1
|
Bashir I, Dilshad E. A comparative study of Mentha longifolia var. asiatica and Zygophyllum arabicum ZnO nanoparticles against breast cancer targeting Rab22A gene. PLoS One 2024; 19:e0308982. [PMID: 39213285 PMCID: PMC11364221 DOI: 10.1371/journal.pone.0308982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer worldwide, and the incidence rate has increased enormously over the last three decades. Rab proteins are members of the Rab GTPase superfamily. The aberrant function of these proteins leads to the development of tumors. Mentha longifolia var. asiatica and Zygophyllum arabicum have been known for their therapeutic potential for ages. The present study aimed to synthesize ZnO nanoparticles encapsulated with the extracts of M. longifolia var. asiatica and Z. arabicum and evaluating their therapeutic potential against breast cancer, targeting the Rab22A gene and its protein. UV-Vis spectrophotometer showed characteristic absorbance peaks at 295 nm and 345 nm for Z. arabicum and M. longifolia var. asiatica ZnONPs, respectively. The FTIR bands of Z. arabicum nanoparticles suggested the presence of aldehydes, alcohols, and polyols whereas bands of M. longifolia var. asiatica ZnONPs suggested the presence of carboxyl groups, hydroxyl groups, alkynes, and amines. SEM revealed the size of Z. arabicum ZnO NPs to be 25 ± 4 nm with a spherical shape as compared to nanoparticles of M. longifolia var. asiatica having a size of 35 ± 6 nm with a hexagonal shape. EDX determined the elemental composition of both particles. The cytotoxicity of both plant extracts and respective NPs was determined against the MCF-7 breast cancer cell line, which was found to be significant with an IC50 value of 51.68 μM for Z. arabicum and 88.02 μM for M. longifolia var. asiatica ZnO compared to plant extracts (64.01 μM and 107.9 μM for Z. arabicum and M. longifolia var. asiatica). The gene expression and protein levels of Rab22A were decreased in nanoparticle-treated cells as compared to the control group. The apoptotic role of synthesized nanoparticles against the MCF-7 cell line was also determined by the expression of apoptotic pathway genes and proteins (bax, caspase 3, caspase 8 and caspase 9). All samples showed significant apoptotic activity by activating intrinsic and extrinsic pathway genes. The activity of Z. arabicum was more eminent as compared to M. longifolia var. asiatica which was evident by the greater expression of studied genes and proteins as determined by Real-time qPCR and ELISA. This is the first-ever report describing the comparative analysis of the efficacy of Z. arabicum and M. longifolia var. asiatica ZnONPs against breast cancer.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Papanikolaou NA, Kakavoulia M, Ladias C, Papavassiliou AG. The ras-related protein RAB22A interacts with hypoxia-inducible factor 1-alpha (HIF-1α) in MDA-MB-231 breast cancer cells in hypoxia. Mol Biol Rep 2024; 51:564. [PMID: 38647725 DOI: 10.1007/s11033-024-09516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Recent studies suggest that hypoxia-inducible factor 1-alpha (HIF-1α) and the small GTPase protein Ras-related protein Rab-22 A (RAB22A) may be colocalized in the cytoplasm and that as a conequence they may enhance the formation of microvesicles in breast cancer cells under hypoxia. Therefore, we sought to determine whether these two proteins are present in intracellular complexes in breast carcinoma cells. METHODS AND RESULTS Evaluation using molecular docking indicated that HIF-1α and RAB22A interact with each other. Co-immunoprecipitation of endogenous or ectopically expressed HIF-1α and RAB22A proteins in MDA-MB-231 breast cancer cells or HEK-293T cells demonstrated that endogenous HIF-1α and RAB22A can form an intracellular complex; however, transiently expressed HIF-1α and RAB22A failed to interact. Investigating RAB22A and HIF-1α interactions in various cancer cell lines under hypoxia may shed light on their roles in cancer cell survival and progression through regulation of intracellular trafficking by HIF-1α under hypoxic conditions. CONCLUSIONS Our study is the first to reveal the potential involvement of HIF-1α in intracellular trafficking through physical interactions with the small GTPase protein RAB22A. We discuss the implications of our work on the role of exosomes and microvesicles in tumor invasiveness.
Collapse
Affiliation(s)
- Nikolaos A Papanikolaou
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece.
| | - Maria Kakavoulia
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Macedonia, Greece
| | - Christos Ladias
- Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Epirus, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| |
Collapse
|
3
|
Huang S, Bao Y, Kong L, Gao S, Hua C. Insights into the complex interactions between Rab22a and extracellular vesicles in cancers. Inflamm Res 2024; 73:99-110. [PMID: 38066108 DOI: 10.1007/s00011-023-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
INTRODUCTION Oncogenic Ras-related GTP-binding proteins, referred to as Rabs, are characterized by their intricate interactions with upstream, downstream molecules, and notably, extracellular vesicles (EVs). While the expansive family of Rabs and their associated signaling pathways have been exhaustively dissected, Rab22a emerges as an entity of outstanding interest, owing to its potent influence in many biological processes and its conspicuous correlation with cancer metastasis and migration. A burgeoning interest in the interactions between Rab22a and EVs in the field of oncology underscores the necessity for more in-depth reviews and scholarly discourses. METHODS We performed a review based on published original and review articles related to Rab22a, tumor, microRNA, exosome, microvesicles, EVs, CD147, lysosome, degradation, endosomal recycling, etc. from PubMed, Web of Science and Google Scholar databases. RESULTS AND CONCLUSIONS We summarize the regulatory processes governing the expression of Rab22a and the mutants of Rab22a. Notably, the present understanding of complex interactions between Rab22a and EVs are highlighted, encompassing both the impact of Rab22a on the genesis of EVs and the role of EVs that are affected by Rab22a mutants in propelling tumor advancement. The dynamic interaction between Rab22a and EVs plays a significant role in the progression of tumors, and it can provide novel insights into the pathogenesis of cancers and the development of new therapeutic targets.
Collapse
Affiliation(s)
- Shenghao Huang
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Bao
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lingjie Kong
- School of the 2nd Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
4
|
Hu Q, Xu L, Yi Q, Yuan J, Wu G, Wang Y. miR-204 suppresses uveal melanoma cell migration and invasion through negative regulation of RAB22A. Funct Integr Genomics 2023; 23:49. [PMID: 36705739 DOI: 10.1007/s10142-022-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/28/2023]
Abstract
Uveal melanoma (UM), a frequently seen adulthood primary ocular malignancy, shows high aggressiveness. Accumulating studies have revealed the crucial effects of microRNAs (miRNAs) on tumorigenesis and development in various human tumors. miR-204, the cancer-associated miRNA, shows dysregulation and is related to several human malignancies, but its effect on UM remains unknown. The present work focused on exploring miR-204's effect on UM and elucidating its possible molecular mechanisms. According to our results, miR-204 expression markedly increased within both UM tissues and cell lines. As revealed by functional analysis, miR-204 suppressed UM cell invasion and migration. Besides, RAB22A expression decreased through directly binding miR-204 into the corresponding 3' untranslated region (3'UTR) in UM cells. Furthermore, the RAB22A mRNA level increased, which was negatively related to the miR-204 level within UM samples. As revealed by mechanical research, miR-204 exerted its inhibition on the invasion and migration of UM cells via RAB22A. Taken together, this study suggested the tumor-suppressing effect of miR-204 on UM through down-regulating RAB22A. Thus, miR-204 may serve as the new anti-UM therapeutic target.
Collapse
Affiliation(s)
- Qidi Hu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Lingli Xu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Quanyong Yi
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Jianshu Yuan
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Guohai Wu
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China
| | - Yuwen Wang
- Department of Ophthalmology, The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, No. 599 Beimingcheng Road, Ningbo, 315040, China.
| |
Collapse
|
5
|
Wen F, Meng F, Li X, Li Q, Liu J, Zhang R, Zhao Y, Zhang Y, Wang X, Ju S, Cui Y, Lu Z. Characterization of prognostic value and immunological roles of RAB22A in hepatocellular carcinoma. Front Immunol 2023; 14:1086342. [PMID: 36936971 PMCID: PMC10021109 DOI: 10.3389/fimmu.2023.1086342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Background The protein-coding gene RAB22A, a member of the RAS oncogene family, is amplified or overexpressed in certain cancers. However, its action mechanism in hepatocellular carcinoma (HCC) remains unclear. Here, we aimed to examine the connection between RAB22A and survival prognosis in HCC and explore the biological significance of RAB22A. Methods A database-based pan-cancer expression analysis of RAB22A was performed. Kaplan-Meier analysis and Cox regression were performed to evaluate the association between RAB22A expression and survival prognosis in HCC. Using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), various potential biological functions and regulatory pathways of RAB22A in HCC were discovered. Tumor immune infiltration was studied using the single sample gene set enrichment analysis (ssGSEA) method. N6-methyladenosine modifications and the regulatory network of competitive endogenous RNA (ceRNA) were verified in the TCGA cohort. Results RAB22A was upregulated in HCC samples and cell lines. A high RAB22A expression in HCC was strongly correlated with sex, race, age, weight, TNM stage, pathological stage, tumor status, histologic grade, TP53 mutation status, and alpha fetal protein (AFP) levels. Overexpression of RAB22A indicated a poor prognosis was related to overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). GO and KEGG analyses revealed that the differentially expressed genes related to RAB22A might be involved in the proteasomal protein catabolic process, ncRNA processing, ribosome ribosomal subunit, protein serine/threonine kinase activity, protein serine kinase activity, Endocytosis, and non-alcoholic fatty liver disease. GSEA analyses revealed that the differentially expressed genes related to RAB22A might be involved in the T cell receptor, a co-translational protein, that binds to the membrane, axon guidance, ribosome, phagocytosis, and Eukaryotic translation initiation. RAB22A was correlated with N6-methyladenosine expression in HCC and established RAB22A-related ceRNA regulatory networks. Finally,RAB22A expression was positively connected the levels of infiltrating with T helper cells, Tcm cells, and Th2 cells,In contrast, we observed negatively correlations with cytotoxic cells, DCs, and pDCs cells.Moreover,RAB22A expression showed a strong correlation with various immunomarkergroups in HCC. Conclusions RAB22A is a potential therapeutic target for improving HCC prognosis and is closely related to immune cell infiltration.
Collapse
Affiliation(s)
- Fukai Wen
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fanshuai Meng
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuewen Li
- The Department of Inpatient Central Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingyu Li
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaming Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunzheng Zhao
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Zhang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Ju
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifeng Cui
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yifeng Cui, ; Zhaoyang Lu,
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Yifeng Cui, ; Zhaoyang Lu,
| |
Collapse
|
6
|
Ubiquitin-specific protease TRE17/USP6 promotes tumor cell invasion through the regulation of glycoprotein CD147 intracellular trafficking. J Biol Chem 2022; 298:102335. [PMID: 35926707 PMCID: PMC9440431 DOI: 10.1016/j.jbc.2022.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/20/2022] Open
Abstract
Disordered expression and distribution of plasma membrane proteins at the cell surface leads to diverse malignant phenotypes in tumors, including cell invasion. The ubiquitin-specific protease TRE17/USP6, an oncogene identified in Ewing sarcoma, is highly expressed in several cancers and locally aggressive tumor-like lesions. We have previously demonstrated that TRE17 regulates the trafficking of plasma membrane proteins that enter cells via clathrin-independent endocytosis (CIE); TRE17 prevents CIE cargo proteins from being targeted to lysosomes for degradation by deubiquitylating them. However, functional insights into the effects of TRE17-mediated CIE cargo trafficking on cell invasion remain unknown. Here, we show that increased expression of TRE17 enhances invasiveness of the human sarcoma cell line HT-1080 by elevating the cell surface levels of the membrane glycoprotein CD147, which plays a central role in tumor progression. We demonstrate overexpression of TRE17 decreases ubiquitylated CD147, which is accompanied by suppression of CD147 transport to lysosomes, resulting in the stabilization and increase of cell surface-localized CD147. On the other hand, we show knockdown of TRE17 decreases cell surface CD147, which is coupled with reduced production of matrix metalloproteinases (MMPs), the enzymes responsible for extracellular matrix degradation. Furthermore, we demonstrate that inhibition of CD147 by a specific inhibitor alleviated the TRE17-promoted tumor cell invasion. We therefore propose a model for the pathogenesis of TRE17-driven tumors in which TRE17 increases CD147 at the cell surface by preventing its lysosomal degradation, which in turn enhances MMP synthesis and matrix degradation, thereby promoting tumor cell invasion.
Collapse
|
7
|
Rab22a Promotes Epithelial-Mesenchymal Transition in Papillary Thyroid Carcinoma by Activating PI3K/AKT/mTOR Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1874550. [PMID: 35757470 PMCID: PMC9217539 DOI: 10.1155/2022/1874550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Background Rab22a is a member of the RAS superfamily, involved in early endosome formation and intracellular vesicle transport. Rab22a is significantly upregulated in a variety of malignant tumors. However, its function in thyroid cancer has never been addressed. Methods The expression of Rab22a in paraffin sections of 101 patients was detected by immunohistochemical staining. By upregulating and downregulating the expression of Rab22a in thyroid cancer cell lines, the effect of Rab22a on cell proliferation, invasion, and migration was analyzed. Co-IP was employed, and the interaction between Rab22a and PI3Kp85α was shown. The function of Rab22a on PI3K/AKT/mTOR signaling and epithelial-mesenchymal transition (EMT) was further studied by western blot analysis. Results Immunostaining showed that Rab22a was significantly overexpressed in thyroid cancer tissues but negative in adjacent normal tissues or nodular goiters. The proliferation, migration, invasion, and EMT in papillary thyroid carcinoma cell lines were enhanced upon Rab22a overexpression but inhibited after knocking down Rab22a. The co-IP assay demonstrated an interaction between Rab22a and PI3K85α, an effector of PI3K. We further found that Rab22a can activate the PI3K/AKT/mTOR signaling pathway. However, the ability of Rab22a to promote the proliferation, invasion, migration, and EMT of papillary thyroid carcinoma cells was significantly inhibited after being treated with LY294002, a PI3K inhibitor. Conclusions Rab22a can promote the EMT process and enhance proliferation, migration, and invasion of papillary thyroid carcinoma cells by activating the PI3K/AKT/mTOR signaling pathway. Our study provides new pathological diagnosis clues and clinical treatment targets for thyroid cancer.
Collapse
|
8
|
Wang J, Luo X, Lu J, Wang X, Miao Y, Li Q, Wang L. Rab22a promotes the proliferation, migration, and invasion of lung adenocarcinoma via up-regulating PI3K/Akt/mTOR signaling pathway. Exp Cell Res 2022; 416:113179. [PMID: 35487271 DOI: 10.1016/j.yexcr.2022.113179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 11/04/2022]
Abstract
Rab22a, a member of the proto-oncogene RAS family, belongs to the Rab5 subfamily. It participates in early endosome formation and regulates vesicle trafficking. The relationship between Rab22a and tumorigenesis remains elusive. In non-small cell lung cancer specimens, immunohistochemical staining showed consistently high expression of Rab22a in lung adenocarcinoma, but not in squamous cell carcinoma. In lung adenocarcinoma cell lines, A549 and H1299, transfection with Rab22a significantly promoted cell proliferation, migration, and invasion, whereas interference with Rab22a specific siRNA significantly inhibited the above capacities. Transfection with Rab22a also up-regulated the phosphorylation levels of core effector proteins on the PI3K/Akt/mTOR pathway. The Co-IP assay further confirmed the interaction between Rab22a and PI3Kp85α, the core regulatory subunit of PI3K. Application of rapamycin, the mTOR inhibitor, significantly reduced the upregulation of the proliferation, migration, and invasion abilities of lung adenocarcinoma cells transfected with Rab22a. These results suggest that Rab22a can promote the malignant phenotype of lung adenocarcinoma by upregulating the PI3K/Akt/mTOR signaling pathway, and may function as a potential anti-tumor therapeutic target.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue Luo
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jinxi Lu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xi Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Chang F, Li J, Sun Q, Wei S, Song Y. Hsa_circ_0017639 regulates cisplatin resistance and tumor growth via acting as a miR-1296-5p molecular sponge and modulating sine oculis homeobox 1 expression in non-small cell lung cancer. Bioengineered 2022; 13:8806-8822. [PMID: 35287543 PMCID: PMC9161884 DOI: 10.1080/21655979.2022.2053810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cisplatin (DDP)-induced chemoresistance is an important reason for the failure of non-small cell lung cancer (NSCLC) treatment. Circular RNAs (circRNAs) participate in the chemoresistance of diverse cancers. However, the function of hsa_circ_0017639 (circ_0017639) in the DDP resistance of NSCLC is unclear. Forty-one NSCLC samples (21 DDP-resistant samples and 20 DDP-sensitive samples) were utilized in the research. The relative expression levels of some genes were determined by real-time quantitative polymerase chain reaction (RT-qPCR). 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay for half-maximal inhibitory concentration (IC50) value of DDP and cell viability, colony formation and 5-ethynyl-2’-deoxyuridine (EDU) assays for cell proliferation, flow cytometry assay for cell apoptosis, transwell assay for cell invasion and wound-healing assay for cell migration were performed. The regulation mechanism of circ_0017639 was demonstrated by a dual-luciferase reporter assay. We observed higher levels of circ_0017639 in DDP-resistant NSCLC samples and cells. Functionally, circ_0017639 silencing decreased tumor growth and elevated DDP sensitivity in vivo and induced apoptosis, repressed proliferation, invasion, and migration of DDP-resistant NSCLC cells in vitro. Mechanically, circ_0017639 modulated sine oculis homeobox 1 (SIX1) expression via sponging microRNA (miR)-1296-5p. Also, miR-1296-5p inhibitor restored circ_0017639 knockdown-mediated impacts on cell DDP resistance in DDP-resistant NSCLCs. Furthermore, SIX1 overexpression counteracted the inhibiting impact of miR-1296-5p upregulation on DDP resistance and malignant phenotypes of DDP-resistant NSCLC cells. In conclusion, circ_0017639 conferred DDP resistance and promoted tumor growth via elevating SIX1 expression through sequestering miR-1296-5p in NSCLC, providing a new mechanism for understanding the chemoresistance and progression of NSCLC.
Collapse
Affiliation(s)
- Feiyun Chang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Jiali Li
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Quan Sun
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Shuqing Wei
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yongming Song
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| |
Collapse
|
10
|
Li L, Li Z, Qu J, Wei X, Suo F, Xu J, Liu X, Chen C, Zheng S. Novel long non‐coding RNA CYB561‐5 promotes aerobic glycolysis and tumorigenesis by interacting with basigin in non‐small cell lung cancer. J Cell Mol Med 2022; 26:1402-1412. [PMID: 35064752 PMCID: PMC8899181 DOI: 10.1111/jcmm.17057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Abnormally expressed long non‐coding RNAs (lncRNAs) have been recognized as potential diagnostic biomarkers or therapeutic targets in non‐small cell lung cancer (NSCLC). The role of the novel lnc‐CYB561‐5 in NSCLC and its specific biological activity remain unknown. In this study, lncRNAs highly expressed in NSCLC tissue samples compared with paired adjacent normal tissue samples and atypical adenomatous hyperplasia were identified by RNA‐seq analysis. Lnc‐CYB561‐5 is highly expressed in human NSCLC and is associated with a poor prognosis in lung adenocarcinoma. In vivo, downregulation of lnc‐CYB561‐5 significantly decreases tumour growth and metastasis. In vitro, lnc‐CYB561‐5 knockdown treatment inhibits cell migration, invasion and proliferation ability, as well as glycolysis rates. In addition, RNA pulldown and RNA immunoprecipitation (RIP) assays show that basigin (Bsg) protein interacts with lnc‐CYB561‐5. Overall, this study demonstrates that lnc‐CYB561‐5 is an oncogene in NSCLC, which is involved in the regulation of cell proliferation and metastasis. Lnc‐CYB561‐5 interacts with Bsg to promote the expression of Hk2 and Pfk1 and further lead to metabolic reprogramming of NSCLC cells.
Collapse
Affiliation(s)
- Longfei Li
- Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Zhimin Li
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Jingming Qu
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Xiangju Wei
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Feng Suo
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Jilei Xu
- Department of Thoracic Surgery Xuzhou Cancer Hospital Xuzhou China
| | - Xiucheng Liu
- Department of Thoracic Surgery Shanghai Pulmonary HospitalTongji University School of Medicine Shanghai China
| | - Chang Chen
- Department of Thoracic Surgery Shanghai Pulmonary HospitalTongji University School of Medicine Shanghai China
| | - Shiying Zheng
- Department of Thoracic Surgery The First Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
11
|
Tu J, Chen W, Zheng L, Fang S, Zhang D, Kong C, Yang Y, Qiu R, Zhao Z, Lu C, Lu X, Ji J. Circular RNA Circ0021205 Promotes Cholangiocarcinoma Progression Through MiR-204-5p/RAB22A Axis. Front Cell Dev Biol 2021; 9:653207. [PMID: 34012964 PMCID: PMC8126682 DOI: 10.3389/fcell.2021.653207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023] Open
Abstract
Cholangiocarcinomas (CCA) are biliary tract tumors that are often challenging to diagnosis and treatment. Accumulated evidence reveals that circular RNAs (circRNAs) are involved in multiple cancer progression. However, the function of circRNAs in cholangiocarcinoma remains largely unclear. In this study, we found that circ_0021205 expression was up-regulated in CCA and positively correlated with tumor size and TNM stage. To further explore the role of circ_0021205 in CCA, cell functional assays were performed. The results showed that circ_0021205 promoted the proliferation, migration, and invasion of CCA cells. In vivo experiments showed that circ_0021205 inhibition reduced tumorigenesis in mice. In addition, mechanisms investigation demonstrated that circ_0021205 exerts its oncogenic function by sponging miR-204-5p to regulate the expression of RAB22A. Overall, this study revealed that circ_0021205 might serve as a potential diagnostic biomarker or therapeutic target for CCA.
Collapse
Affiliation(s)
- Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Dengke Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Chunli Kong
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| | - Xiaojie Lu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Clinical College of The Affiliated Central Hospital, Lishui University, Lishui, China
| |
Collapse
|
12
|
Zhou J, Gao F, Zhang H, Xing M, Xu Z, Zhang R. MiR-520b inhibits proliferation, migration and invasion in gallbladder carcinoma by targeting RAB22A. Arch Med Sci 2021; 17:481-491. [PMID: 33747283 PMCID: PMC7959058 DOI: 10.5114/aoms.2019.89650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/04/2019] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Previous studies have reported that miR-520b exhibited inhibitory effects on various human tumors, whereas the effects of miR-520b on gallbladder carcinoma (GBC) have remained unclear. To investigate the effects of miR-520b on GBC progression and reveal the underlying mechanisms, this study was performed. MATERIAL AND METHODS MiR-520b and RAB22A mRNA levels were analyzed by quantitative real-time PCR (qPCR). RAB22A protein level was analyzed via Western blot and immunohistochemical (IHC) analysis. The proliferation, colony formation ability, migration and invasion of NOZ cells were measured via MTT, colony formation, wound healing and transwell invasion assay respectively. RESULTS MiR-520b expression level was lower in human GBC tissues than that in neighboring normal tissues. MiR-520b mimic repressed NOZ cell proliferation, colony formation ability, migration and invasion, whereas miR-520b inhibitor exhibited opposite effects. Dual luciferase reporter assay confirmed that miR-520b could bind to the 3'-untranslated regions of RAB22A mRNA. Moreover, RAB22A overexpression significantly abolished the anti-tumor effects of miR-520b in a NOZ cell model. Western blot, qPCR and IHC analysis proved that human GBC tissues showed a higher RAB22A expression level than neighboring normal tissues. Additionally, there was a negative association between miR-520b and RAB22A expression. CONCLUSIONS MiR-520b had suppressive effects on GBC via targeting RAB22A in vitro.
Collapse
Affiliation(s)
- Jianpeng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Feng Gao
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hua Zhang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingxuan Xing
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zining Xu
- Norman Bethune Health Science Center of Jilin University, Changchun, Jilin, China
| | - Ruoyan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Brito C, Barral DC, Pojo M. Subversion of Ras Small GTPases in Cutaneous Melanoma Aggressiveness. Front Cell Dev Biol 2020; 8:575223. [PMID: 33072757 PMCID: PMC7538714 DOI: 10.3389/fcell.2020.575223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022] Open
Abstract
The rising incidence and mortality rate associated with the metastatic ability of cutaneous melanoma represent a major public health concern. Cutaneous melanoma is one of the most invasive human cancers, but the molecular mechanisms are poorly understood. Moreover, currently available therapies are not efficient in avoiding melanoma lethality. In this context, new biomarkers of prognosis, metastasis, and response to therapy are necessary to better predict the disease outcome. Additionally, the knowledge about the molecular alterations and dysregulated pathways involved in melanoma metastasis may provide new therapeutic targets. Members of the Ras superfamily of small GTPases regulate various essential cellular activities, from signaling to membrane traffic and cytoskeleton dynamics. Therefore, it is not surprising that they are differentially expressed, and their functions subverted in several types of cancer, including melanoma. Indeed, Ras small GTPases were found to regulate melanoma progression and invasion. Hence, a better understanding of the mechanisms regulated by Ras small GTPases that are involved in melanoma tumorigenesis and progression may provide new therapeutic strategies to block these processes. Here, we review the current knowledge on the role of Ras small GTPases in melanoma aggressiveness and the molecular mechanisms involved. Furthermore, we summarize the known involvement of these proteins in melanoma metastasis and how these players influence the response to therapy.
Collapse
Affiliation(s)
- Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| | - Duarte C Barral
- CEDOC, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Lisbon, Portugal
| |
Collapse
|
14
|
Zhao L, Xue M, Zhang L, Guo B, Qin Y, Jiang Q, Sun R, Yang J, Wang L, Liu L, Wang X, Huang C, Tong D. MicroRNA-4268 inhibits cell proliferation via AKT/JNK signalling pathways by targeting Rab6B in human gastric cancer. Cancer Gene Ther 2020; 27:461-472. [PMID: 31303644 DOI: 10.1038/s41417-019-0118-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/26/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play critical roles in the tumorigenesis and progression of gastric cancer (GC). However, the biological function of miR-4268 in GC and its mechanism remain unclear. In the present study, qTR-PCR found that the expression of miR-4268 was significantly downregulated in GC tissues and cell lines. The overexpression of miR-4268 inhibited GC cell proliferation and the cell cycle G1/S phase transition, and induced cell apoptosis. In contrast, inhibition of miR-4268 promoted cell proliferation and G1-S transition, and suppressed cell apoptosis. Further analyses revealed that miR-4268 expression was negatively correlated with Rab6B expression in GC tissues. Rab6B was verified to be a direct target of miR-4268. Notably, silencing Rab6B resulted in the same biological effects in GC cells as those induced by overexpression of miR-4268. Importantly, both miR-4268 overexpression and Rab6B silence inhibited the AKT/JNK signaling pathways, which modulated cell cycle regulators (Cyclin D1 and CDK4). In contrast, inhibition of miR-4268 promoted the AKT/JNK signaling pathways. MiR-4268 overexpression also promoted the p38 MAPK signaling pathway. Taken together, miR-4268 suppresses GC cell proliferation through inhibiting the AKT/JNK signaling pathways by targeting Rab6B and induces cell apoptosis through promoting the p38 MAPK signaling pathway. Our findings indicate a tumor-suppressor role of miR-4268 in GC pathogenesis and the potential of miR-4268 in GC theropy.
Collapse
Affiliation(s)
- Lingyu Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Meng Xue
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lu Zhang
- Department of Foreign Languages, Ming De College of Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Bo Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yannan Qin
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ruifang Sun
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Juang Yang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Lumin Wang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Liying Liu
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiaofei Wang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Chen Huang
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Dongdong Tong
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
He M, Shen L, Jiang C, Gao G, Wang K, Jiao Y, Sun L, Cui Y, Ke Z, Yang Z. Rab22a is a novel prognostic marker for cell progression in breast cancer. Int J Mol Med 2020; 45:1037-1046. [PMID: 32124943 PMCID: PMC7053859 DOI: 10.3892/ijmm.2020.4486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) is the most common female malignant tumor worldwide. The mechanism of tumorigenesis is still unclear. Ras‑related proteins in brain (Rab)22a belongs to the Ras superfamily, which may act as an oncogene and participate in carcinogenesis. The present study aims to identify whether Rab22a could be a novel biomarker of prognosis and determine the effects of Rab22a on BC cell progression. A total 258 BC and 56 para‑tumor or non‑tumor formalin fixed paraffin embedded tissues were stained through immunohistochemistry. The association between Rab22a expression and clinicopathological features, as well as overall survival status were analyzed. The expression level of Rab22a in breast cell lines were detected using reverse transcription‑quantitative PCR and western blotting. SK‑BR‑3 cells were infected with Rab22a short hairpin RNA lenti‑virus and the ability of cell proliferation, migration and invasion were measured. Gene Set Enrichment Analysis (GSEA) was employed to analyze the pathways involved in the Rab22a mRNA high level group. Rab22a was found to be overexpressed in BC tissues and upregulated in BC cells. High expression of Rab22a was related to a poor prognosis of patients with BC. Knockdown of Rab22a decreased the proliferation, migration and invasion ability of BC cells. GSEA indicated that certain pathways, including mammalian target of rapamycin complex 1 and protein secretion were upregulated, while pathways, such as hypoxia and KRas were downregulated in the Rab22a high level group. Rab22a is of prognostic value for BC and necessary for BC cell proliferation.
Collapse
Affiliation(s)
- Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin 130022
| | - Leihua Shen
- Department of General Surgery, Xi'an Central Hospital, Xi'an, Shanxi 710000
- Department of Breast Surgery
| | - Chengwei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033
| | - Ge Gao
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033
| | | | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021
| | | | | | - Zirui Ke
- Department of Breast Surgery
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | | |
Collapse
|
16
|
Sun X, Xu W, Zang C, Li N. miRNA-520c-3p accelerates progression of nasopharyngeal carcinoma via targeting RAB22A. Oncol Lett 2019; 19:771-776. [PMID: 31897193 PMCID: PMC6924133 DOI: 10.3892/ol.2019.11144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/13/2019] [Indexed: 12/29/2022] Open
Abstract
Biological function of microRNA-20c-3p (miRNA-520c-3p) in the progression of nasopharyngeal carcinoma (NPC) and the potential mechanism were investigated. Relative level of miRNA-520c-3p in NPC tissues and adjacent normal tissues was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Particularly, miRNA-520c-3p level in NPC with different tumor stages and tumor sizes was examined. Subsequently, miRNA-520c-3p level in nasopharyngeal epithelial cells and NPC cells was detected. The potential influence of miRNA-520c-3p on the proliferative ability and cell cycle progression of NPC cells were evaluated through cell counting kit-8 (CCK-8) and flow cytometry. The target gene of miRNA-520c-3p was verified by dual-luciferase reporter gene assay. Regulatory role of miRNA-520c-3p/RAB22A in the malignant progression of NPC was identified. miRNA-520c-3p was downregulated in NPC tissues and cell lines. Its level was lower in NPC with worse tumor grade and larger tumor size. Overexpression of miRNA-520c-3p suppressed the proliferative ability and arrested cell cycle in G0/G1 phase. RAB22A was confirmed to be the downstream target of miRNA-520c-3p. In NPC tissues and cell lines, RAB22A remained in higher abundance relative to controls. Overexpression of RAB22A reversed the inhibitory effects of overexpressed miRNA-520c-3p on proliferative ability and cell cycle progression of NPC cells. miRNA-520c-3p is downregulated in NPC, which accelerates the malignant progression of NPC by targeting RAB22A.
Collapse
Affiliation(s)
- Xiaohan Sun
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wenrui Xu
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chuanshan Zang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Na Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
17
|
Qi S, Su L, Li J, Zhang C, Ma Z, Liu G, Zhang Q, Jia G, Piao Y, Zhang S. Arf6-driven endocytic recycling of CD147 determines HCC malignant phenotypes. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:471. [PMID: 31752956 PMCID: PMC6868876 DOI: 10.1186/s13046-019-1464-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adhesion molecules distributed on the cell-surface depends upon their dynamic trafficking that plays an important role during cancer progression. ADP-ribosylation factor 6 (Arf6) is a master regulator of membrane trafficking. CD147, a tumor-related adhesive protein, can promote the invasion of liver cancer. However, the role of Arf6 in CD147 trafficking and its contribution to liver cancer progression remain unclear. METHODS Stable liver cancer cell lines with Arf6 silencing and over-expression were established. Confocal imaging, flow cytometry, biotinylation and endomembrane isolation were used to detect CD147 uptake and recycling. GST-pull down, gelatin zymography, immunofluorescence, cell adhesion, aggregation and tight junction formation, Transwell migration, and invasion assays were used to examine the cellular phenotypes. GEPIA bioinformatics, patient's specimens and electronic records collection, and immunohistochemistry were performed to obtain the clinical relevance for Arf6-CD147 signaling. RESULTS We found that the endocytic recycling of CD147 in liver cancer cells was controlled by Arf6 through concurrent Rab5 and Rab22 activation. Disruption of Arf6-mediated CD147 trafficking reduced the cell-matrix and cell-cell adhesion, weakened cell aggregation and junction stability, attenuated MMPs secretion and cytoskeleton reorganization, impaired HGF-stimulated Rac1 activation, and markedly decreased the migration and invasion of liver cancer cells. Moreover, high-expression of the Arf6-CD147 signaling components in HCC (hepatocellular carcinoma) was closely correlated with poor clinical outcome of patients. CONCLUSIONS Our results revealed that Arf6-mediated CD147 endocytic recycling is required for the malignant phenotypes of liver cancer. The Arf6-driven signaling machinery provides excellent biomarkers or therapeutic targets for the prevention of liver cancer.
Collapse
Affiliation(s)
- Shanshan Qi
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Linjia Su
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Jing Li
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Chuanshan Zhang
- Department of Pathology, Third Central Hospital of Tianjin Medical University, 83 Jintang Road, Tianjin, 300170, China
| | - Zhe Ma
- Department of Pathology, Third Central Hospital of Tianjin Medical University, 83 Jintang Road, Tianjin, 300170, China
| | - Guiqiu Liu
- Department of Pathology, Third Central Hospital of Tianjin Medical University, 83 Jintang Road, Tianjin, 300170, China
| | - Qing Zhang
- Department of Clinical Laboratory, Cancer Hospital of Tianjin Medical University, Huan Hu Xi Road, Ti Yuan Bei, He Xi District, Tianjin, 300060, China
| | - Guhe Jia
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Yongjun Piao
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
18
|
Manshouri R, Coyaud E, Kundu ST, Peng DH, Stratton SA, Alton K, Bajaj R, Fradette JJ, Minelli R, Peoples MD, Carugo A, Chen F, Bristow C, Kovacs JJ, Barton MC, Heffernan T, Creighton CJ, Raught B, Gibbons DL. ZEB1/NuRD complex suppresses TBC1D2b to stimulate E-cadherin internalization and promote metastasis in lung cancer. Nat Commun 2019; 10:5125. [PMID: 31719531 PMCID: PMC6851102 DOI: 10.1038/s41467-019-12832-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/29/2019] [Indexed: 02/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, due in part to the propensity of lung cancer to metastasize. Aberrant epithelial-to-mesenchymal transition (EMT) is a proposed model for the initiation of metastasis. During EMT cell-cell adhesion is reduced allowing cells to dissociate and invade. Of the EMT-associated transcription factors, ZEB1 uniquely promotes NSCLC disease progression. Here we apply two independent screens, BioID and an Epigenome shRNA dropout screen, to define ZEB1 interactors that are critical to metastatic NSCLC. We identify the NuRD complex as a ZEB1 co-repressor and the Rab22 GTPase-activating protein TBC1D2b as a ZEB1/NuRD complex target. We find that TBC1D2b suppresses E-cadherin internalization, thus hindering cancer cell invasion and metastasis. Non-small cell lung cancer (NSCLC) is often associated with metastasis to the lungs. Here, the authors perform independent screens and identify NuRD as a co-repressor of ZEB1, and demonstrate TBC1D2b as a downstream target of ZEB1/NuRD complex regulating NSCLC metastasis.
Collapse
Affiliation(s)
- Roxsan Manshouri
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Etienne Coyaud
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Samrat T Kundu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Peng
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sabrina A Stratton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kendra Alton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rakhee Bajaj
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jared J Fradette
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rosalba Minelli
- Department of Cancer Genomics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael D Peoples
- Department of Cancer Genomics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alessandro Carugo
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fengju Chen
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher Bristow
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey J Kovacs
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tim Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine and Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Brian Raught
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Men W, Li W, Li Y, Zhao J, Qu X, Li P, Gong S. RUFY3 Predicts Poor Prognosis and Promotes Metastasis through Epithelial-mesenchymal Transition in Lung Adenocarcinoma. J Cancer 2019; 10:6278-6285. [PMID: 31772661 PMCID: PMC6856751 DOI: 10.7150/jca.35072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/01/2019] [Indexed: 01/24/2023] Open
Abstract
Background: RUFY3 (RUN and FYVE domain-containing protein 3) has been shown to participate in cell migration, membrane transportation, and cellular signaling and is dysregulated in several cancer processes. However, the role of RUFY3 in lung cancer remains unclear. In the present study, we aimed to study the expression of RUFY3 and assess its clinical significance in lung adenocarcinoma. Materials and Methods: We used immunohistochemistry to detect RUFY3 protein expression in human lung adenocarcinoma and adjacent normal lung tissue from 125 patients who underwent surgical resection of the lung cancer. RUFY3 expression was assessed in association with clinicopathological characteristics and clinical prognosis of lung adenocarcinoma patients. The expression of RUFY3 in three different lung adenocarcinoma cell lines and one normal lung epithelial cell (BEAS-2B) was detected by western blot. RNAi technique was used to silence RUFY3. We assessed cell migration by Trans-well assay and wound healing assay. Results: In lung adenocarcinoma tissues, RUFY3 protein was significantly upregulated compared to paired normal lung tissues. High cytoplasmic RUFY3 levels were associated with lymph node metastasis, TNM staging, and survival status. Patients with the highest expression level of RUFY3 had a shorter survival time than patients with the lowest expression. Inhibition of RUFY3 by siRNA inhibited cell migration. Furthermore, silence of RUFY3 lead to up-regulation of E-cadherin, but down-regulation of N-cadherin, Vimentin and Slug. Conclusions: Our study is first to demonstrated that abnormal expression of RUFY3 indicates poor prognosis in lung adenocarcinoma and also indicates that RUFY3 may be related to EMT process. This highlights the potential of RUFY3 as a novel prognostic biomarker for lung adenocarcinoma.
Collapse
Affiliation(s)
- Wanfu Men
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenya Li
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jungang Zhao
- Department of Thoracic Surgery, Shenjing Affiliated Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaohan Qu
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Peiwen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shulei Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
20
|
A Humanized Yeast Phenomic Model of Deoxycytidine Kinase to Predict Genetic Buffering of Nucleoside Analog Cytotoxicity. Genes (Basel) 2019; 10:genes10100770. [PMID: 31575041 PMCID: PMC6826991 DOI: 10.3390/genes10100770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug–gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the Saccharomyces cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug–gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug–gene interaction specific to cytarabine was less enriched in gene ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-gene ontology (GO)-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast–human homologs with correlated differential gene expression and drug efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.
Collapse
|
21
|
YIPF2 is a novel Rab-GDF that enhances HCC malignant phenotypes by facilitating CD147 endocytic recycle. Cell Death Dis 2019; 10:462. [PMID: 31189879 PMCID: PMC6561952 DOI: 10.1038/s41419-019-1709-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023]
Abstract
An increased surface level of CIE (clathrin-independent endocytosis) proteins is a new feature of malignant neoplasms. CD147 is a CIE glycoprotein highly up-regulated in hepatocellular carcinoma (HCC). The ability to sort out the early endosome and directly target the recycling pathway confers on CD147 a prolonged surface half-life. However, current knowledge on CD147 trafficking to and from the cell-surface is limited. In this study, an MSP (membrane and secreted protein)-cDNA library was screened against EpoR/LR-F3/CD147EP-expressed cells by MAPPIT (mammalian protein–protein interaction trap). CD147 co-expressing with the new binder was investigated by GEPIA (gene expression profiling interactive analysis). The endocytosis, ER-Golgi trafficking and recycling of CD147 were measured by confocal imaging, flow cytometry, and biotin-labeled chase assays, respectively. Rab GTPase activation was checked by GST-RBD pull-down and MMP activity was measured by gelatin zymography. HCC malignant phenotypes were determined by cell adhesion, proliferation, migration, Transwell motility, and invasion assays. An ER-Golgi-resident transmembrane protein YIPF2 was identified as an intracellular binder to CD147. YIPF2 correlated and co-expressed with CD147, which is a survival predictor for HCC patients. YIPF2 is critical for CD147 glycosylation and trafficking functions in HCC cells. YIPF2 acts as a Rab-GDF (GDI-displacement factor) regulating three independent trafficking steps. First, YIPF2 recruits and activates Rab5 and Rab22a GTPases to the endomembrane structures. Second, YIPF2 modulates the endocytic recycling of CD147 through distinctive regulation on Rab5 and Rab22a. Third, YIPF2 mediates the mature processing of CD147 via the ER-Golgi trafficking route. Decreased YIPF2 expression induced a CD147 efficient delivery to the cell-surface, promoted MMP secretion, and enhanced the adhesion, motility, migration, and invasion behaviors of HCC cells. Thus, YIPF2 is a new trafficking determinant essential for CD147 glycosylation and transport. Our findings revealed a novel YIPF2-controlled ER-Golgi trafficking signature that promotes CD147-medated malignant phenotypes in HCC.
Collapse
|
22
|
Fang Z, Li C, Li S. MicroRNA-193b acts as a tumor suppressor in colon cancer progression via targeting RAB22A. Exp Ther Med 2019; 17:3921-3928. [PMID: 31007734 PMCID: PMC6468329 DOI: 10.3892/etm.2019.7435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/04/2019] [Indexed: 01/08/2023] Open
Abstract
To explore microRNA (miR)-193b expression and its potential role in colon cancer, reverse transcription-quantitative polymerase chain reaction was performed to detect the miR-193b expression levels in 62 colon cancer tissues and normal adjacent tissues. The miR-193b-overexpressed cell line SW620 was used to study the role of miR-193b in colon cancer. Subsequently, a Transwell assay and cell cycle assay were performed to observe the functional cell changes in the in vitro expression levels of miR-193b. Results indicated that miR-193b expression levels were significantly decreased in colon cancer tissues compared with adjacent normal tissue (P<0.001) and the expression of miR-193b was significantly correlated with TNM staging (P=0.03) and lymph node invasion (P=0.007). Furthermore, overexpression of miR-193b significantly decreased colon cancer cell cycle progression and its migration ability. In addition, the present findings suggested that the increased expression of miR-193b by RAB22A, inhibited downstream proteins involved in the Ras signaling pathway, including the Ras and extracellular signal-related kinase which may inhibit cancer proliferation and migration. In conclusion, the aim was to clarify the association of miR-193b expression with colon cancer, and to explore the mechanism of miR-193b in colon cancer proliferation and cell migration. The preliminary findings revealed that miR-193b may have an important role in the process in colon cancer cell cycle and migration by the RAB22A-Ras signaling pathway, thus providing a theoretical basis for miR-193b as a potential molecular target for colon cancer treatment.
Collapse
Affiliation(s)
- Zhiming Fang
- Department of Anus and Intestine Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Chengren Li
- Department of Anus and Intestine Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Shouchao Li
- Department of Anus and Intestine Surgery, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
23
|
Zou C, Fan J, He M, Xu Y, Wang K, Cai Y, Li M. Epigenetic silencing of Rab39a promotes epithelial to mesenchymal transition of cervical cancer through AKT signaling. Exp Cell Res 2019; 378:139-148. [PMID: 30826396 DOI: 10.1016/j.yexcr.2019.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022]
Abstract
The objective of this study was to investigate the functional role of Rab39a in human cervical cancer (CC) and the underlying molecular mechanisms. We first measured Rab39a mRNA expression in CC tissues and paired non-tumor tissues by quantitative real-time PCR (QRT-PCR). Overall survival of CC patients with different mRNA levels of Rab39a in The Cancer Genome Atlas (TCGA) database was assessed by Kaplan-Meier survival curves analysis. Next methylation-specific PCR (MSP) was performed to determine the expression mechanism of Rab39a. Then cell proliferation, migration and invasion of Rab39a-transfected or mock-transfected cervical cancer cells were determined by CCK-8, flow cytometry, wound healing, transwell migration and invasion assays, respectively. Finally, the molecular mechanism by which Rab39a modulated CC cell epithelial-mesenchymal transition (EMT) was explored. It was found that Rab39a mRNA was significantly down-regulated in the high-risk patients compared to the low-risk patients (p = 0.0054). Six of seven cancer tissues with lymph node metastasis express low Rab39a mRNA compared to the surrounding non-tumor tissues. Cervical cancer patients with low level of Rab39a were showed a poorly clinical outcome (p = 0.004). Loss of Rab39a expression in cervical cancer tissues was associated with the aberrant DNA methylation in the promoter of Rab39a gene. Disrupted Rab39a expression in cervical cancer cells could be restored after treatment with the demethylated agent 5-Aza-2'-deoxycytidine. Furthermore, it was found that Rab39a hardly influenced cell growth but significantly suppressed cell migration, invasion and EMT process. Rab39a exerted its potential suppressor functions through inhibiting AKT phosphorylation. The inhibition effects of Rab39a could be blocked by AKT pathway inhibitor. Collectively, our data shows that Rab39a is a potential epigenetic silenced tumor suppressor inhibiting cancer invasion and migration through modulating the AKT signaling.
Collapse
Affiliation(s)
- Chun Zou
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Jielin Fan
- Department of Gynecologic Tumor, Affiliated Cancer Hospital of Central South University, Changsha, Hunan 410013, PR China
| | - Mei He
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Yan Xu
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Kangtao Wang
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yubo Cai
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China
| | - Ming Li
- Department of Immunology, College of Basic Medical Science, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
24
|
Rab25 and RCP in cancer progression. Arch Pharm Res 2019; 42:101-112. [DOI: 10.1007/s12272-019-01129-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
|
25
|
Qiu L, Hu Y, Deng ZM. Significance of expression of SIX1 and CD147 in gastric adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2018; 26:1742-1747. [DOI: 10.11569/wcjd.v26.i30.1742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of SIX1 and CD147 and analyze their clinical significance in gastric adenocarcinoma.
METHODS Seventy-nine cases of gastric adenocarcinoma were collected as an observation group, and 45 normal gastric mucosal samples were collected as a control group. Expression of SIX1 and CD147 in these samples was detected by immunohistochemistry.
RESULTS Expression of SIX1 and CD147 differed significantly between the two groups. Expression of SIX1 and CD147 was correlated with maximum tumor diameter and tumor infiltration. Expression of SIX1 was correlated with lymph node metastasis, and expression of CD147 was correlated with differentiation. There was a positive correlation between SIX1 and CD147 expression in the observation group. The expression of SIX1 and CD147 was correlated with survival time.
CONCLUSION Higher expression of SIX1 and CD147 can promote tumor formation and progression in gastric adenocarcinoma. SIX1 and CD147 may have synergistic effects, and they correlate with prognosis in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Digestive Medicine, Huzhou First People's Hospital, Huzhou 313000, Zhejiang Province, China
| | - Yi Hu
- Department of Digestive Medicine, Huzhou First People's Hospital, Huzhou 313000, Zhejiang Province, China
| | - Zhong-Min Deng
- Department of Digestive Medicine, Huzhou First People's Hospital, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
26
|
Zhang L, Yu S. Role of miR-520b in non-small cell lung cancer. Exp Ther Med 2018; 16:3987-3995. [PMID: 30402147 PMCID: PMC6200959 DOI: 10.3892/etm.2018.6732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the expression of microRNA (miR)-520b in non-small cell lung cancer (NSCLC) and its biological functions. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of miR-520b in 52 cases of NSCLC tissues, and its associations with tumor clinical staging and lymph node metastasis were analyzed. miR-520b mimics was transfected into A549 and Calu-3 cells. Cell proliferation, cell cycle, and cell invasion and migration abilities were assessed via cell counting kit-8 assay, flow cytometry and Transwell chamber assay, respectively. Western blot analysis was performed to detected protein expression levels, and dual luciferase reporter assay was used to detect the gene interaction. miR-520b expression was significantly downregulated in NSCLC. The expression of miR-520b in tumor tissues at N1 stage was lower than that at the N0 stage. miR-520b expression was negatively associated with clinical TNM staging. Furthermore, miR-520b mimic transfection inhibited the proliferation and invasion and metastasis abilities of A549 and Calu-3 cells. The expression of Rab22A was downregulated in the miR-520b mimics-transfected cells, whereas E-cadherin expression was increased, and vimentin expression was downregulated. Dual luciferase reporter assay demonstrated that miR-520b directly targeted the expression of Rab22A. Furthermore, Rab22A reversal downregulated the inhibitory effect of miR-520b. miR-520b expression was downregulated in NSCLC, which was negatively correlated with lymph node metastasis and TNM staging. miR-520b targeted on Rab22A to work as a tumor suppressor, inhibiting tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Linlin Zhang
- Respiratory Department, Shandong Chest Hospital, Jinan No. 5 People's Hospital, Jinan, Shandong 250000, P.R. China
| | - Shuangquan Yu
- Department of General Surgery, Jinan No. 5 People's Hospital, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
27
|
Mayorga LS, Cebrian I. Rab22a: A novel regulator of immune functions. Mol Immunol 2018; 113:87-92. [PMID: 29631761 DOI: 10.1016/j.molimm.2018.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/31/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) trigger CD8 + T cell responses after the internalization of exogenous antigens in a process called cross-presentation. Multiple intracellular transport events within the endocytic and secretory routes take place in order to accomplish this fundamental immunological process. The endomembrane system can be envisioned as a complex network of membrane domains coordinately working in the fusion of organelles, the budding of vesicles and tubules, and modifying the molecular composition of the limiting membranes. In this context of tightly regulated and dynamic endomembrane transport, small GTPases of the Rab family display a pivotal role by organizing membrane microdomains and defining specific identities to the different intracellular compartments. In this review, we synthesize and update the current knowledge about Rab22a, which has been involved in several immune functions. In this way, we analyze the intracellular localization of Rab22a and its important role in the endocytic recycling, including its relevance during MHC-I trafficking, antigen cross-presentation by DCs and the formation of T cell conjugates. We also describe how different pathogenic microorganisms hijack Rab22a functions to achieve efficient infection and intracellular survival strategies. Furthermore, we examine the oncogenic properties of Rab22a and how its expression determines the progression of many tumors. In summary, we highlight the role of Rab22a as a key effector of the intracellular trafficking that could be exploited in future therapies to modulate the immune system.
Collapse
Affiliation(s)
- Luis S Mayorga
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas and Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina.
| | - Ignacio Cebrian
- Instituto de Histología y Embriología de Mendoza (IHEM, Universidad Nacional de Cuyo, CONICET), Facultad de Ciencias Médicas and Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina.
| |
Collapse
|