1
|
Cai C, Hu L, Wu K, Liu Y. GPR27 expression correlates with prognosis and tumor progression in gliomas. PeerJ 2024; 12:e17024. [PMID: 38638156 PMCID: PMC11025540 DOI: 10.7717/peerj.17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 04/20/2024] Open
Abstract
Backgrounds Glioma is a highly aggressive type of brain tumor, and its prognosis is still poor despite recent progress in treatment strategies. G protein-coupled receptor 27 (GPR27) is a member of the G protein-coupled receptor family and has been reported to be involved in various cellular processes, including tumor progression. Nevertheless, the clinical potential and tumor-related role of GPR27 in glioma remain unknown. Here we aimed to explore the function and role of GPR27 in gliomas. Methods In the current study, we evaluated the expression and clinical significance of GPR27 in gliomas using data from The Cancer Genome Atlas (TCGA) datasets. We also conducted cellular experiments to evaluate the functional role of GPR27 in glioma cell growth. Results We found that GPR27 expression level was closely associated with disease status of glioma. Of note, GPR27 was negatively correlated with WHO grade, with grade IV samples showing the lowest GPR27 levels, while grade II samples showed the highest levels. Patients with IDH mutation or 1p/19q co-deletion exhibited higher GPR27 levels. In addition, lower GPR27 levels were correlated with higher death possibilities. In cellular experiments, we confirmed that GPR27 inhibited glioma cell growth. Conclusions Our results indicate that GPR27 may function as a potential prognostic biomarker and therapeutic target in gliomas. Further studies are needed to illustrate the signaling mechanism and clinical implications of GPR27 in gliomas.
Collapse
Affiliation(s)
| | - Libo Hu
- Suining Central Hospital, Suining, China
| | - Ke Wu
- Xichang People’s Hospital, Xichang, China
| | | |
Collapse
|
2
|
Li MY, Wang M, Dong M, Wu Z, Zhang R, Wang B, Huang Y, Zhang X, Zhou J, Yi J, Chen GG, Liu LZ. Targeting CD36 determines nicotine derivative NNK-induced lung adenocarcinoma carcinogenesis. iScience 2023; 26:107477. [PMID: 37599821 PMCID: PMC10432206 DOI: 10.1016/j.isci.2023.107477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Smoking carcinogen nicotine-derived nitrosamine ketone (NNK) is the most potent contributor to lung adenocarcinoma (LUAD) development, but the mechanism has not been fully elucidated. Here, we reported that fatty acid translocase CD36 was significantly overexpressed in both human LUAD tissues and NNK-induced A/J mice LUAD tumors. The overexpressed CD36 was positively correlated with Src kinase activation, smoking status, metastasis, and worse overall survival of patients with smoking history. Upon NNK binding with α7 nicotinic acetylcholine receptor (α7nAChR), sarcolemmal CD36 was increased and it interacted with surface α7nAChR and cytosol Src simultaneously, which in turn activated Src and downstream pro-carcinogenic kinase ERK1/2 and Akt, and finally caused LUAD cells to form subcutaneous and pulmonary metastatic tumors. This process could be blocked by CD36 knockdown and CD36 irreversible inhibitor SSO. Furthermore, the effect of NNK was inhibited obviously in CD36-/- A/J mice. Thus, targeting CD36 may provide a breakthrough therapy of LUAD.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Menghuan Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ming Dong
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Zangshu Wu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Rui Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
- GuangZhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Bowen Wang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Yuxi Huang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Xiaoyang Zhang
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Jiaying Zhou
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Junbo Yi
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - George Gong Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li-Zhong Liu
- Department of Physiology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, Guangdong, China
| |
Collapse
|
3
|
Huang W, Hao Z, Mao F, Guo D. Small Molecule Inhibitors in Adult High-Grade Glioma: From the Past to the Future. Front Oncol 2022; 12:911876. [PMID: 35785151 PMCID: PMC9247310 DOI: 10.3389/fonc.2022.911876] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary malignant tumor in the brain and has a dismal prognosis despite patients accepting standard therapies. Alternation of genes and deregulation of proteins, such as receptor tyrosine kinase, PI3K/Akt, PKC, Ras/Raf/MEK, histone deacetylases, poly (ADP-ribose) polymerase (PARP), CDK4/6, branched-chain amino acid transaminase 1 (BCAT1), and Isocitrate dehydrogenase (IDH), play pivotal roles in the pathogenesis and progression of glioma. Simultaneously, the abnormalities change the cellular biological behavior and microenvironment of tumor cells. The differences between tumor cells and normal tissue become the vulnerability of tumor, which can be taken advantage of using targeted therapies. Small molecule inhibitors, as an important part of modern treatment for cancers, have shown significant efficacy in hematologic cancers and some solid tumors. To date, in glioblastoma, there have been more than 200 clinical trials completed or ongoing in which trial designers used small molecules as monotherapy or combination regimens to correct the abnormalities. In this review, we summarize the dysfunctional molecular mechanisms and highlight the outcomes of relevant clinical trials associated with small-molecule targeted therapies. Based on the outcomes, the main findings were that small-molecule inhibitors did not bring more benefit to newly diagnosed glioblastoma, but the clinical studies involving progressive glioblastoma usually claimed “noninferiority” compared with historical results. However, as to the clinical inferiority trial, similar dosing regimens should be avoided in future clinical trials.
Collapse
Affiliation(s)
- Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaonian Hao
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dongsheng Guo, ; Feng Mao,
| |
Collapse
|
4
|
Sun E, Zhang P. RNF12 Promotes Glioblastoma Malignant Proliferation via Destructing RB1 and Regulating MAPK Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4711232. [PMID: 34900190 PMCID: PMC8654525 DOI: 10.1155/2021/4711232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023]
Abstract
Background RNF12 has been linked to a variety of biological activities, including the control of the MDM2/P53 pathway, although its additional functions remain unclear. RNF12 was discovered to be a new ubiquitin ligase (E3) for RB1, amongst the most frequently repressed proteins in cancer of human. Method Cell Counting Kit-8 was used to detect the cell proliferation; coimmunoprecipitation was used to determine that RNF12 interacts with RB1. Xenograft studies were used to verify the results. Result In vivo and in vitro RNF12 interacts with RB1 regardless of E3 ligase activity. The ubiquitination of RB1 by RNF12 had an effect on its stability. RNF12 inhibits the RB1 protein and stimulates the MAPK pathway, promoting the growth of GBMs. Conclusion Our findings show that RNF12 may operate as a tumour promoter by modulating the cancerous proliferation of glioblastoma by controlling the activity of a new RNF12/RB1/MAPK pathway regulatory axis and that this regulatory axis might be a valuable diagnostic focus in glioblastoma.
Collapse
Affiliation(s)
- Eryi Sun
- Zhenjiang First People's Hospital, Zhenjiang, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
5
|
Zhang X, Kong Z, Xu X, Yun X, Chao J, Ding D, Li T, Gao Y, Guan N, Zhu C, Qin X. ARRB1 Drives Gallbladder Cancer Progression by Facilitating TAK1/MAPK Signaling Activation. J Cancer 2021; 12:1926-1935. [PMID: 33753990 PMCID: PMC7974532 DOI: 10.7150/jca.53325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract, with a dismal 5-year survival of 5%. Recently, ARRB1, as a molecular scaffold, has been proposed to participate in the progression of multiple malignancies. However, the effect and regulatory mechanisms of ARRB1 in GBC have not been investigated. Our study aimed to explore the biological functional status and the possible molecular mechanisms of ARRB1 with respect to GBC progression. The survey showed that human GBC tissues exhibited increased levels of ARRB1 compared with normal tissues, and the high expression of ARRB1 was associated with poor prognosis of GBC patients. A series of in vitro and in vivo functional experiments based on knockdown of ARRB1 uncovered that ARRB1 enhanced GBC cell proliferation, migration, and invasion. Furthermore, we reported that TAK1, a component of the TNF /MAPK pathway, is a vital downstream effector of ARRB1. In addition, siTAK1 could abolish the functional changes between ARRB1 overexpression GBC cells and control ones. Our data revealed that ARRB1 facilitated the carcinogenesis and development of GBC through TNF/TAK1/MAPK axis, suggesting that ARRB1 may be a promising biomarker and treatment target for GBC patients.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China.,Nanjing Medical University, Jiangsu 210000, P.R. China
| | - Zhijun Kong
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China.,Nanjing Medical University, Jiangsu 210000, P.R. China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery of Nanjing Drum Tower Hospital, Nanjing Medical University, Jiangsu 210000, China
| | - Xiao Yun
- Nanjing Medical University, Jiangsu 210000, P.R. China
| | - Jiadeng Chao
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Dong Ding
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Tao Li
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Yuan Gao
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Naifu Guan
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Chunfu Zhu
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China
| | - Xihu Qin
- Department of Hepato-biliary-pancreatic Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, XingLong Road 29#, Changzhou, Jiangsu 213000, P.R. China.,Nanjing Medical University, Jiangsu 210000, P.R. China
| |
Collapse
|
6
|
Jiang Y, Zhu P, Gao Y, Wang A. miR‑379‑5p inhibits cell proliferation and promotes cell apoptosis in non‑small cell lung cancer by targeting β‑arrestin‑1. Mol Med Rep 2020; 22:4499-4508. [PMID: 33173959 PMCID: PMC7646737 DOI: 10.3892/mmr.2020.11553] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most common fatal type of cancer, demonstrating high incidence rates in both sexes. Therefore, it is of vital importance to devise more effective and targeted therapies to improve the treatment quality for patients. The present study aimed to determine the effects of microRNA (miR)-379-5p on cell proliferation and apoptosis, in addition to its underlying molecular mechanisms in lung cancer. Tumor and adjacent normal tissues were obtained from patients with NSCLC and transfection experiments in A549 cells were performed using miR-379-5p mimics and pcDNA3.1- β-arrestin-1 (ARRB1) overexpression plasmids. The cell proliferation rate was determined using a Cell Counting Kit-8 assay and the cell apoptotic rate was analyzed using flow cytometry. Additionally, the mRNA and protein expression levels of proliferation-related signaling (PI3K, p-PI3K, AKT and p-AKT) and apoptotic-related factors (Bcl-2, Bax and caspase-3) were detected using reverse transcription-quantitative PCR and western blotting, respectively. The results of the present study revealed that miR-379-5p expression levels were downregulated, whereas ARRB1 expression levels were significantly upregulated in NSCLC tissues and cell lines. Following the successful transfection of the miR-379-5p mimic and ARRB1 overexpression plasmid, it was revealed that the overexpression of miR-379-5p inhibited cell proliferation and promoted cell apoptosis, whereas ARRB1 overexpression reversed this inhibition over proliferation and promotion of apoptosis. The increased cell apoptotic rate observed in the miR-379-5p mimics group was associated with a significant downregulation and upregulation of Bcl-2, and Bax and caspase-3 expression levels, respectively. Finally, ARRB1 was identified as a target gene of miR-379-5p. In conclusion, the expression levels of miR-379-5p were demonstrated to be significantly downregulated in lung cancer. In addition, miR-379-5p overexpression led to the decreased expression levels of Bcl-2, phosphorylated (p)-PI3K/PI3K and p-AKT/AKT, and the increased expression levels of Bax and caspase-3. Overall, this resulted in the inhibition of cell proliferation and promoted cell apoptosis by directly targeting ARRB1. Therefore, miR-379-5p may be a potential target for NSCLC treatment due to its ability to inhibit cell proliferation and accelerate the apoptotic process.
Collapse
Affiliation(s)
- Yonghong Jiang
- Department of Second Inpatient Area of Oncology Surgery, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Panpan Zhu
- Department of Second Inpatient Area of Oncology Surgery, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Yamei Gao
- Department of Nursing, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| | - Aiping Wang
- Department of Second Inpatient Area of Oncology Surgery, Weinan Central Hospital, Weinan, Shaanxi 714000, P.R. China
| |
Collapse
|
7
|
Folcuti C, Horescu C, Barcan E, Alexandru O, Tuta C, Vatu BI, Artene SA, Dricu A. β-arrestin 1 transfection induced cell death in high grade glioma in vitro. J Immunoassay Immunochem 2020; 41:1021-1032. [PMID: 32807003 DOI: 10.1080/15321819.2020.1808990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The best known functions of β-arrestins (β-arr) are to regulate G protein-coupled receptors (GPCR) signaling through receptor desensitization and internalization. Many reports also suggest that β-arrs play important role in immune regulation and inflammatory responses, under physiological and pathological conditions. Recent studies have shown that β-arr 1 silencing halts proliferation and increases temozolomide (TMZ) response in glioblastoma (GBM) cells. The focus of this paper is to analyze the role of β-arr 1 overexpression in the 18 high grade glioma (HGG) cell line in terms of viability and their response to TMZ treatment. For this reason, the cell line was transfected with β-arr 1 and the effect was analyzed after 24 h, 48 h and 72 h in terms of proliferation and treatment response. We observed that β-arr 1 overexpression induced a time and dose dependant inhibition in the HGG cells. Unexpectedly, β-arr transfection resulted in a very mild increase in TMZ toxicity after 24 h, becoming non-statistically significant at 72 h. In conclusion, we showed that β-arr 1 overexpression inhibits cell proliferation in the 18 cell line but only has a very modest effect on treatment response with the alkylating agent TMZ.
Collapse
Affiliation(s)
- Catalin Folcuti
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Cristina Horescu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Edmond Barcan
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Cristian Tuta
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Bogdan-Ionel Vatu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Stefan-Alexandru Artene
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova , Craiova, Romania
| |
Collapse
|
8
|
Src Family Kinases as Therapeutic Targets in Advanced Solid Tumors: What We Have Learned so Far. Cancers (Basel) 2020; 12:cancers12061448. [PMID: 32498343 PMCID: PMC7352436 DOI: 10.3390/cancers12061448] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Src is the prototypal member of Src Family tyrosine Kinases (SFKs), a large non-receptor kinase class that controls multiple signaling pathways in animal cells. SFKs activation is necessary for the mitogenic signal from many growth factors, but also for the acquisition of migratory and invasive phenotype. Indeed, oncogenic activation of SFKs has been demonstrated to play an important role in solid cancers; promoting tumor growth and formation of distant metastases. Several drugs targeting SFKs have been developed and tested in preclinical models and many of them have successfully reached clinical use in hematologic cancers. Although in solid tumors SFKs inhibitors have consistently confirmed their ability in blocking cancer cell progression in several experimental models; their utilization in clinical trials has unveiled unexpected complications against an effective utilization in patients. In this review, we summarize basic molecular mechanisms involving SFKs in cancer spreading and metastasization; and discuss preclinical and clinical data highlighting the main challenges for their future application as therapeutic targets in solid cancer progression
Collapse
|
9
|
Wang S, Zhang J, Meng FJ, Yan YJ, Wang B, Guan ZY. Combination of pembrolizumab and 125I attenuates the aggressiveness of non-small cell lung cancer. Oncol Lett 2020; 19:4142-4150. [PMID: 32382353 DOI: 10.3892/ol.2020.11508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/14/2019] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-associated mortality. Therapies targeting programmed cell death 1 ligand 1 (PD1L1) have promising effects on NSCLC. However, resistance to targeted therapy has become the main problem and the underling molecular mechanism remains unclear. In the present study, the expression of PD1L1 in NSCLC was determined and the association with clinicopathological characteristics was analyzed. A combination therapy was also constructed, including pembrolizumab (Pem) and iodine-125 (125I), which represented an efficient strategy for the treatment of NSCLC. The expression of PD1L1 was upregulated in NSCLC tissues and positively correlated with the Ki-67 index, pathological subtypes and risk stages. A higher level of PD1L1 expression was associated with poorer survival in patients with NSCLC, which could be used as a prognostic indicator. When NSCLC cells were cultured in the presence of Pem and 125I seeds, the combination treatment significantly abrogated the tumor proliferation and aggressiveness through the inhibition of matrix metalloproteinase-2 and -9 secretion. Flow cytometry analysis revealed pembrolizumab combined with 125I contributed to a higher rate of apoptosis and cell cycle arrest, indicating that the combination treatment improved the resistance to immunotherapy. Furthermore, the associated molecular mechanism was the dysregulation of ADAM metallopeptidase domain 17. The findings from the present study revealed that PD1L1 could be used as a predictive biomarker, and the application of combination treatment of pembrolizumab and 125I showed promising effects on NSCLC.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jun Zhang
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Fan-Jie Meng
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Yi-Jie Yan
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Zhi-Yu Guan
- Department of Thoracic Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
10
|
Tan Z, Li B, Dong X, Liu W, Liu S. The Role of β-Arrestin1 in Esophageal Squamous Cell Carcinoma. Onco Targets Ther 2020; 13:1873-1881. [PMID: 32184622 PMCID: PMC7060783 DOI: 10.2147/ott.s235066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/10/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal carcinoma with a low survival rate and a poor prognosis. Therefore, it is of great significance to explore the effective tumor markers in early diagnosis, treatment monitoring and prognosis evaluation of ESCC. The current study was designed to explore the important role of β-arrestin1 in ESCC and the underlying mechanism. Methods The defined effects of β-arrestin1 on cell proliferation, migration, invasion, EMT and tumor growth were investigated both in ESCC cells and in vivo model of ESCC. β-arrestin1 expression was detected using Western blot and immunohistochemistry assay. The cell proliferation ability was determined using CCK-8 assay. Wound healing assay and trans-well invasion assay were performed to determine cell migration and invasion. The key proteins related to cell migration, invasion and EMT were detected by Western blot. Tumor growth in vivo was also monitored by tumor volume and weight. In addition, the effects of β-arrestin1 on AKT/GSK3β/β-catenin pathway were evaluated. Results β-arrestin1 was aberrantly upregulated in human ESCC tissues, ESCC cell lines and animal model of ESCC. β-arrestin1 downregulation inhibited cell proliferation, migration, invasion and EMT of ESCC in vitro and vivo. β-arrestin downregulation also suppressed tumor growth in vivo model of ESCC. In addition, the inhibitory effects of β-arrestin1 downregulation were exerted via AKT/GSK3β/β-catenin signaling pathway. Discussion The results in the present study together confirmed the truth that β-arrestin1 interference may suppress ESCC cell proliferation, migration, invasion, EMT and tumor growth via AKT/GSK3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhijie Tan
- Department of Gastroenterology, People's Hospital of Central District of Jinan, Shandong 250022, People's Republic of China
| | - Bin Li
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong 250021, People's Republic of China
| | - Xia Dong
- Department of Anesthesiology, People's Hospital of Central District of Jinan, Shandong 250022, People's Republic of China
| | - Wenxing Liu
- Department of General Surgery, People's Hospital of Central District of Jinan, Shandong 250022, People's Republic of China
| | - Shanshan Liu
- Department of Gastroenterology, People's Hospital of Central District of Jinan, Shandong 250022, People's Republic of China
| |
Collapse
|
11
|
Reciprocal control of ADAM17/EGFR/Akt signaling and miR-145 drives GBM invasiveness. J Neurooncol 2020; 147:327-337. [PMID: 32170633 DOI: 10.1007/s11060-020-03453-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/07/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is one of the most devastating brain malignancies worldwide and is considered to be incurable. However, the mechanisms underlying its aggressiveness remain unclear. METHODS The expression of ADAM17 in tissue samples was detected by immunohistochemistry. Knockdown and rescue experiments were used to demonstrate the regulatory effect of ADAM17 on the invasion ability of GBM cells. Western Blot and qPCR were used to detect the expression of related proteins and RNAs. Moreover, a luciferase reporter assay was performed to verify whether miR-145 directly binds to the 3'-UTR of ADAM17. RESULTS We revealed that ADAM17 was overexpressed in GBM tissues and correlated positively with poor prognosis. The knockdown of ADAM17 obviously suppressed the invasiveness of GBM cell lines. Furthermore, we found that knockdown of ADAM17 decreased activation of EGFR/Akt/C/EBP-β signaling, and consequently upregulated miR-145 expression in GBM cell lines. Notably, miR-145 directly targeted the ADAM17 3'-UTR and suppressed expression levels of ADAM17. CONCLUSIONS Our findings define an ADAM17/EGFR/miR-145 feedback loop that drives the GBM invasion. Reciprocal regulation between ADAM17 and miR-145 results in aberrant activation of EGFR signaling, suggesting that inhibition of ADAM17 expression can be an ideal therapeutic strategy for the treatment of GBM.
Collapse
|
12
|
Liu Z, Jiang J, He Q, Liu Z, Yang Z, Xu J, Huang Z, Wu B. β-Arrestin1-mediated decrease in endoplasmic reticulum stress impairs intestinal stem cell proliferation following radiation. FASEB J 2019; 33:10165-10176. [PMID: 31207192 DOI: 10.1096/fj.201900376rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastrointestinal toxicity limits the clinical application of abdominal and pelvic radiotherapy and currently has no effective treatment. Intestinal leucine-rich-repeat-containing GPCR 5 (Lgr5)-positive stem cell depletion and loss of proliferative ability due to radiation may be the primary factors causing intestinal injury following radiation. Here, we report the critical role of β-arrestin1 (βarr1) in radiation-induced intestinal injury. Intestinal βarr1 was highly expressed in radiation enteritis and in a radiation model. βarr1 knockout (KO) or knockdown mice exhibited increased proliferation in intestinal Lgr5+ stem cell, crypt reproduction, and survival following radiation. Unexpectedly, the beneficial effects of βarr1 deficiency on intestinal stem cells in response to radiation were compromised when the endoplasmic reticulum stress-related protein kinase RNA-like ER kinase (PERK)/eukaryotic initiation factor-2α (eIF2α) pathway was inhibited, and this result was further supported in vitro. Furthermore, we found that βarr1 knockdown with small interfering RNA significantly enhanced intestinal Lgr5+ stem cell proliferation after radiation via directly targeting PERK. βarr1 offers a promising target for mitigating radiation-induced intestinal injury.-Liu, Z., Jiang, J., He, Q., Liu, Z., Yang, Z., Xu, J., Huang, Z., Wu, B. β-Arrestin1-mediated decrease in endoplasmic reticulum stress impairs intestinal stem cell proliferation following radiation.
Collapse
Affiliation(s)
- Zhihao Liu
- Division of Emergency Medicine, Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Jiang
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiong He
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhigang Liu
- Department of Head and Neck Oncology, Phase 1 Clinical Trial Ward, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhen Yang
- Division of Emergency Medicine, Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Xu
- Division of Emergency Medicine, Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenhua Huang
- Division of Emergency Medicine, Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Marioni G, Nicolè L, Cappellesso R, Marchese-Ragona R, Fasanaro E, Di Carlo R, La Torre FB, Nardello E, Sanavia T, Ottaviano G, Fassina A. β-Arrestin-1 expression and epithelial-to-mesenchymal transition in laryngeal carcinoma. Int J Biol Markers 2019; 34:33-40. [PMID: 30854928 DOI: 10.1177/1724600818813621] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM The novel primary end-point of the present study was to ascertain β-arrestin-1 expression in a cohort of consecutive patients with laryngeal squamous cell carcinoma (LSCC) with information available on their cigarette-smoking habits. A secondary end-point was to conduct a preliminary clinical and pathological investigation into the possible role of β-arrestin-1 in the epithelial-to-mesenchymal transition (EMT), identified by testing for E-cadherin, Zeb1, and Zeb2 expression, in the setting of LSCC. METHODS The expression of β-arrestin-1, E-cadherin, zeb1, and zeb2 was ascertained in 20 consecutive LSCCs. RESULTS Statistical analysis showed no significant associations between β-arrestin-1 and EMT (based on the expression of E-cadherin, Zeb1, and Zeb2). The combined effect of nicotine and β-arrestin-1 was significantly associated with a shorter disease-free survival ( P=0.01) in our series of LSCC. This latter result was also confirmed in an independent, publicly available LSCC cohort ( P=0.047). CONCLUSIONS Further investigations on larger series (ideally in prospective settings) are needed before we can consider closer follow-up protocols and/or more aggressive treatments for patients with LSCC and a combination of nicotine exposure and β-arrestin-1 positivity in tumor cells at the time of their diagnosis. Further studies on how β-arrestin functions in cancer via different signaling pathways might reveal potential targets for the treatment of even advanced laryngeal malignancies.
Collapse
Affiliation(s)
- Gino Marioni
- 1 Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Lorenzo Nicolè
- 2 Department of Medicine DIMED, University of Padova, Italy
| | | | | | - Elena Fasanaro
- 3 Radiotherapy Unit, Istituto Oncologico Veneto, IOV-IRCSS, Padova, Italy
| | - Roberto Di Carlo
- 1 Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Fabio Biagio La Torre
- 4 Otolaryngology Unit, Azienda Ospedaliera "S. Maria degli Angeli," Pordenone, Italy
| | - Ennio Nardello
- 1 Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Tiziana Sanavia
- 5 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Giancarlo Ottaviano
- 1 Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | |
Collapse
|
14
|
Kallifatidis G, Smith DK, Morera DS, Gao J, Hennig MJ, Hoy JJ, Pearce RF, Dabke IR, Li J, Merseburger AS, Kuczyk MA, Lokeshwar VB, Lokeshwar BL. β-Arrestins Regulate Stem Cell-Like Phenotype and Response to Chemotherapy in Bladder Cancer. Mol Cancer Ther 2019; 18:801-811. [PMID: 30787175 DOI: 10.1158/1535-7163.mct-18-1167] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/04/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022]
Abstract
β-Arrestins are classic attenuators of G-protein-coupled receptor signaling. However, they have multiple roles in cellular physiology, including carcinogenesis. This work shows for the first time that β-arrestins have prognostic significance for predicting metastasis and response to chemotherapy in bladder cancer. β-Arrestin-1 (ARRB1) and β-arrestin-2 (ARRB2) mRNA levels were measured by quantitative RT-PCR in two clinical specimen cohorts (n = 63 and 43). The role of ARRBs in regulating a stem cell-like phenotype and response to chemotherapy treatments was investigated. The consequence of forced expression of ARRBs on tumor growth and response to Gemcitabine in vivo were investigated using bladder tumor xenografts in nude mice. ARRB1 levels were significantly elevated and ARRB2 levels downregulated in cancer tissues compared with normal tissues. In multivariate analysis only ARRB2 was an independent predictor of metastasis, disease-specific-mortality, and failure to Gemcitabine + Cisplatin (G+C) chemotherapy; ∼80% sensitivity and specificity to predict clinical outcome. ARRBs were found to regulate stem cell characteristics in bladder cancer cells. Depletion of ARRB2 resulted in increased cancer stem cell markers but ARRB2 overexpression reduced expression of stem cell markers (CD44, ALDH2, and BMI-1), and increased sensitivity toward Gemcitabine. Overexpression of ARRB2 resulted in reduced tumor growth and increased response to Gemcitabine in tumor xenografts. CRISPR-Cas9-mediated gene-knockout of ARRB1 resulted in the reversal of this aggressive phenotype. ARRBs regulate cancer stem cell-like properties in bladder cancer and are potential prognostic indicators for tumor progression and chemotherapy response.
Collapse
Affiliation(s)
- Georgios Kallifatidis
- Georgia Cancer Center, Augusta University, Augusta, GA.,Research Service, Charlie Norwood VA Medical Center, Augusta, GA
| | | | - Daley S Morera
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Jie Gao
- Georgia Cancer Center, Augusta University, Augusta, GA
| | - Martin J Hennig
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA.,Department of Urology, University of Lübeck, Lübeck, Germany
| | - James J Hoy
- Georgia Cancer Center, Augusta University, Augusta, GA
| | | | - Isha R Dabke
- Georgia Cancer Center, Augusta University, Augusta, GA
| | - Jiemin Li
- Georgia Cancer Center, Augusta University, Augusta, GA
| | | | - Markus A Kuczyk
- Department of Urology, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | | | - Bal L Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, GA. .,Research Service, Charlie Norwood VA Medical Center, Augusta, GA
| |
Collapse
|
15
|
New insights into the regulation of the actin cytoskeleton dynamics by GPCR/β-arrestin in cancer invasion and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:129-155. [DOI: 10.1016/bs.ircmb.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Forget A, Martignetti L, Puget S, Calzone L, Brabetz S, Picard D, Montagud A, Liva S, Sta A, Dingli F, Arras G, Rivera J, Loew D, Besnard A, Lacombe J, Pagès M, Varlet P, Dufour C, Yu H, Mercier AL, Indersie E, Chivet A, Leboucher S, Sieber L, Beccaria K, Gombert M, Meyer FD, Qin N, Bartl J, Chavez L, Okonechnikov K, Sharma T, Thatikonda V, Bourdeaut F, Pouponnot C, Ramaswamy V, Korshunov A, Borkhardt A, Reifenberger G, Poullet P, Taylor MD, Kool M, Pfister SM, Kawauchi D, Barillot E, Remke M, Ayrault O. Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell 2018; 34:379-395.e7. [PMID: 30205043 DOI: 10.1016/j.ccell.2018.08.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/12/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
The current consensus recognizes four main medulloblastoma subgroups (wingless, Sonic hedgehog, group 3 and group 4). While medulloblastoma subgroups have been characterized extensively at the (epi-)genomic and transcriptomic levels, the proteome and phosphoproteome landscape remain to be comprehensively elucidated. Using quantitative (phospho)-proteomics in primary human medulloblastomas, we unravel distinct posttranscriptional regulation leading to highly divergent oncogenic signaling and kinase activity profiles in groups 3 and 4 medulloblastomas. Specifically, proteomic and phosphoproteomic analyses identify aberrant ERBB4-SRC signaling in group 4. Hence, enforced expression of an activated SRC combined with p53 inactivation induces murine tumors that resemble group 4 medulloblastoma. Therefore, our integrative proteogenomics approach unveils an oncogenic pathway and potential therapeutic vulnerability in the most common medulloblastoma subgroup.
Collapse
Affiliation(s)
- Antoine Forget
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.
| | - Loredana Martignetti
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Stéphanie Puget
- Department of Pediatric Neurosurgery, Necker University Hospital, University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Laurence Calzone
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Sebastian Brabetz
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Daniel Picard
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany
| | - Arnau Montagud
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Stéphane Liva
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Alexandre Sta
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Florent Dingli
- Proteomics and Mass Spectrometry Laboratory, Institut Curie, PSL Research University, 75005 Paris, France
| | - Guillaume Arras
- Proteomics and Mass Spectrometry Laboratory, Institut Curie, PSL Research University, 75005 Paris, France
| | - Jaime Rivera
- Proteomics and Mass Spectrometry Laboratory, Institut Curie, PSL Research University, 75005 Paris, France
| | - Damarys Loew
- Proteomics and Mass Spectrometry Laboratory, Institut Curie, PSL Research University, 75005 Paris, France
| | - Aurore Besnard
- Department of Neuropathology, Sainte-Anne Hospital, 75014 Paris, France; University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Joëlle Lacombe
- Department of Neuropathology, Sainte-Anne Hospital, 75014 Paris, France; University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Mélanie Pagès
- Department of Neuropathology, Sainte-Anne Hospital, 75014 Paris, France; University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital, 75014 Paris, France; University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Rue Edouard Vaillant, 94805 Villejuif, France
| | - Hua Yu
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Audrey L Mercier
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Emilie Indersie
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Anaïs Chivet
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Sophie Leboucher
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Institut Curie, Centre de Recherche, Plateforme d'Histologie, Orsay 91405, France
| | - Laura Sieber
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kevin Beccaria
- Department of Pediatric Neurosurgery, Necker University Hospital, University Paris Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Michael Gombert
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frauke D Meyer
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany
| | - Nan Qin
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany
| | - Jasmin Bartl
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany
| | - Lukas Chavez
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tanvi Sharma
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Venu Thatikonda
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Franck Bourdeaut
- Paris-Sciences-Lettres Research University, Institut Curie Research Center, SiRIC, Laboratory of Translational Research in Pediatric Oncology, Paris 75005, France; Paris-Sciences-Lettres Research University, Institut Curie Research Center, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris 75005, France
| | - Celio Pouponnot
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Vijay Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children and Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center (DKFZ), and Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Poullet
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France
| | - Michael D Taylor
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada; Departments of Surgery, Laboratory Medicine and Pathobiology, and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Marcel Kool
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany; Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daisuke Kawauchi
- Hopp Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Emmanuel Barillot
- Institut Curie, 26 rue d'Ulm, 75005 Paris, France; PSL Research University, 75005 Paris, France; Inserm, U900, 75005 Paris, France; Mines Paris Tech, 77305 cedex Fontainebleau, France.
| | - Marc Remke
- Department of Pediatric Neuro-Oncogenomics, DKFZ, Heidelberg, Germany; Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany; Institute of Neuropathology, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany; DKTK, Partner Site, Essen/Düsseldorf, Germany.
| | - Olivier Ayrault
- Institut Curie, PSL Research University, CNRS UMR, INSERM, Orsay, France; Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France.
| |
Collapse
|
17
|
Identification of beta-arrestin-1 as a diagnostic biomarker in lung cancer. Br J Cancer 2018; 119:580-590. [PMID: 30078843 PMCID: PMC6162208 DOI: 10.1038/s41416-018-0200-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 01/12/2023] Open
Abstract
Background Distinguishing lung adenocarcinoma (ADC) from squamous cell carcinoma (SCC) has a tremendous therapeutic implication. Sometimes, the commonly used immunohistochemistry (IHC) markers fail to discriminate between them, urging for the identification of new diagnostic biomarkers. Methods We performed IHC on tissue microarrays from two cohorts of lung cancer patients to analyse the expression of beta-arrestin-1, beta-arrestin-2 and clinically used diagnostic markers in ADC and SCC samples. Logistic regression models were applied for tumour subtype prediction. Parallel reaction monitoring (PRM)-based mass spectrometry was used to quantify beta-arrestin-1 in plasma from cancer patients and healthy donors. Results Beta-arrestin-1 expression was significantly higher in ADC versus SCC samples. Beta-arrestin-1 displayed high sensitivity, specificity and negative predictive value. Its usefulness in an IHC panel was also shown. Plasma beta-arrestin-1 levels were considerably higher in lung cancer patients than in healthy donors and were higher in patients who later experienced a progressive disease than in patients showing complete/partial response following EGFR inhibitor therapy. Conclusions Our data identify beta-arrestin-1 as a diagnostic marker to differentiate ADC from SCC and indicate its potential as a plasma biomarker for non-invasive diagnosis of lung cancer. Its utility to predict response to EGFR inhibitors is yet to be confirmed.
Collapse
|
18
|
Blurring Boundaries: Receptor Tyrosine Kinases as functional G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:1-40. [DOI: 10.1016/bs.ircmb.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Song Q, Ji Q, Li Q. The role and mechanism of β‑arrestins in cancer invasion and metastasis (Review). Int J Mol Med 2017; 41:631-639. [PMID: 29207104 PMCID: PMC5752234 DOI: 10.3892/ijmm.2017.3288] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 01/30/2023] Open
Abstract
β-arrestins are a family of adaptor proteins that regulate the signaling and trafficking of various G protein-coupled receptors (GPCRs). They consist of β-arrestin1 and β-arrestin2 and are considered to be scaffolding proteins. β-arrestins regulate cell proliferation, promote cell invasion and migration, transmit anti-apoptotic survival signals and affect other characteristics of tumors, including tumor growth rate, angiogenesis, drug resistance, invasion and metastatic potential. It has been demonstrated that β-arrestins serve roles in various physiological and pathological processes and exhibit a similar function to GPCRs. β-arrestins serve primary roles in cancer invasion and metastasis via various signaling pathways. The present review assessed the function and mechanism of β-arrestins in cancer invasion and metastasis via multiple signaling pathways, including mitogen-activated protein kinase/extracellular signal regulated kinase, Wnt/β-catenin, nuclear factor-κB and phosphoinositide-3 kinase/Akt.
Collapse
Affiliation(s)
- Qing Song
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
20
|
β-arrestin 1 Overexpression Increases Temozolomide Resistance in Human Malignant Glioma Cells. CURRENT HEALTH SCIENCES JOURNAL 2017; 43:112-119. [PMID: 30595865 PMCID: PMC6284176 DOI: 10.12865/chsj.43.02.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/09/2017] [Indexed: 01/26/2023]
Abstract
Many studies highlighted β-arrestins (β-arr) as essential proteins behind the regulation of major cell signaling pathways in different types of cancer. An impaired β-arrestin 1 (β-arr 1) activation/phosphorylation was suggested to be associated with a high malignant phenotype of glioma. Elevated levels of β-arrestin 2 (β-arr 2) mRNA were also found in advanced stages of breast cancer compared to early stages. In addition, β2-arrestin was also linked to a suppressive effect on tumor growth in other types of cancers such as prostate or non-small cell lung cancer. In this study, we analyzed the effect of β-arr 1 overexpression on the cytotoxic effect of Temozolomide (TMZ) in two malignant glioma (MG) cell lines: U-343MGa and Cl2:6. For this purpose, the cells were transected with β-arr 1 and then treated with different concentrations of TMZ for 24, 48 and 72 hours. At the end of the treatment, the cell viability was analyzed by Prestoblue viability assay. Our results showed that TMZ treatment induced cytotoxicity in MG cells while β-arr 1 transfection significantly reduced the TMZ cytotoxic effect in both U-343MGa and Cl2:6 MG cell lines. These results suggest that β-arr 1 overexpression may be a cause of TMZ resistance in MG.
Collapse
|