1
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
2
|
Wang H, Zhang L, Bai X, Wang H, Sun H. Propofol Protects against Pyroptosis of Photoreceptors in Subretinal Hemorrhage via Regulating SIRT6/NLRP3 Signaling. Crit Rev Eukaryot Gene Expr 2025; 35:75-85. [PMID: 39957594 DOI: 10.1615/critreveukaryotgeneexpr.2024056605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Subretinal hemorrhage-induced neurotoxicity is a key cause of vision loss in age-related macular degeneration (AMD). The purpose of this study is to investigate the effects of Propofol on neurotoxicity. Oxygen glucose deprivation (OGD) was used to establish in vitro subretinal hemorrhage model. Gene expression was determined using reverse transcription-quantitative polymerase chain reaction and western blot. Cytokine release was determined using enzyme-linked immunosorbent assay. The interaction between sirtuin 6 (SIRT6) and NLR family pyrin domain containing 3 (NLRP3) was detected using co-immunoprecipitation assay. Cellular function was determined using cell counting kit-8 assay, lactate dehydrogenase assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Propofol suppressed the inflammatory response induced by OGD. Moreover, Propofol inhibited the neurotoxicity and pyroptosis of photoreceptors. Propofol mediated the overexpression of SIRT6, which was downregulated in AMD. Inhibition of SIRT6 alleviated its deacetylation of NLRP3. Additionally, SIRT6 deficiency antagonized the effects of Propofol and promoted the neurotoxicity and pyroptosis of photoreceptors. Taken together, Propofol protects against subretinal hemorrhage-induced neurotoxicity and pyroptosis of photoreceptors via promoting SIRT6-mediated deacetylation of NLRP3.
Collapse
Affiliation(s)
| | - Limei Zhang
- Hebei Eye Hospital, Hebei Treatment Center for Eye Disease, Hebei Key Laboratory of Ophthalmology
| | - Xiaoli Bai
- Department of Anesthesiology, Hebei Eye Hospital, Xingtai City, Hebei Province 054001, China
| | - Hao Wang
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai City, Hebei Province 054001, China
| | - Hao Sun
- Department of Anesthesiology, Hebei Eye Hospital, Xingtai City, Hebei Province 054001, China
| |
Collapse
|
3
|
Liu B, Lu Y, Taledaohan A, Qiao S, Li Q, Wang Y. The Promoting Role of HK II in Tumor Development and the Research Progress of Its Inhibitors. Molecules 2023; 29:75. [PMID: 38202657 PMCID: PMC10779805 DOI: 10.3390/molecules29010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Increased glycolysis is a key characteristic of malignant cells that contributes to their high proliferation rates and ability to develop drug resistance. The glycolysis rate-limiting enzyme hexokinase II (HK II) is overexpressed in most tumor cells and significantly affects tumor development. This paper examines the structure of HK II and the specific biological factors that influence its role in tumor development, as well as the potential of HK II inhibitors in antitumor therapy. Furthermore, we identify and discuss the inhibitors of HK II that have been reported in the literature.
Collapse
Affiliation(s)
- Bingru Liu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
| | - Shi Qiao
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Qingyan Li
- Civil Aviation Medical Center, Civil Aviation Administration of China, Beijing 100123, China;
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China; (B.L.); (Y.L.); (A.T.)
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
- Department of Core Facility Center, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Chen Y, Yang H, Chen S, Lu Z, Li B, Jiang T, Xuan M, Ye R, Liang H, Liu X, Liu Q, Tang H. SIRT1 regulated hexokinase-2 promoting glycolysis is involved in hydroquinone-enhanced malignant progression in human lymphoblastoid TK6 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113757. [PMID: 35714482 DOI: 10.1016/j.ecoenv.2022.113757] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Reprogramming of cellular metabolism is a vital event during tumorigenesis. The role of glycolysis in malignant progression promoted by hydroquinone (HQ), one of the metabolic products of benzene, remains to be understood. Recently, we reported the overexpression of sirtuin 1 (SIRT1) in HQ-enhanced malignant progression of TK6 cells and hypothesized that SIRT1 might contribute to glycolysis and favor tumorigenesis. Our data showed that acute exposure of TK6 cells to HQ for 48 h inhibited glycolysis, as indicated by reduction in glucose consumption, lactate production, hexokinase activity, and the expression of SIRT1 and glycolytic enzymes, including HIF-1α, hexokinase-2 (HK-2), ENO-1, glucose transporter 1 (Glut-1), and lactic dehydrogenase A (LDHA). Knockdown of SIRT1 or inhibition of glycolysis using the glycolytic inhibitor 2-deoxy-D-glucose (2-DG) downregulated the levels of SIRT1 and glycolytic enzymes and significantly enhanced HQ-induced cell apoptosis, although knockdown of SIRT1 or 2-DG alone had little effect on apoptosis. Furthermore, immunofluorescence and Co-IP assays demonstrated that SIRT1 regulated the expression of HK-2, and HQ treatment caused a decrease in SIRT1 and HK-2 binding to mitochondria. Importantly, we found that glycolysis was promoted with increasing HQ treatment weeks. Long-term HQ exposure increased the expression of SIRT1 and several glycolytic enzymes and promoted malignant cell progression. Moreover, compared with the PBS group, glucose consumption and lactate production increased after 10 weeks of HQ exposure, and the protein levels of SIRT1 and HK-2 were increased after 15 weeks of HQ exposure, while those of Glut-1, ENO-1, and LDHA were elevated. In addition, SIRT1 knockdown HQ 19 cells exhibited decreased lactate production, glucose consumption, glycolytic enzymes expression, cell growth, and tumor formation in nude mice. Our findings identify the high expression of SIRT1 as a strong oncogenic driver that positively regulates HK-2 and promotes glycolysis in HQ-accelerated malignant progression of TK6 cells.
Collapse
Affiliation(s)
- Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Hui Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Shaoyun Chen
- Department of Obstetrics, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518102, China
| | - Zhaohong Lu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Boxin Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Tikeng Jiang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Mei Xuan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Ruifang Ye
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Hairong Liang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China
| | - Qizhan Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Guangdong 523808, China.
| |
Collapse
|
5
|
Markouli M, Strepkos D, Papavassiliou KA, Papavassiliou AG, Piperi C. Crosstalk of Epigenetic and Metabolic Signaling Underpinning Glioblastoma Pathogenesis. Cancers (Basel) 2022; 14:2655. [PMID: 35681635 PMCID: PMC9179868 DOI: 10.3390/cancers14112655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic alterations in neoplastic cells have recently gained increasing attention as a main topic of research, playing a crucial regulatory role in the development and progression of tumors. The interplay between epigenetic modifications and metabolic pathways in glioblastoma cells has emerged as a key pathogenic area with great potential for targeted therapy. Epigenetic mechanisms have been demonstrated to affect main metabolic pathways, such as glycolysis, pentose phosphate pathway, gluconeogenesis, oxidative phosphorylation, TCA cycle, lipid, and glutamine metabolism by modifying key regulatory genes. Although epigenetic modifications can primarily promote the activity of metabolic pathways, they may also exert an inhibitory role. In this way, they participate in a complex network of interactions that regulate the metabolic behavior of malignant cells, increasing their heterogeneity and plasticity. Herein, we discuss the main epigenetic mechanisms that regulate the metabolic pathways in glioblastoma cells and highlight their targeting potential against tumor progression.
Collapse
|
6
|
Sheikh T, Sen E. p53 affects epigenetic signature on SOCS1 promoter in response to TLR4 inhibition. Cytokine 2021; 140:155418. [PMID: 33476981 DOI: 10.1016/j.cyto.2020.155418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023]
Abstract
Suppressor of cytokine signaling (SOCS1) functions as a negative regulator of toll-like receptor (TLR) induced inflammatory signaling. As silencing of SOCS1 is concomitant with elevated TLR4 levels in glioblastoma, we investigated the effect of TLR4 inhibition on SOCS1 expression. Pharmacological inhibition of TLR4 signaling by TAK242 or its siRNA-mediated knockdown in p53 mutant or wild-type glioma cells resulted in either increased or decreased SOCS1 expression and promoter activity, respectively. Genetic manipulation of p53 indicated that SOCS1 expression upon TLR4 inhibition is dependent on p53 mutational status. Increased SOCS1 level was concomitant with diminished nucleosomal occupancy around p53-binding site on SOCS1 promoter. This altered nucleosomal landscape was accompanied by (i) diminished nuclear H3K9me3 and (ii) increased JMJD2A and Brg1 levels. JMJD2A inhibition or ectopic expression of ATPase-deficient BRG1 prevented TAK242 mediated increase in SOCS1 expression. Recruitment of Brg1-p53-JMJD2A complex on p53 binding sites of SOCS1 promoter upon TLR4 inhibition was concomitant with increased SOCS1 expression in p53-mutant cells. The Cancer Genome Atlas (TCGA) dataset indicated an inverse correlation between TLR4 and SOCS1 levels in p53 mutant but not in p53WT GBM. Taken together, p53 mutational status regulates transcriptional plasticity of SOCS1 promoter through differential recruitment of chromatin remodelers and epigenetic regulators in response to TLR4 inhibition.
Collapse
Affiliation(s)
- Touseef Sheikh
- National Brain Research Centre, Manesar, Haryana 122 052, India
| | - Ellora Sen
- National Brain Research Centre, Manesar, Haryana 122 052, India.
| |
Collapse
|
7
|
Zhang J, Hou C, Dou S, Li G, Wang Z, Liu Y, Zhang Y, Wang R, Shen B, Han G. T cell immunoglobulin and mucin domain protein 3 inhibits glycolysis in RAW 264.7 macrophages through Hexokinase 2. Scand J Immunol 2020; 93:e12981. [PMID: 33031600 DOI: 10.1111/sji.12981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022]
Abstract
T cell immunoglobulin and mucin domain-3 (Tim-3), an immune checkpoint molecule, plays critical roles in maintaining innate immune homeostasis; however, the mechanisms underlying these roles remain to be determined. Here, we determined that Tim-3 controls glycolysis in macrophages and thus contributes to phenotype shifting. Tim-3 signal blockade significantly increases lactate production by macrophages, but does not influence cell proliferation or apoptosis. Tim-3 attenuates glucose uptake by inhibiting hexokinase 2 (HK2) expression in macrophages. Tim-3-mediated inhibition of macrophage glycolysis and the expression of proinflammatory cytokines, tumour necrosis factor (TNF)-α and interleukin (IL)-1β are reversed by HK2 silencing. Finally, we demonstrated that Tim-3 inhibits HK2 expression via the STAT1 pathway. We have thus discovered a new way by which Tim-3 modulates macrophage function.
Collapse
Affiliation(s)
- Jiacheng Zhang
- The Sixth Medical Center, the General Hospital of PLA, Beijing, China.,Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Chunmei Hou
- Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Shuaijie Dou
- Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Ge Li
- Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Zhiding Wang
- Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Yiqiong Liu
- Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Yanling Zhang
- Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Renxi Wang
- Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Beifen Shen
- Institute of Military Cognitive and Brain Sciences, Beijing, China
| | - Gencheng Han
- Institute of Military Cognitive and Brain Sciences, Beijing, China
| |
Collapse
|
8
|
Al-Azzam N. Sirtuin 6 and metabolic genes interplay in Warburg effect in cancers. J Clin Biochem Nutr 2020; 66:169-175. [PMID: 32523242 DOI: 10.3164/jcbn.19-110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/13/2019] [Indexed: 01/10/2023] Open
Abstract
Under oxygen availability, normal cells undergo mitochondrial oxidative phosphorylation to metabolize glucose and yield up to 36 ATPs per glucose molecule for cellular functions, and undergo non-oxidative metabolism (glycolysis) under hypoxic and proliferating conditions to yield 2 ATP per glucose. These cells metabolize glucose to pyruvate via glycolysis followed by conversion of pyruvate to lactate via lactate dehydrogenase. However, cancer cells have the ability to undergo glycolysis and ferment glucose to lactate regardless of oxygen availability; a phenomenon first addressed by Otto Warburg and called, "Warburg effect". Numerous glycolytic genes/proteins have been identified in tumors; that include glucose transporter 1 (GLUT1), hexokinase 2 (HK2), pyruvate kinase-M2 splice isoform (PKM2), and lactate dehydrogenase (LDH-A). Histone deacetylase sirtuin 6 (SIRT6), an epigenetic regulator, is highly expressed in various cancers. SIRT6 plays an important role in Warburg effect by regulating many glycolytic genes. Loss of SIRT6 enhances tumor growth via enhancing glycolysis. This review is mainly concerned with exploring the most recent advances in understanding the roles of the metabolic genes (GLUT1, HK2, PKM2, and LDH-A) and the epigenetic regulator SIRT6 in cancer metabolism and how SIRT6 can modulate these metabolic genes expression and its possible use as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Nosayba Al-Azzam
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| |
Collapse
|
9
|
Brix DM, Bundgaard Clemmensen KK, Kallunki T. Zinc Finger Transcription Factor MZF1-A Specific Regulator of Cancer Invasion. Cells 2020; 9:cells9010223. [PMID: 31963147 PMCID: PMC7016646 DOI: 10.3390/cells9010223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Over 90% of cancer deaths are due to cancer cells metastasizing into other organs. Invasion is a prerequisite for metastasis formation. Thus, inhibition of invasion can be an efficient way to prevent disease progression in these patients. This could be achieved by targeting the molecules regulating invasion. One of these is an oncogenic transcription factor, Myeloid Zinc Finger 1 (MZF1). Dysregulated transcription factors represent a unique, increasing group of drug targets that are responsible for aberrant gene expression in cancer and are important nodes driving cancer malignancy. Recent studies report of a central involvement of MZF1 in the invasion and metastasis of various solid cancers. In this review, we summarize the research on MZF1 in cancer including its function and role in lysosome-mediated invasion and in the expression of genes involved in epithelial to mesenchymal transition. We also discuss possible means to target it on the basis of the current knowledge of its function in cancer.
Collapse
Affiliation(s)
- Ditte Marie Brix
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Danish Medicines Council, Dampfærgevej 27-29, 2100 Copenhagen, Denmark
| | - Knut Kristoffer Bundgaard Clemmensen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
| | - Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-35-25-7746
| |
Collapse
|
10
|
Ou B, Sun H, Zhao J, Xu Z, Liu Y, Feng H, Peng Z. Polo-like kinase 3 inhibits glucose metabolism in colorectal cancer by targeting HSP90/STAT3/HK2 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:426. [PMID: 31655629 PMCID: PMC6815449 DOI: 10.1186/s13046-019-1418-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/09/2019] [Indexed: 01/06/2023]
Abstract
Background Polo-like kinase 3 (PLK3) has been documented as a tumor suppressor in several types of malignancies. However, the role of PLK3 in colorectal cancer (CRC) progression and glucose metabolism remains to be known. Methods The expression of PLK3 in CRC tissues was determined by immunohistochemistry. Cells proliferation was examined by EdU, CCK-8 and in vivo analyses. Glucose metabolism was assessed by detecting lactate production, glucose uptake, mitochondrial respiration, extracellular acidification rate, oxygen consumption rate and ATP production. Chromatin immunoprecipitation, luciferase reporter assays and co-immunoprecipitation were performed to explore the signaling pathway. Specific targeting by miRNAs was determined by luciferase reporter assays and correlation with target protein expression. Results PLK3 was significantly downregulated in CRC tissues and its low expression was correlated with worse prognosis of patients. In vitro and in vivo experiments revealed that PLK3 contributed to growth inhibition of CRC cells. Furthermore, we demonstrated that PLK3 impeded glucose metabolism via targeting Hexokinase 2 (HK2) expression. Mechanically, PLK3 bound to Heat shock protein 90 (HSP90) and facilitated its degradation, which led to a significant decrease of phosphorylated STAT3. The downregulation of p-STAT3 further suppressed the transcriptional activation of HK2. Moreover, our investigations showed that PLK3 was directly targeted by miR-106b at post-transcriptional level in CRC cells. Conclusion This study suggests that PLK3 inhibits glucose metabolism by targeting HSP90/STAT3/HK2 signaling and PLK3 may serve as a potential therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Baochi Ou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, China
| | - Hongze Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, China
| | - Hao Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai, 200080, China.
| |
Collapse
|
11
|
Tan Q, Huang Q, Ma YL, Mao K, Yang G, Luo P, Ma G, Mei P, Jin Y. Potential roles of IL-1 subfamily members in glycolysis in disease. Cytokine Growth Factor Rev 2018; 44:18-27. [PMID: 30470512 DOI: 10.1016/j.cytogfr.2018.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/31/2022]
Abstract
The interleukin-(IL)-1 subfamily consists of IL-1α, IL-1β, IL-1 receptor antagonist IL-1Ra and IL-33. These cytokines are the main members of the IL-1 family and have been widely recognized as having significant roles in pro-inflammatory and immunomodulatory actions. Mounting evidence has revealed that these cytokines also play key roles in the regulation of glycolysis, which is an important metabolic pathway in most organisms that provides energy. Dysregulation of glycolysis is associated with various diseases, including type 2 diabetes, rheumatoid arthritis (RA) and cancer. We reviewed studies addressing the important roles of IL-1 subfamily cytokines, with particular focus on their ability to regulate glycolysis in disease states. In this review, we summarize the potential roles of IL-1 subfamily members in glycolysis in disease states and address the underlying mechanisms. Furthermore, we discuss the potential of these cytokines as therapeutic targets in clinical applications to provide insight into possible therapeutic strategies for treatment, especially for cancers.
Collapse
Affiliation(s)
- Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yan Ling Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - KaiMin Mao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - GuangHai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ping Luo
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - GuanZhou Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - PeiYuan Mei
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Dong Z, Cui H. Epigenetic modulation of metabolism in glioblastoma. Semin Cancer Biol 2018; 57:45-51. [PMID: 30205139 DOI: 10.1016/j.semcancer.2018.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Epigenetic and metabolic alterations incancer cells are highly associated. Glioblastoma multiforme (GBM) is a complicated pathological process with dysregulated methylation and histone modifications. Metabolic modulation of epigenetics in gliomas was previously summarized. However, epigenetic modulation is also important in metabolic decision. Recently, there has been a tremendous increase in understanding of DNA methylation, chromatin modulation, and non-coding RNAs in the regulation of cell metabolism, especially glycolytic metabolism in GBM. In this review, we summarize DNA methylation, histone alteration, and non-coding RNA mediated epigenetic modulation of metabolism in GBM and discuss the future research directions in this area and its applications in GBM treatment.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Biology, Southwest University, Beibei, Chongqing, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Biology, Southwest University, Beibei, Chongqing, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Beibei, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Beibei, Chongqing, China.
| |
Collapse
|
13
|
Sheikh T, Gupta P, Gowda P, Patrick S, Sen E. Hexokinase 2 and nuclear factor erythroid 2-related factor 2 transcriptionally coactivate xanthine oxidoreductase expression in stressed glioma cells. J Biol Chem 2018; 293:4767-4777. [PMID: 29414774 DOI: 10.1074/jbc.m117.816785] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/29/2018] [Indexed: 01/12/2023] Open
Abstract
A dynamic network of metabolic adaptations, inflammatory responses, and redox homeostasis is known to drive tumor progression. A considerable overlap among these processes exists, but several of their key regulators remain unknown. To this end, here we investigated the role of the proinflammatory cytokine IL-1β in connecting these processes in glioma cells. We found that glucose starvation sensitizes glioma cells to IL-1β-induced apoptosis in a manner that depended on reactive oxygen species (ROS). Although IL-1β-induced JNK had no effect on cell viability under glucose deprivation, it mediated nuclear translocation of hexokinase 2 (HK2). This event was accompanied by increases in the levels of sirtuin 6 (SIRT6), nuclear factor erythroid 2-related factor 2 (Nrf2), and xanthine oxidoreductase (XOR). SIRT6 not only induced ROS-mediated cell death but also facilitated nuclear Nrf2-HK2 interaction. Recruitment of the Nrf2-HK2 complex to the ARE site on XOR promoter regulated its expression. Importantly, HK2 served as transcriptional coactivator of Nrf2 to regulate XOR expression, indicated by decreased XOR levels in siRNA-mediated Nrf2 and HK2 knockdown experiments. Our results highlight a non-metabolic role of HK2 as transcriptional coactivator of Nrf2 to regulate XOR expression under conditions of proinflammatory and metabolic stresses. Our insights also underscore the importance of nuclear activities of HK2 in the regulation of genes involved in redox homeostasis.
Collapse
Affiliation(s)
- Touseef Sheikh
- National Brain Research Centre, Manesar, Haryana 122 051, India
| | - Piyushi Gupta
- National Brain Research Centre, Manesar, Haryana 122 051, India
| | - Pruthvi Gowda
- National Brain Research Centre, Manesar, Haryana 122 051, India
| | - Shruti Patrick
- National Brain Research Centre, Manesar, Haryana 122 051, India
| | - Ellora Sen
- National Brain Research Centre, Manesar, Haryana 122 051, India.
| |
Collapse
|
14
|
Singh A, Sen E. Reciprocal role of SIRT6 and Hexokinase 2 in the regulation of autophagy driven monocyte differentiation. Exp Cell Res 2017; 360:365-374. [PMID: 28935467 DOI: 10.1016/j.yexcr.2017.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 12/16/2022]
Abstract
Emerging evidences suggest the impact of autophagy on differentiation but the underlying molecular links between metabolic restructuring and autophagy during monocyte differentiation remain elusive. An increase in PPARγ, HK2 and SIRT6 expression was observed upon PMA induced monocyte differentiation. While PPARγ positively regulated HK2 and SIRT6 expression, the latter served as a negative regulator of HK2. Changes in expression of these metabolic modelers were accompanied by decreased glucose uptake and increase in Chibby, a potent antagonist of β-catenin/Wnt pathway. Knockdown of Chibby abrogated PMA induced differentiation. While inhibition of HK2 either by Lonidamine or siRNA further elevated PMA induced Chibby, mitochondrial ROS, TIGAR and LC3II levels; siRNA mediated knock-down of SIRT6 exhibited contradictory effects as compared to HK2. Notably, inhibition of autophagy increased HK2, diminished Chibby level and CD33 expression. In addition, PMA induced expression of cytoskeletal architectural proteins, CXCR4, phagocytosis, acquisition of macrophage phenotypes and release of pro-inflammatory mediators was found to be HK2 dependent. Collectively, our findings highlight the previously unknown reciprocal influence of SIRT6 and HK2 in regulating autophagy driven monocyte differentiation.
Collapse
Affiliation(s)
- Ankita Singh
- National Brain Research Centre, Manesar, Haryana 122051, India
| | - Ellora Sen
- National Brain Research Centre, Manesar, Haryana 122051, India.
| |
Collapse
|