1
|
Wang H, Chen Y, Wang X, Huang B, Xie J, Yin H, Yang J, Wu J, Yuan J, Zhang J. Germline Mutations of Holliday Junction Resolvase Genes in Multiple Primary Malignancies Involving Lung Cancer Lead to PARP Inhibitor Sensitization. Clin Cancer Res 2024; 30:1607-1618. [PMID: 38349998 DOI: 10.1158/1078-0432.ccr-22-3300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/14/2023] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
PURPOSE The incidence of multiple primary malignancies (MPM) involving lung cancer has increased in recent decades. There is an urgent need to clarify the genetic profile of such patients and explore more efficacious therapy for them. EXPERIMENTAL DESIGN Peripheral blood samples from MPM involving patients with lung cancer were assessed by whole-exome sequencing (WES), and the identified variants were referenced for pathogenicity using the public available database. Pathway enrichment analysis of mutated genes was performed to identify the most relevant pathway. Next, the effects of mutations in relevant pathway on function and response to targeted drugs were verified by in vitro and in vivo experiments. RESULTS Germline exomes of 71 patients diagnosed with MPM involving lung cancer were sequenced. Pathway enrichment analysis shows that the homologous recombination repair (HRR) pathway has the strongest correlation. Moreover, HRR genes, especially key Holliday junction resolvases (HJR) genes (GEN1, BLM, SXL4, and RMI1), were most frequently mutated, unlike the status in the samples from patients with lung cancer only. Next, we identified a total of seven mutations in HJR genes led to homologous recombination DNA repair deficiency and rendered lung cancer cells sensitive to PARP inhibitor treatment, both in vitro and in vivo. CONCLUSIONS This is the first study to map the profile of germline mutations in patients with MPM involving lung cancer. This study may shed light on early prevention and novel targeted therapies for MPM involving patients with lung cancer with HJR mutations.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, China
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yuping Chen
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Xinshu Wang
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Binhao Huang
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Juntao Xie
- Department of Surgery, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Hui Yin
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, China
| | - Jie Yang
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhuan Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Jian Yuan
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- State Key Laboratory of Cardiology and Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Smerdon MJ, Wyrick JJ, Delaney S. A half century of exploring DNA excision repair in chromatin. J Biol Chem 2023; 299:105118. [PMID: 37527775 PMCID: PMC10498010 DOI: 10.1016/j.jbc.2023.105118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
DNA in eukaryotic cells is packaged into the compact and dynamic structure of chromatin. This packaging is a double-edged sword for DNA repair and genomic stability. Chromatin restricts the access of repair proteins to DNA lesions embedded in nucleosomes and higher order chromatin structures. However, chromatin also serves as a signaling platform in which post-translational modifications of histones and other chromatin-bound proteins promote lesion recognition and repair. Similarly, chromatin modulates the formation of DNA damage, promoting or suppressing lesion formation depending on the chromatin context. Therefore, the modulation of DNA damage and its repair in chromatin is crucial to our understanding of the fate of potentially mutagenic and carcinogenic lesions in DNA. Here, we survey many of the landmark findings on DNA damage and repair in chromatin over the last 50 years (i.e., since the beginning of this field), focusing on excision repair, the first repair mechanism studied in the chromatin landscape. For example, we highlight how the impact of chromatin on these processes explains the distinct patterns of somatic mutations observed in cancer genomes.
Collapse
Affiliation(s)
- Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | - John J Wyrick
- Genetics and Cell Biology, School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
Steele TM, Tsamouri MM, Siddiqui S, Lucchesi CA, Vasilatis D, Mooso BA, Durbin-Johnson BP, Ma AH, Hejazi N, Parikh M, Mudryj M, Pan CX, Ghosh PM. Cisplatin-induced increase in heregulin 1 and its attenuation by the monoclonal ErbB3 antibody seribantumab in bladder cancer. Sci Rep 2023; 13:9617. [PMID: 37316561 PMCID: PMC10267166 DOI: 10.1038/s41598-023-36774-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
Cisplatin-based combination chemotherapy is the foundation for treatment of advanced bladder cancer (BlCa), but many patients develop chemoresistance mediated by increased Akt and ERK phosphorylation. However, the mechanism by which cisplatin induces this increase has not been elucidated. Among six patient-derived xenograft (PDX) models of BlCa, we observed that the cisplatin-resistant BL0269 express high epidermal growth factor receptor, ErbB2/HER2 and ErbB3/HER3. Cisplatin treatment transiently increased phospho-ErbB3 (Y1328), phospho-ERK (T202/Y204) and phospho-Akt (S473), and analysis of radical cystectomy tissues from patients with BlCa showed correlation between ErbB3 and ERK phosphorylation, likely due to the activation of ERK via the ErbB3 pathway. In vitro analysis revealed a role for the ErbB3 ligand heregulin1-β1 (HRG1/NRG1), which is higher in chemoresistant lines compared to cisplatin-sensitive cells. Additionally, cisplatin treatment, both in PDX and cell models, increased HRG1 levels. The monoclonal antibody seribantumab, that obstructs ErbB3 ligand-binding, suppressed HRG1-induced ErbB3, Akt and ERK phosphorylation. Seribantumab also prevented tumor growth in both the chemosensitive BL0440 and chemoresistant BL0269 models. Our data demonstrate that cisplatin-associated increases in Akt and ERK phosphorylation is mediated by an elevation in HRG1, suggesting that inhibition of ErbB3 phosphorylation may be a useful therapeutic strategy in BlCa with high phospho-ErbB3 and HRG1 levels.
Collapse
Affiliation(s)
- Thomas M Steele
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Maria Malvina Tsamouri
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Salma Siddiqui
- Research Service, VA Northern California Health Care System, Mather, CA, USA
| | - Christopher A Lucchesi
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, USA
| | - Demitria Vasilatis
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA
| | - Benjamin A Mooso
- Research Service, VA Northern California Health Care System, Mather, CA, USA
| | - Blythe P Durbin-Johnson
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Ai-Hong Ma
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Nazila Hejazi
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Yosemite Pathology Medical Group, Inc., Modesto, CA, USA
| | - Mamta Parikh
- Division of Hematology and Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA, USA
| | - Maria Mudryj
- Research Service, VA Northern California Health Care System, Mather, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Chong-Xian Pan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paramita M Ghosh
- Research Service, VA Northern California Health Care System, Mather, CA, USA.
- Department of Urological Surgery, University of California Davis School of Medicine, 4860 Y Street, Suite 3500, Sacramento, CA, 95817, USA.
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Kciuk M, Gielecińska A, Kołat D, Kałuzińska Ż, Kontek R. Cancer-associated transcription factors in DNA damage response. Biochim Biophys Acta Rev Cancer 2022; 1877:188757. [PMID: 35781034 DOI: 10.1016/j.bbcan.2022.188757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Transcription factors (TFs) constitute a wide and highly diverse group of proteins capable of controlling gene expression. Their roles in oncogenesis, tumor progression, and metastasis have been established, but recently their role in the DNA damage response pathway (DDR) has emerged. Many of them can affect elements of canonical DDR pathways, modulating their activity and deciding on the effectiveness of DNA repair. In this review, we focus on the latest reports on the effects of two TFs with dual roles in oncogenesis and metastasis (hypoxia-inducible factor-1 α (HIF1α), proto-oncogene MYC) and three epithelial-mesenchymal transition (EMT) TFs (twist-related protein 1 (TWIST), zinc-finger E-box binding homeobox 1 (ZEB1), and zinc finger protein 281 (ZNF281)) associated with control of canonical DDR pathways.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; University of Lodz, Doctoral School of Exact and Natural Sciences, Banacha Street 12/16, 90-237 Lodz, Poland.
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
5
|
OGG1 in Lung—More than Base Excision Repair. Antioxidants (Basel) 2022; 11:antiox11050933. [PMID: 35624797 PMCID: PMC9138115 DOI: 10.3390/antiox11050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 12/04/2022] Open
Abstract
As the organ executing gas exchange and directly facing the external environment, the lungs are challenged continuously by various stimuli, causing the disequilibration of redox homeostasis and leading to pulmonary diseases. The breakdown of oxidants/antioxidants system happens when the overproduction of free radicals results in an excess over the limitation of cleaning capability, which could lead to the oxidative modification of macromolecules including nucleic acids. The most common type of oxidative base, 8-oxoG, is considered the marker of DNA oxidative damage. The appearance of 8-oxoG could lead to base mismatch and its accumulation might end up as tumorigenesis. The base 8-oxoG was corrected by base excision repair initiated by 8-oxoguanine DNA glycosylase-1 (OGG1), which recognizes 8-oxoG from the genome and excises it from the DNA double strand, generating an AP site for further processing. Aside from its function in DNA damage repairment, it has been reported that OGG1 takes part in the regulation of gene expression, derived from its DNA binding characteristic, and showed impacts on inflammation. Researchers believe that OGG1 could be the potential therapy target for relative disease. This review intends to make an overall summary of the mechanism through which OGG1 regulates gene expression and the role of OGG1 in pulmonary diseases.
Collapse
|
6
|
Lee G, Kim YY, Jang H, Han JS, Nahmgoong H, Park YJ, Han SM, Cho C, Lim S, Noh JR, Oh WK, Lee CH, Kim S, Kim JB. SREBP1c-PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity. Cell Metab 2022; 34:702-718.e5. [PMID: 35417665 DOI: 10.1016/j.cmet.2022.03.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/28/2021] [Accepted: 03/23/2022] [Indexed: 01/10/2023]
Abstract
Emerging evidence indicates that the accretion of senescent cells is linked to metabolic disorders. However, the underlying mechanisms and metabolic consequences of cellular senescence in obesity remain obscure. In this study, we found that obese adipocytes are senescence-susceptible cells accompanied with genome instability. Additionally, we discovered that SREBP1c may play a key role in genome stability and senescence in adipocytes by modulating DNA-damage responses. Unexpectedly, SREBP1c interacted with PARP1 and potentiated PARP1 activity during DNA repair, independent of its canonical lipogenic function. The genetic depletion of SREBP1c accelerated adipocyte senescence, leading to immune cell recruitment into obese adipose tissue. These deleterious effects provoked unhealthy adipose tissue remodeling and insulin resistance in obesity. In contrast, the elimination of senescent adipocytes alleviated adipose tissue inflammation and improved insulin resistance. These findings revealed distinctive roles of SREBP1c-PARP1 axis in the regulation of adipocyte senescence and will help decipher the metabolic significance of senescence in obesity.
Collapse
Affiliation(s)
- Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hagoon Jang
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Ji Seul Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Hahn Nahmgoong
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Yoon Jeong Park
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sang Mun Han
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Changyun Cho
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea
| | - Sangsoo Lim
- Bioinformatics Institute, Seoul National University, Seoul 08826, South Korea
| | - Jung-Ran Noh
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Yuseong-gu, Daejeon 34141, South Korea
| | - Sun Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, South Korea; Bioinformatics Institute, Seoul National University, Seoul 08826, South Korea; Department of Computer Science and Engineering, Institute of Engineering Research, Seoul National University, Seoul 08826, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
7
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
8
|
Rapid recruitment of p53 to DNA damage sites directs DNA repair choice and integrity. Proc Natl Acad Sci U S A 2022; 119:e2113233119. [PMID: 35235448 PMCID: PMC8915893 DOI: 10.1073/pnas.2113233119] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Our work focuses on the critical longstanding question of the nontranscriptional role of p53 in tumor suppression. We demonstrate here that poly(ADP-ribose) polymerase (PARP)–dependent modification of p53 enables rapid recruitment of p53 to damage sites, where it in turn directs early repair pathway selection. Specifically, p53-mediated recruitment of 53BP1 at early time points promotes nonhomologous end joining over the more error-prone microhomology end-joining. Similarly, p53 directs nucleotide excision repair by mediating DDB1 recruitment. This property of p53 also correlates with tumor suppression in vivo. Our study provides mechanistic insight into how certain transcriptionally deficient p53 mutants may retain tumor-suppressive functions through regulating the DNA damage response. p53 is primarily known as a downstream transcriptional effector in the DNA damage-response cascade. We report that endogenous p53 rapidly accumulates at DNA damage sites within 2 s of UVA microirradiation. The kinetics of p53 recruitment mimics those of known DNA damage-response proteins, such as Ku70 and poly(ADP-ribose) polymerase (PARP), and precedes recruitment of Nbs1, 53BP1, and DDB1. Mutations in the DNA-binding and C-terminal domains significantly suppress this rapid recruitment. The C-terminal domain of p53 contains key residues for PARP interaction that are required for rapid recruitment of p53 to DNA damage sites, as is PARP-dependent modification. The presence of p53 at damage sites influences the recruitment kinetics of 53BP1 and DDB1 and directs the choice of nonhomologous end joining repair (NHEJ) and nucleotide excision repair. Mutations that suppressed rapid recruitment of p53 promoted error-prone alternative end-joining (alt-NHEJ) and inhibited nucleotide excision repair. Our finding that p53 is a critical early responder to DNA damage stands in contrast with its extensively studied role as a downstream transcriptional regulator in DNA damage repair. We highlight an unrecognized role of p53 in directing DNA repair dynamics and integrity and suggest a parallel mode of p53 tumor suppression apart from its function as a transcription factor.
Collapse
|
9
|
Pagani I, Poli G, Vicenzi E. TRIM22. A Multitasking Antiviral Factor. Cells 2021; 10:cells10081864. [PMID: 34440633 PMCID: PMC8391480 DOI: 10.3390/cells10081864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Viral invasion of target cells triggers an immediate intracellular host defense system aimed at preventing further propagation of the virus. Viral genomes or early products of viral replication are sensed by a number of pattern recognition receptors, leading to the synthesis and production of type I interferons (IFNs) that, in turn, activate a cascade of IFN-stimulated genes (ISGs) with antiviral functions. Among these, several members of the tripartite motif (TRIM) family are antiviral executors. This article will focus, in particular, on TRIM22 as an example of a multitarget antiviral member of the TRIM family. The antiviral activities of TRIM22 against different DNA and RNA viruses, particularly human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV), will be discussed. TRIM22 restriction of virus replication can involve either direct interaction of TRIM22 E3 ubiquitin ligase activity with viral proteins, or indirect protein–protein interactions resulting in control of viral gene transcription, but also epigenetic effects exerted at the chromatin level.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy;
| | - Guido Poli
- Human Immuno-Virology Unit, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy;
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, IRCCS-Ospedale San Raffaele, 20132 Milan, Italy;
- Correspondence:
| |
Collapse
|
10
|
The dystonia gene THAP1 controls DNA double-strand break repair choice. Mol Cell 2021; 81:2611-2624.e10. [PMID: 33857404 DOI: 10.1016/j.molcel.2021.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/01/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
The Shieldin complex shields double-strand DNA breaks (DSBs) from nucleolytic resection. Curiously, the penultimate Shieldin component, SHLD1, is one of the least abundant mammalian proteins. Here, we report that the transcription factors THAP1, YY1, and HCF1 bind directly to the SHLD1 promoter, where they cooperatively maintain the low basal expression of SHLD1, thereby ensuring a proper balance between end protection and resection during DSB repair. The loss of THAP1-dependent SHLD1 expression confers cross-resistance to poly (ADP-ribose) polymerase (PARP) inhibitor and cisplatin in BRCA1-deficient cells and shorter progression-free survival in ovarian cancer patients. Moreover, the embryonic lethality and PARPi sensitivity of BRCA1-deficient mice is rescued by ablation of SHLD1. Our study uncovers a transcriptional network that directly controls DSB repair choice and suggests a potential link between DNA damage and pathogenic THAP1 mutations, found in patients with the neurodevelopmental movement disorder adult-onset torsion dystonia type 6.
Collapse
|
11
|
Du H, Xia H, Liu T, Li Y, Liu J, Xie B, Chen J, Liu T, Cao L, Liu S, Li S, Wang P, Wang D, Zhang Z, Li Y, Guo X, Wu A, Li M, You F. Suppression of ELF4 in ulcerative colitis predisposes host to colorectal cancer. iScience 2021; 24:102169. [PMID: 33665583 PMCID: PMC7907480 DOI: 10.1016/j.isci.2021.102169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease, characterized by relapsing and remitting colon mucosal inflammation. For patients suffering from UC, a higher risk of colon cancer has been widely recognized. Here, we found that Elf4−/− mice developed colon tumors with 3 cycles of dextran sulfate sodium salt (DSS) treatment alone. We further showed that ELF4 suppression was prevalent in both patients with UC and DSS-induced mice models, and this suppression was caused by promoter region methylation. ELF4, upon PARylation by PARP1, transcriptionally regulated multiple DNA damage repair machinery components. Consistently, ELF4 deficiency leads to more severe DNA damage both in vitro and in vivo. Oral administration of montmorillonite powder can prevent the reduction of ELF4 in DSS-induced colitis models and lower the risk of colon tumor development during azoxymethane (AOM) and DSS induced colitis-associated cancer (CAC). These data provided additional mechanism of CAC initiation and supported the “epigenetic priming model of tumor initiation”. Elf4 expression is suppressed in both colitis and colitis-associated cancer (CAC). Elf4 deficiency leads to increased hyper-susceptibility to colitis and CAC in mice Elf4 promotes DNA damage repair upon PARylation by PARP1 Oral administration of montmorillonite lowers risk of CAC development
Collapse
Affiliation(s)
- Hongqiang Du
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Huawei Xia
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Tongtong Liu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Yingjie Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing 100000, China
| | - Jilong Liu
- Department of surgical oncology, ChuiYangLiu Hospital affiliated to Tsinghua University, Beijing 100000, China
| | - Bingteng Xie
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100000, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100000, China
| | - Jingxuan Chen
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Tong Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163000, China
| | - Lili Cao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Shengde Liu
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Siji Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Peiyan Wang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Dandan Wang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Zeming Zhang
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Yunfei Li
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| | - Xiaohuan Guo
- Institute of Immunology, Tsinghua University School of Medicine, Beijing 100000, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing 100000, China
| | - Mo Li
- Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100000, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100000, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing 100000, China
| |
Collapse
|
12
|
Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers (Basel) 2020; 12:cancers12061664. [PMID: 32585896 PMCID: PMC7352721 DOI: 10.3390/cancers12061664] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Histones are the main structural proteins of eukaryotic chromatin. Histone acetylation/ deacetylation are the epigenetic mechanisms of the regulation of gene expression and are catalyzed by histone acetyltransferases (HAT) and histone deacetylases (HDAC). These epigenetic alterations of DNA structure influence the action of transcription factors which can induce or repress gene transcription. The HATs catalyze acetylation and the events related to gene transcription and are also responsible for transporting newly synthesized histones from the cytoplasm to the nucleus. The activity of HDACs is mainly involved in silencing gene expression and according to their specialized functions are divided into classes I, II, III and IV. The disturbance of the expression and mutations of HDAC genes causes the aberrant transcription of key genes regulating important cancer pathways such as cell proliferation, cell-cycle regulation and apoptosis. In view of their role in cancer pathways, HDACs are considered promising therapeutic targets and the development of HDAC inhibitors is a hot topic in the search for new anticancer drugs. The present review will focus on HDACs I, II and IV, the best known inhibitors and potential alternative inhibitors derived from natural and synthetic products which can be used to influence HDAC activity and the development of new cancer therapies.
Collapse
Affiliation(s)
- Flávia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
| | - Umashankar Das
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
| | - Ana Lúcia Fachin
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
| | - Jonathan R. Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil; (F.A.V.); (A.L.F.)
- College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada;
- Medicine School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Pharmaceutical Sciences School, University of Ribeirão Preto, Ribeirão Preto SP CEP 14096-900, Brazil
- Correspondence: (J.R.D.); (M.M.); Tel.: +1-306-966-6331 (J.R.D.); +55-16-3603-6728 (M.M.)
| |
Collapse
|
13
|
Munnur D, Somers J, Skalka G, Weston R, Jukes-Jones R, Bhogadia M, Dominguez C, Cain K, Ahel I, Malewicz M. NR4A Nuclear Receptors Target Poly-ADP-Ribosylated DNA-PKcs Protein to Promote DNA Repair. Cell Rep 2020; 26:2028-2036.e6. [PMID: 30784586 PMCID: PMC6381605 DOI: 10.1016/j.celrep.2019.01.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 11/30/2018] [Accepted: 01/23/2019] [Indexed: 12/12/2022] Open
Abstract
Although poly-ADP-ribosylation (PARylation) of DNA repair factors had been well documented, its role in the repair of DNA double-strand breaks (DSBs) is poorly understood. NR4A nuclear orphan receptors were previously linked to DSB repair; however, their function in the process remains elusive. Classically, NR4As function as transcription factors using a specialized tandem zinc-finger DNA-binding domain (DBD) for target gene induction. Here, we show that NR4A DBD is bi-functional and can bind poly-ADP-ribose (PAR) through a pocket localized in the second zinc finger. Separation-of-function mutants demonstrate that NR4A PAR binding, while dispensable for transcriptional activity, facilitates repair of radiation-induced DNA double-strand breaks in G1. Moreover, we define DNA-PKcs protein as a prominent target of ionizing radiation-induced PARylation. Mechanistically, NR4As function by directly targeting poly-ADP-ribosylated DNA-PKcs to facilitate its autophosphorylation-promoting DNA-PK kinase assembly at DNA lesions. Selective targeting of the PAR-binding pocket of NR4A presents an opportunity for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Ria Weston
- Centre for Biomedicine, Manchester Metropolitan University, Manchester M15 6BH, UK
| | | | - Mohammed Bhogadia
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Cyril Dominguez
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
14
|
Babeu JP, Wilson SD, Lambert É, Lévesque D, Boisvert FM, Boudreau F. Quantitative Proteomics Identifies DNA Repair as a Novel Biological Function for Hepatocyte Nuclear Factor 4α in Colorectal Cancer Cells. Cancers (Basel) 2019; 11:E626. [PMID: 31060309 PMCID: PMC6562498 DOI: 10.3390/cancers11050626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor that acts as a master regulator of genes for several endoderm-derived tissues, including the intestine, in which it plays a central role during development and tumorigenesis. To better define the mechanisms by which HNF4α can influence these processes, we identified proteins interacting with HNF4α using stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomics with either immunoprecipitation of green fluorescent protein (GFP) or with proximity-dependent purification by the biotin ligase BirA (BioID), both fused to HNF4α. Surprisingly, these analyses identified a significant enrichment of proteins characterized with a role in DNA repair, a so far unidentified biological feature of this transcription factor. Several of these proteins including PARP1, RAD50, and DNA-PKcs were confirmed to interact with HNF4α in colorectal cancer cell lines. Following DNA damage, HNF4α was able to increase cell viability in colorectal cancer cells. Overall, these observations identify a potential role for this transcription factor during the DNA damage response.
Collapse
Affiliation(s)
- Jean-Philippe Babeu
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Samuel D Wilson
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Élie Lambert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - Dominique Lévesque
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François Boudreau
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
15
|
Raschellà G, Melino G, Gambacurta A. Cell death in cancer in the era of precision medicine. Genes Immun 2018; 20:529-538. [PMID: 30341419 DOI: 10.1038/s41435-018-0048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Abstract
Tumors constitute a large class of diseases that affect different organs and cell lineages. The molecular characterization of cancers of a given type has revealed an extraordinary heterogeneity in terms of genetic alterations and DNA mutations; heterogeneity that is further highlighted by single-cell DNA sequencing of individual patients. To address these issues, drugs that specifically target genes or altered pathways in cancer cells are continuously developed. Indeed, the genetic fingerprint of individual tumors can direct the modern therapeutic approaches to selectively hit the tumor cells while sparing the healthy ones. In this context, the concept of precision medicine finds a vast field of application. In this review, we will briefly list some classes of target drugs (Bcl-2 family modulators, Tyrosine Kinase modulators, PARP inhibitors, and growth factors inhibitors) and discuss the application of immunotherapy in tumors (T cell-mediated immunotherapy and CAR-T cells) that in recent years has drastically changed the prognostic outlook of aggressive cancers. We will also consider how apoptosis could represent a primary end point in modern cancer therapy and how "classic" chemotherapeutic drugs that induce apoptosis are still utilized in therapeutic schedules that involve the use of target drugs or immunotherapy to optimize the antitumor response.
Collapse
Affiliation(s)
- Giuseppe Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, 00123, Rome, Italy.
| | - Gerry Melino
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, University of Cambridge, Leicester, LE1 9HN, UK
| | - Alessandra Gambacurta
- Department of Experimental Medicine TOR, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
16
|
Hofer M, Hoferová Z, Remšík J, Nováková M, Procházková J, Fedr R, Kohoutek J, Dušek L, Hampl A, Souček K. Hematological findings in non-treated and gamma-irradiated mice deficient for MIC-1/GDF15. Physiol Res 2018; 67:623-636. [PMID: 29750874 DOI: 10.33549/physiolres.933810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Several members of the TGF-beta family are known to effectively regulate the fate of hematopoietic progenitor cells in a complex and context-dependent manner. Growth differentiation factor-15 (GDF15) is a divergent member of the TGF-beta family. This stress-induced cytokine has been proposed to possess immunomodulatory functions and its high expression is often associated with progression of a variety of pathological conditions. GDF15 is also induced by chemotherapy and irradiation. Very few fundamental studies have been published regarding the effect of GDF15 in hematopoiesis. In this study, we analyzed the hematological status of untreated and gamma-irradiated mice deficient for GDF15 as a result of genetic knock-out (KO), in order to clarify the regulatory role of GDF15 in hematopoiesis. Significant differences between GDF15 KO mice and their pertinent WT controls were found in the parameters of blood monocyte numbers, blood platelet size, and distribution width, as well as in the values of bone marrow granulocyte/macrophage progenitor cells. Different tendencies of some hematological parameters in the GDF15 KO mice in normal conditions and those under exposure of the mice to ionizing radiation were registered. These findings are discussed in the context of the GDF15 gene function and its lack under conditions of radiation-induced damage.
Collapse
Affiliation(s)
- M Hofer
- Department of Molecular Cytology and Cytometry, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic. and Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vélez-Cruz R, Johnson DG. The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. Int J Mol Sci 2017; 18:ijms18081776. [PMID: 28812991 PMCID: PMC5578165 DOI: 10.3390/ijms18081776] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 12/13/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor is known as a master regulator of the cell cycle. RB is mutated or functionally inactivated in the majority of human cancers. This transcriptional regulator exerts its function in cell cycle control through its interaction with the E2F family of transcription factors and with chromatin remodelers and modifiers that contribute to the repression of genes important for cell cycle progression. Over the years, studies have shown that RB participates in multiple processes in addition to cell cycle control. Indeed, RB is known to interact with over 200 different proteins and likely exists in multiple complexes. RB, in some cases, acts through its interaction with E2F1, other members of the pocket protein family (p107 and p130), and/or chromatin remodelers and modifiers. RB is a tumor suppressor with important chromatin regulatory functions that affect genomic stability. These functions include the role of RB in DNA repair, telomere maintenance, chromosome condensation and cohesion, and silencing of repetitive regions. In this review we will discuss recent advances in RB biology related to RB, partner proteins, and their non-transcriptional functions fighting back against genomic instability.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. Box 389, Smithville, TX 78957, USA.
- Department of Biochemistry, Midwestern University, Chicago College of Osteopathic Medicine, 555 31st Street, Downers Grove, IL 60515, USA.
| | - David G Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. Box 389, Smithville, TX 78957, USA.
| |
Collapse
|
18
|
Vélez-Cruz R, Manickavinayaham S, Biswas AK, Clary RW, Premkumar T, Cole F, Johnson DG. RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev 2017; 30:2500-2512. [PMID: 27940962 PMCID: PMC5159665 DOI: 10.1101/gad.288282.116] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
The retinoblastoma (RB) tumor suppressor is recognized as a master regulator that controls entry into the S phase of the cell cycle. Its loss leads to uncontrolled cell proliferation and is a hallmark of cancer. RB works by binding to members of the E2F family of transcription factors and recruiting chromatin modifiers to the promoters of E2F target genes. Here we show that RB also localizes to DNA double-strand breaks (DSBs) dependent on E2F1 and ATM kinase activity and promotes DSB repair through homologous recombination (HR), and its loss results in genome instability. RB is necessary for the recruitment of the BRG1 ATPase to DSBs, which stimulates DNA end resection and HR. A knock-in mutation of the ATM phosphorylation site on E2F1 (S29A) prevents the interaction between E2F1 and TopBP1 and recruitment of RB, E2F1, and BRG1 to DSBs. This knock-in mutation also impairs DNA repair, increases genomic instability, and renders mice hypersensitive to IR. Importantly, depletion of RB in osteosarcoma and breast cancer cell lines results in sensitivity to DNA-damaging drugs, which is further exacerbated by poly-ADP ribose polymerase (PARP) inhibitors. We uncovered a novel, nontranscriptional function for RB in HR, which could contribute to genome instability associated with RB loss.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA
| | - Swarnalatha Manickavinayaham
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA
| | - Anup K Biswas
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA
| | - Regina Weaks Clary
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA
| | - Tolkappiyan Premkumar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA
| | - David G Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA
| |
Collapse
|
19
|
Yin K, Chhabra Y, Tropée R, Lim YC, Fane M, Dray E, Sturm RA, Smith AG. NR4A2 Promotes DNA Double-strand Break Repair Upon Exposure to UVR. Mol Cancer Res 2017; 15:1184-1196. [PMID: 28607006 DOI: 10.1158/1541-7786.mcr-17-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/07/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Exposure of melanocytes to ultraviolet radiation (UVR) induces the formation of UV lesions that can produce deleterious effects in genomic DNA. Encounters of replication forks with unrepaired UV lesions can lead to several complex phenomena, such as the formation of DNA double-strand breaks (DSBs). The NR4A family of nuclear receptors are transcription factors that have been associated with mediating DNA repair functions downstream of the MC1R signaling pathway in melanocytes. In particular, emerging evidence shows that upon DNA damage, the NR4A2 receptor can translocate to sites of UV lesion by mechanisms requiring post-translational modifications within the N-terminal domain and at a serine residue in the DNA-binding domain at position 337. Following this, NR4A2 aids in DNA repair by facilitating chromatin relaxation, allowing accessibility for DNA repair machinery. Using A2058 and HT144 melanoma cells engineered to stably express wild-type or mutant forms of the NR4A2 proteins, we reveal that the expression of functional NR4A2 is associated with elevated cytoprotection against UVR. Conversely, knockdown of NR4A2 expression by siRNA results in a significant loss of cell viability after UV insult. By analyzing the kinetics of the ensuing 53BP1 and RAD51 foci following UV irradiation, we also reveal that the expression of mutant NR4A2 isoforms, lacking the ability to translocate, transactivate, or undergo phosphorylation, display compromised repair capacity.Implications: These data expand the understanding of the mechanism by which the NR4A2 nuclear receptor can facilitate DNA DSB repair. Mol Cancer Res; 15(9); 1184-96. ©2017 AACR.
Collapse
Affiliation(s)
- Kelvin Yin
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Yash Chhabra
- Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia.,Dermatology Research Centre, The University of Queensland-Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Romain Tropée
- Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| | - Yi Chieh Lim
- Translational Brain Cancer Research, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mitchell Fane
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Eloise Dray
- Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia.,Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, Queensland, Australia.,Mater Research - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland-Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Aaron G Smith
- Dermatology Research Centre, The University of Queensland-Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia. .,Queensland University of Technology, Institute of Health and Biomedical Innovation, Kelvin Grove, Queensland, Australia
| |
Collapse
|
20
|
Raschellà G, Melino G, Malewicz M. New factors in mammalian DNA repair-the chromatin connection. Oncogene 2017; 36:4673-4681. [PMID: 28394347 PMCID: PMC5562846 DOI: 10.1038/onc.2017.60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/01/2017] [Accepted: 02/04/2017] [Indexed: 12/12/2022]
Abstract
In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death. It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR regulation.
Collapse
Affiliation(s)
- G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Rome, Italy
| | - G Melino
- Department of Experimental Medicine &Surgery, University of Rome Tor Vergata, Rome, Italy.,MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| | - M Malewicz
- MRC Toxicology Unit, Hodgkin Building, Leicester, UK
| |
Collapse
|
21
|
Yin K, Smith AG. Nuclear receptor function in skin health and disease: therapeutic opportunities in the orphan and adopted receptor classes. Cell Mol Life Sci 2016; 73:3789-800. [PMID: 27544210 PMCID: PMC11108460 DOI: 10.1007/s00018-016-2329-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
The skin forms a vital barrier between an organism's external environment, providing protection from pathogens and numerous physical and chemical threats. Moreover, the intact barrier is essential to prevent water and electrolyte loss without which terrestrial life could not be maintained. Accordingly, acute disruption of the skin through physical or chemical trauma needs to be repaired timely and efficiently as sustained skin pathologies ranging from mild irritations and inflammation through to malignancy impact considerably on morbidity and mortality. The Nuclear Hormone Receptor Family of transcriptional regulators has proven to be highly valuable targets for addressing a range of pathologies, including metabolic syndrome and cancer. Indeed members of the classic endocrine sub-group, such as the glucocorticoid, retinoid, and Vitamin D receptors, represent mainstay treatment strategies for numerous inflammatory skin disorders, though side effects from prolonged use are common. Emerging evidence has now highlighted important functional roles for nuclear receptors belonging to the adopted and orphan subgroups in skin physiology and patho-physiology. This review will focus on these subgroups and explore the current evidence that suggests these nuclear receptor hold great promise as future stand-alone or complementary drug targets in treating common skin diseases and maintaining skin homeostasis.
Collapse
Affiliation(s)
- Kelvin Yin
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aaron G Smith
- Dermatology Research Centre, School of Medicine, University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Science, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
22
|
Rajput P, Pandey V, Kumar V. Stimulation of ribosomal RNA gene promoter by transcription factor Sp1 involves active DNA demethylation by Gadd45-NER pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:953-63. [PMID: 27156884 DOI: 10.1016/j.bbagrm.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 01/29/2023]
Abstract
The well-studied Pol II transcription factor Sp1 has not been investigated for its regulatory role in rDNA transcription. Here, we show that Sp1 bound to specific sites on rDNA and localized into the nucleoli during the G1 phase of cell cycle to activate rDNA transcription. It facilitated the recruitment of Pol I pre-initiation complex and impeded the binding of nucleolar remodeling complex (NoRC) to rDNA resulting in the formation of euchromatin active state. More importantly, Sp1 also orchestrated the site-specific binding of Gadd45a-nucleotide excision repair (NER) complex resulting in active demethylation and transcriptional activation of rDNA. Interestingly, knockdown of Sp1 impaired rDNA transcription due to reduced engagement of the Gadd45a-NER complex and hypermethylation of rDNA. Thus, the present study unveils a novel role of Sp1 in rDNA transcription involving promoter demethylation.
Collapse
MESH Headings
- A549 Cells
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Nucleolus/metabolism
- DNA Methylation
- DNA Repair
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Epigenesis, Genetic
- Euchromatin/chemistry
- Euchromatin/metabolism
- G1 Phase
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- HCT116 Cells
- HEK293 Cells
- Humans
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Sp1 Transcription Factor/antagonists & inhibitors
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Pallavi Rajput
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Vijaya Pandey
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
23
|
Chang J, Lu Y, Boswell WT, Boswell M, Caballero KL, Walter RB. Molecular genetic response to varied wavelengths of light in Xiphophorus maculatus skin. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:104-115. [PMID: 26460196 PMCID: PMC4662885 DOI: 10.1016/j.cbpc.2015.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
Xiphophorus fishes represent a model often utilized to study UVB induced tumorigenesis. Recently, varied genetic responses to UVB exposure have been documented in the skin of female and male Xiphophorus, as have differences in UVB response in the skin of different parental species and for interspecies hybrids produced from crossing them. Additionally, it has been shown that exposure to "cool white" fluorescent light induces a shift in the genetic profiles of Xiphophorus skin that is nearly as robust as the UVB response, but involves a fundamentally different set of genes. Given these results and the use of Xiphophorus interspecies hybrids as an experimental model for UVB inducible melanoma, it is of interest to characterize genes that may be transcriptionally modulated in a wavelength specific manner. The global molecular genetic response of skin upon exposure of the intact animal to specific wavelengths of light has not been investigated. Herein, we report results of RNA-Seq experiments from the skin of male Xiphophorus maculatus Jp 163 B following exposure to varied 50nm wavelengths of light ranging from 300-600nm. We identify two specific wavelength regions, 350-400nm (88 genes) and 500-550nm (276 genes), that exhibit transcriptional modulation of a significantly greater number of transcripts than any of the other 50nm regions in the 300-600nm range. Observed functional sets of genes modulated within these two transcriptionally active light regions suggest different mechanisms of gene modulation.
Collapse
Affiliation(s)
- Jordan Chang
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Yuan Lu
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - William T Boswell
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Mikki Boswell
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Kaela L Caballero
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| | - Ronald B Walter
- Molecular Bioscience Research Group and Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA.
| |
Collapse
|
24
|
Dicks N, Gutierrez K, Michalak M, Bordignon V, Agellon LB. Endoplasmic reticulum stress, genome damage, and cancer. Front Oncol 2015; 5:11. [PMID: 25692096 PMCID: PMC4315039 DOI: 10.3389/fonc.2015.00011] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/12/2015] [Indexed: 01/30/2023] Open
Abstract
Endoplasmic reticulum (ER) stress has been linked to many diseases, including cancer. A large body of work has focused on the activation of the ER stress response in cancer cells to facilitate their survival and tumor growth; however, there are some studies suggesting that the ER stress response can also mitigate cancer progression. Despite these contradictions, it is clear that the ER stress response is closely associated with cancer biology. The ER stress response classically encompasses activation of three separate pathways, which are collectively categorized the unfolded protein response (UPR). The UPR has been extensively studied in various cancers and appears to confer a selective advantage to tumor cells to facilitate their enhanced growth and resistance to anti-cancer agents. It has also been shown that ER stress induces chromatin changes, which can also facilitate cell survival. Chromatin remodeling has been linked with many cancers through repression of tumor suppressor and apoptosis genes. Interplay between the classic UPR and genome damage repair mechanisms may have important implications in the transformation process of normal cells into cancer cells.
Collapse
Affiliation(s)
- Naomi Dicks
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Karina Gutierrez
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta , Edmonton, AB , Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University , Montréal, QC , Canada
| | - Luis B Agellon
- School of Dietetics and Human Nutrition, McGill University , Montréal, QC , Canada
| |
Collapse
|