies 18 and 21 share common functional GE signatures, implying that common mechanisms of resilience might be activated in aneuploid cells to resist large genomic imbalances. To the best of our knowledge, this is the first study to use global GE profiling data to identify potential common mechanisms in fetal trisomies. Studies of other trisomies using transcriptomics and multiomics approaches might further clarify mechanisms activated in trisomy syndromes.
Collapse
Affiliation(s)
- Marija Volk
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Alenka Hodžić
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Luca Lovrečić
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
8
|
The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation. Biochem Biophys Res Commun 2017; 487:807-812. [DOI: 10.1016/j.bbrc.2017.04.128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/23/2017] [Indexed: 12/23/2022]
|
9
|
He Y, Zhang L, Zhu Z, Xiao A, Yu H, Gan X. Blockade of cyclophilin D rescues dexamethasone-induced oxidative stress in gingival tissue. PLoS One 2017; 12:e0173270. [PMID: 28273124 PMCID: PMC5342226 DOI: 10.1371/journal.pone.0173270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/17/2017] [Indexed: 02/05/2023] Open
Abstract
Glucocorticoids (GCs) are frequently used for the suppression of inflammation in chronic inflammatory diseases. Excessive GCs usage is greatly associated with several side effects, including gingival ulceration, the downward migration of the epithelium, attachment loss and disruption of transeptal fibers. The mechanisms underlying GCs-induced impairments in gingival tissue remains poorly understood. Mitochondrial dysfunction is associated with various oral diseases, such as chronic periodontitis, age-related alveolar bone loss and hydrogen peroxide-induced cell injury in gingival. Here, we reported an unexplored role of cyclophilin D (CypD), the major component of mitochondrial permeability transition pore (mPTP), in dexamethasone (Dex)-induced oxidative stress accumulation and cell dysfunctions in gingival tissue. We demonstrated that the expression level of CypD significantly increased under Dex treatment. Blockade of CypD by pharmaceutical inhibitor cyclosporine A (CsA) significantly protected against Dex-induced oxidative stress accumulation in gingival tissue. And the protective effects of blocking CypD in Dex-induced gingival fibroblasts dysfunction were evidenced by rescued mitochondrial function and suppressed production of reactive oxygen species (ROS). In addition, blockade of CypD by pharmaceutical inhibitor CsA or gene knockdown also restored Dex-induced cell toxicity in HGF-1 cells, as shown by suppressed mitochondrial ROS production, increased CcO activity and decreased apoptosis. We also suggested a role of oxidative stress-mediated p38 signal transduction in this event, and antioxidant N-acety-l-cysteine (NAC) could obviously blunted Dex-induced oxidative stress. These findings provide new insights into the role of CypD-dependent mitochondrial pathway in the Dex-induced gingival injury, indicating that CypD may be potential therapeutic strategy for preventing Dex-induced oxidative stress and cell injury in gingival tissue.
Collapse
Affiliation(s)
- Yuting He
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zhang
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoli Zhu
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueqi Gan
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Homa J, Stalmach M, Wilczek G, Kolaczkowska E. Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. J Comp Physiol B 2016; 186:417-30. [PMID: 26922789 PMCID: PMC4830880 DOI: 10.1007/s00360-016-0973-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/30/2022]
Abstract
Oxidative stress is harmful to the microbes but also to the host, and may result in bystander damage or death. Because of this, respiratory burst triggered in phagocytes by pathogens is counteracted by production of antioxidative factors. The aim of this work was to examine effectiveness of the latter system in earthworms Eisenia andrei by induction of reactive oxygen species, lipofuscin and phenoloxidase by natural (LPS, zymosan, Micrococus luteus) and synthetic (phorbol ester, PMA) stimulants. The compounds impaired numbers, viability (increased apoptosis) and composition of coelomocytes, and triggered the antioxidant activity of catalase and selenium-dependent glutathione peroxidase. The natural pathogenic compounds, unlike PMA, strongly activated antioxidative responses that diminished cell apoptosis. Moreover, repeated exposure to the same or different pathogenic compounds did not induce respiratory burst exhausted phenotype showing that coelomocytes are constantly at bay to withstand numerous infections. The current study reveals importance and efficiency of the oxidative-antioxidative systems in annelids but also confirms its evolutionary conservatism and complexity even in lower taxa of the animal kingdom.
Collapse
Affiliation(s)
- J Homa
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - M Stalmach
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - G Wilczek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - E Kolaczkowska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
11
|
Fader CM, Salassa BN, Grosso RA, Vergara AN, Colombo MI. Hemin induces mitophagy in a leukemic erythroblast cell line. Biol Cell 2016; 108:77-95. [PMID: 26773440 DOI: 10.1111/boc.201500058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 01/11/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND INFORMATION In eukaryotic cells, autophagy is considered a lysosomal catabolic process which participates in the degradation of intracellular components in a vacuolar structure termed autolysosome. This pathway plays a significant role in the erythropoiesis process, contributing to the clearance of some organelles (such as mitochondria) that are not necessary in the mature red blood cells. Nevertheless, the role of autophagy in erythrocyte maturation has not been fully established. RESULTS Here, we have demonstrated that hemin (a physiological erythroid maturation stimulator) is able to induce the expression of critical autophagic genes (i.e., Map1a1b (LC3), Beclin-1 gen, Atg5) in an erythroleukemia cell type. We have also shown that hemin increased the size of autophagic vacuoles which were labelled with LC3 and the degradative lysosomal marker dye quenched-bovine serum albumin. In addition, we have determined by Western blot a rise in the lipidated form of the autophagic protein LC3 (i.e., LC3-II) upon hemin treatment. Moreover, we provide evidence that hemin induces mitochondrial membrane depolarisation and that mitochondria sequestration by autophagy requires the active form of the NIX protein. CONCLUSIONS We have found that the physiological erythroid maturation stimulator hemin is able to induce mitophagy in K562 cells, and that the autophagy adaptor NIX is necessary for mitophagy progression. K562 cells have been used as a relevant model to determine the possible therapeutic role of new differentiating compounds. SIGNIFICANCE It has been proposed that autophagy induction is a feasible new therapeutic key in fighting cancer. Our results suggest that hemin is favoring erythroid maturation by inducing an autophagic response in K562 cells, being a possible therapeutic candidate that may help in the chronic myelogenous leukemia (CML) treatment.
Collapse
Affiliation(s)
- Claudio Marcelo Fader
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina.,Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Rubén Adrián Grosso
- Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | | | - María Isabel Colombo
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina.,Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| |
Collapse
|
12
|
Claus C, Manssen L, Hübner D, Roßmark S, Bothe V, Petzold A, Große C, Reins M, Mankertz A, Frey TK, Liebert UG. Activation of the Mitochondrial Apoptotic Signaling Platform during Rubella Virus Infection. Viruses 2015; 7:6108-26. [PMID: 26703711 PMCID: PMC4690853 DOI: 10.3390/v7122928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/16/2022] Open
Abstract
Mitochondria- as well as p53-based signaling pathways are central for the execution of the intrinsic apoptotic cascade. Their contribution to rubella virus (RV)-induced apoptosis was addressed through time-specific evaluation of characteristic parameters such as permeabilization of the mitochondrial membrane and subsequent release of the pro-apoptotic proteins apoptosis-inducing factor (AIF) and cytochrome c from mitochondria. Additionally, expression and localization pattern of p53 and selected members of the multifunctional and stress-inducible cyclophilin family were examined. The application of pifithrin μ as an inhibitor of p53 shuttling to mitochondria reduced RV-induced cell death to an extent similar to that of the broad spectrum caspase inhibitor z-VAD-fmk (benzyloxycarbonyl-V-A-D-(OMe)-fmk). However, RV progeny generation was not altered. This indicates that, despite an increased survival rate of its cellular host, induction of apoptosis neither supports nor restricts RV replication. Moreover, some of the examined apoptotic markers were affected in a strain-specific manner and differed between the cell culture-adapted strains: Therien and the HPV77 vaccine on the one hand, and a clinical isolate on the other. In summary, the results presented indicate that the transcription-independent mitochondrial p53 program contributes to RV-induced apoptosis.
Collapse
Affiliation(s)
- Claudia Claus
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Lena Manssen
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Denise Hübner
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Sarah Roßmark
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Viktoria Bothe
- Division of Clinical Pharmacology, Ludwig-Maximilian University Munich, 80336 Munich, Germany.
| | - Alice Petzold
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Claudia Große
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Mareen Reins
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| | - Annette Mankertz
- WHO European Regional Reference Laboratory for Measles and Rubella, Robert Koch-Institute, 13353 Berlin, Germany.
| | - Teryl K Frey
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | - Uwe G Liebert
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|