1
|
Hakami MA, Hazazi A, Khan FR, Abdulaziz O, Alshaghdali K, Abalkhail A, Nassar SA, Omar BIA, Almarshadi F, Gupta G, Binshaya AS. PVT1 lncRNA in lung cancer: A key player in tumorigenesis and therapeutic opportunities. Pathol Res Pract 2024; 253:155019. [PMID: 38091883 DOI: 10.1016/j.prp.2023.155019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024]
Abstract
The lncRNA PVT1 has emerged as a pivotal component in the intricate landscape of cancer pathogenesis, particularly in lung cancer. PVT1, situated in the 8q24 chromosomal region, has garnered attention for its aberrant expression patterns in lung cancer, correlating with tumor progression, metastasis, and poor prognosis. Numerous studies have unveiled the diverse mechanisms PVT1 contributes to lung cancer pathogenesis. It modulates critical pathways, such as cell proliferation, apoptosis evasion, angiogenesis, and epithelial-mesenchymal transition. PVT1's interactions with other molecules, including microRNAs and proteins, amplify its oncogenic influence. Recent advancements in genomic and epigenetic analyses have also illuminated the intricate regulatory networks that govern PVT1 expression. Understanding PVT1's complex involvement in lung cancer holds substantial clinical implications. Targeting PVT1 presents a promising avenue for developing novel diagnostic biomarkers and therapeutic interventions. This abstract encapsulates the expanding knowledge regarding the oncogenic role of PVT1 in lung cancer, underscoring the significance of further research to unravel its complete mechanistic landscape and exploit its potential for improved patient outcomes.
Collapse
Affiliation(s)
- Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra university, Riyadh, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra university, Riyadh, Saudi Arabia
| | - Osama Abdulaziz
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Makkah, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Qassim, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra university, Riyadh, Saudi Arabia
| | - Fahad Almarshadi
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
2
|
Tolomeo D, Traversa D, Venuto S, Ebbesen KK, García Rodríguez JL, Tamma G, Ranieri M, Simonetti G, Ghetti M, Paganelli M, Visci G, Liso A, Kok K, Muscarella LA, Fabrizio FP, Frassanito MA, Lamanuzzi A, Saltarella I, Solimando AG, Fatica A, Ianniello Z, Marsano RM, Palazzo A, Azzariti A, Longo V, Tommasi S, Galetta D, Catino A, Zito A, Mazza T, Napoli A, Martinelli G, Kjems J, Kristensen LS, Vacca A, Storlazzi CT. circPVT1 and PVT1/AKT3 show a role in cell proliferation, apoptosis, and tumor subtype-definition in small cell lung cancer. Genes Chromosomes Cancer 2022; 62:377-391. [PMID: 36562080 DOI: 10.1002/gcc.23121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Debora Traversa
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Karoline K Ebbesen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Grazia Tamma
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Matteo Paganelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Grazia Visci
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Maria Antonia Frassanito
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Ilaria Saltarella
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Vito Longo
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Domenico Galetta
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Annamaria Catino
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alfredo Zito
- Pathology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Alessandro Napoli
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Shen W, Pu J, Zuo Z, Gu S, Sun J, Tan B, Wang L, Cheng J, Zuo Y. The RNA demethylase ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the stability of the LncRNA PVT1. Cancer Cell Int 2022; 22:353. [PMID: 36376862 PMCID: PMC9664734 DOI: 10.1186/s12935-022-02770-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most common posttranscriptional modification of RNA and plays critical roles in human cancer progression. However, the biological function of m6A methylation requires further studied in cancer, especially in tumor angiogenesis. Methods A public database was used to analyze the expression and overall survival of ALKBH5 and PVT1 in lung cancer patients. CCK-8 and colony formation assays were performed to detect cell proliferation, a transwell assay was used to assess cell migration, and a tube formation assay was performed to assess angiogenic potential in vitro. A zebrafish lung cancer xenograft model was used to verify the function of ALKBH5 and PVT1 in vivo. Western blot assays were used to measure the relative protein expression in lung cancer cells. SRAMP predictor analysis and RNA stability experiments were used to examine the potential m6A modification. Results Bioinformatics analysis showed that the expression levels of m6A-related genes were changed significantly in lung cancer tissues compared with normal lung tissues. We then identified that ALKBH5 was upregulated in lung cancer tissues and associated with poor prognosis of lung cancer patients by analyzing a public database. Knockdown of ALKBH5 inhibited the proliferation and migration of cultured lung cancer cell lines. Zebrafish lung cancer xenografts showed that ALKBH5 silencing also suppressed the growth and metastasis of lung cancer cells. Moreover, knockdown of ALKBH5 inhibited the angiogenesis of lung cancer in vitro and in vivo. Mechanistic studies showed that knockdown of ALKBH5 decreased the expression and stability of PVT1 in lung cancer cells. We next observed that PVT1 promoted the progression of lung cancer cells in vitro and in vivo and regulated the expression of VEGFA and angiogenesis in lung cancer. Finally, rescue experiments revealed that ALKBH5 regulated the proliferation, migration and angiogenesis of lung cancer cells, partially through PVT1. Conclusion Our results demonstrate that ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the expression and stability of PVT1, which provides a potential prognostic and therapeutic target for lung cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02770-0.
Collapse
|
4
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
5
|
Sui J, Zhao Q, Zhang Y, Liang G. Dysregulated LINC00961 Contributes to the Vitality and Migration of NSCLC Via miR-19a-3p/miR-19b-3p/miR-125b-5p. DNA Cell Biol 2022; 41:319-329. [PMID: 35244469 DOI: 10.1089/dna.2021.0900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence implies that long noncoding RNAs participate in non-small cell lung cancer (NSCLC) tumorigenesis. Our current study synthetically analyzed RNA sequencing data downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We identified LINC00961 significantly downregulated in NSCLC tissues. We explored the LINC00961 expression in NSCLC tumor tissues and cell lines with reverse transcription-quantitative polymerase chain reaction analysis. Lentivirus-mediated infection upregulated the expression of LINC00961 in A549 cells. The proliferation and migration capability were also measured in A549 cells. In addition, we performed luciferase reporter gene assay to investigate whether LINC00961 directly interacts with miR-19a-3p/miR-19b-3p/miR-125b-5p. A nude mice model was used to detect the potential biological process of LINC00961 on tumor growth in vivo. The results showed that LINC00961 was significantly down-egulated in NSCLC tissues and cell lines. LV-LINC00961 effectively increased the expression of LINC00961 and decreased the expression of miR-19a-3p/miR-19b-3p/miR-125b-5p. LINC00961 upregulation remarkably inhibited cell proliferation, migration, and invasion while promoting cell apoptosis in A549 cells. Luciferase reporter gene assay revealed that LINC00961 could directly sponge miR-19a-3p/miR-19b-3p/miR-125b-5p. Moreover, overexpressed miR-19a-3p/miR-19b-3p/miR-125b-5p reversed the effect of LINC00961 on cell function of A549 cells. Western blot assays revealed that LINC00961 could partially act as a tumor suppressor via affecting PI3K-AKT/MAPK/mTOR signaling pathway. In addition, overexpressed LINC00961-inhibited tumor growth was demonstrated in vivo. Overexpression of LINC00961 inhibited cell viability, invasion, and induced apoptosis in NSCLC, potentially via suppressing the expression of miR-19a-3p/miR-19b-3p/miR-125b-5p by targeting PI3K-AKT/MAPK/mTOR signaling pathways, which might provide the potential biomarker for NSCLC diagnosis and therapies.
Collapse
Affiliation(s)
- Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qun Zhao
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yanqiu Zhang
- Department of Environmental Occupational Hygiene, Taizhou Center for Disease Control and Prevention, Taizhou, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
6
|
Association of lncRNA PVT1 Gene Polymorphisms with the Risk of Essential Hypertension in Chinese Population. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9976909. [PMID: 35036445 PMCID: PMC8758273 DOI: 10.1155/2022/9976909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/18/2021] [Indexed: 12/03/2022]
Abstract
Vascular dysfunction and hyperlipidemia are essential risk factors contributing to essential hypertension (EH). The plasmacytoma variant translocation 1 (PVT1) is involved in modulating angiogenesis in tumor tissues and plays an important role in fat differentiation in the progress of obesity. Therefore, we selected two tagSNPs of PVT1 (rs10956390 and rs80177647) to investigate whether they are contributing to the risk of hypertension in Chinese patients. In total, 524 adult patients with EH and 439 matched healthy controls were enrolled for two central of China. Results. PVT1 rs10956390 and rs80177647 polymorphisms were genotyped by using TaqMan assay. PVT1 rs10956390 TT genotype was associated with a decreased risk of EH (OR = 0.561, 95% CI = 0.372-0.846, P = 0.006), while rs80177647 TA genotype was associated with an increased risk (OR = 2.236, 95% CI = 1.515-3.301, P < 0.001). Rs10956390 T allele was associated with lower triglyceride levels in the plasma both from healthy and EH donors. What is more, there is an association between rs10956390 polymorphism and HDL-C level, as well as LDL-C. Conclusion. PVT1 rs10956390 and rs80177647 polymorphisms may contribute to the risk of EH in Chinese population by regulating blood lipid levels.
Collapse
|
7
|
Li P, Qiao G, Lu J, Ji W, Gao C, Qi F. PVT1 is a prognostic marker associated with immune invasion of bladder urothelial carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:169-190. [PMID: 34902986 DOI: 10.3934/mbe.2022009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmacytoma variant translocation 1 (PVT1) is involved in multiple signaling pathways and plays an important regulatory role in a variety of malignant tumors. However, its role in the prognosis and immune invasion of bladder urothelial carcinoma (BLCA) remains unclear. This study investigated the expression of PVT1 in tumor tissue and its relationship with immune invasion, and determined its prognostic role in patients with BLCA. Patients were identified from the cancer genome atlas (TCGA). The enrichment pathway and function of PVT1 were explained by gene ontology (GO) term analysis, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA), and the degree of immune cell infiltration was quantified. Kaplan-Meier analysis and Cox regression were used to analyze the correlation between PVT1 and survival rate. PVT1-high BLCA patients had a lower 10-year disease-specific survival (DSS P < 0.05) and overall survival (OS P < 0.05). Multivariate Cox regression analysis showed that PVT1 (high vs. low) (P = 0.004) was an independent prognostic factor. A nomogram was used to predict the effect of PVT1 on the prognosis. PVT1 plays an important role in the progression and prognosis of BLCA and can be used as a medium biomarker to predict survival after cystectomy.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Gangjie Qiao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Chao Gao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
8
|
Zhang L, Yao L, Zhou W, Tian J, Ruan B, Lu Z, Deng Y, Li Q, Zeng Z, Yang D, Shang R, Xu M, Zhang M, Cheng D, Yang Y, Ding Q, Yu H. miR-497 defect contributes to gastric cancer tumorigenesis and progression via regulating CDC42/ITGB1/FAK/PXN/AKT signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:567-577. [PMID: 34589278 PMCID: PMC8463315 DOI: 10.1016/j.omtn.2021.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 07/27/2021] [Indexed: 01/20/2023]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. MicroRNAs (miRNAs) are known to be important regulators of GC. This study aims to investigate the role of miRNA (miR)-497 in GC. We demonstrated that the expression of miR-497 was downregulated in human GC tissues. After N-methyl-N-nitrosourea treatment, the incidence of GC in miR-497 knockout mice was significantly higher than that in wild-type mice. miR-497 overexpression suppressed GC cell proliferation, cell-cycle progression, colony formation, anti-apoptosis ability, and cell migration and invasion capacity. Additionally, miR-497 overexpression decreased the expression levels of cell division cycle 42 (CDC42) and integrin β1 (ITGB1) and inhibited the phosphorylation of focal adhesion kinase (FAK), paxillin (PXN), and serine-threonine protein kinase (AKT). Furthermore, overexpression of miR-497 inhibited the metastasis of GC cells in vivo, which could be counteracted by CDC42 restoration. Furthermore, the focal adhesion of GC cells was found to be regulated by miR-497/CDC42 axis via ITGB1/FAK/PXN/AKT signaling. Collectively, it is concluded that miR-497 plays an important role in the repression of GC tumorigenesis and progression, partly via the CDC42/ITGB1/FAK/PXN/AKT pathway.
Collapse
Affiliation(s)
- Lihui Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Liwen Yao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Wei Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Jinping Tian
- Medical Research Center, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest University, Weiyang District, Xi’an, Shaanxi 710016, PR China
| | - Banlai Ruan
- Medical Research Center, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest University, Weiyang District, Xi’an, Shaanxi 710016, PR China
| | - Zihua Lu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Qing Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Dongmei Yang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Renduo Shang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Mengjiao Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Du Cheng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Yanning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
| | - Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Medical Research Center, Xi’an No. 3 Hospital, the Affiliated Hospital of Northwest University, Weiyang District, Xi’an, Shaanxi 710016, PR China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, Hubei 430060, PR China
- Hubei Key Laboratory of Digestive System, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
9
|
Li Y, Sun W, Pan H, Yuan J, Xu Q, Xu T, Li P, Cheng D, Liu Y, Ni C. LncRNA-PVT1 activates lung fibroblasts via miR-497-5p and is facilitated by FOXM1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112030. [PMID: 33601175 DOI: 10.1016/j.ecoenv.2021.112030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
It is little known about the lncRNA-PVT1 effect on occupational pulmonary fibrosis, although researches show it plays an essential role in cancer. Studies reveal that lung fibroblast activation is one of the key events in silica-induced fibrosis. Here, we found that lncRNA-PVT1 promoted the proliferation, activation, and migration of lung fibroblasts. The isolation of cytoplasmic and nuclear RNA assay and fluorescence in situ hybridization experiment showed that lncRNA-PVT1 was abundantly expressed in the cytoplasm. Luciferase reporter gene assay and RNA pull-down experiment indicated that the cytoplasmic-localized lncRNA-PVT1 could competitively bind miR-497-5p. MiR-497-5p was further observed to attenuate silica-induced pulmonary fibrosis by targeting Smad3 and Bcl2. Moreover, the transcription factor FOXM1 acted as a profibrotic factor by elevating lncRNA-PVT1 transcription in lung fibroblasts. Inhibition of FOXM1 expression with thiostrepton alleviated silica-induced pulmonary fibrosis in vivo. Collectively, we revealed that FOXM1-facilitated lncRNA-PVT1 activates lung fibroblasts via miR-497-5p during silica-induced pulmonary fibrosis, which may provide potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yan Li
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenqing Sun
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Honghong Pan
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiali Yuan
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Xu
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tiantian Xu
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Demin Cheng
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi Liu
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunhui Ni
- Centre for Global Health, Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Zeng SHG, Xie JH, Zeng QY, Dai SHH, Wang Y, Wan XM, Liu JCH. lncRNA PVT1 Promotes Metastasis of Non-Small Cell Lung Cancer Through EZH2-Mediated Activation of Hippo/NOTCH1 Signaling Pathways. CELL JOURNAL 2021; 23:21-31. [PMID: 33650817 PMCID: PMC7944120 DOI: 10.22074/cellj.2021.7010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
Objective: Although growing evidences have showed that long non-coding RNA (lncRNAs) plasmacytoma variant
translocation 1 (PVT1) plays a critical role in the progression of non-small cell lung cancer (NSCLC), there are still many
unsolved mysteries remains to be deeply elucidated. This study aimed to find a new underlying mechanism of PVT1 in
regulating the tumorigenesis and development of NSCLC. Materials and Methods: In this experimental study, Quantitative reverse transcription polymerase chain reaction (qRTPCR) was used to profile the expression of PVT1 in NSCLC tissues and cells. The effects of PVT1 on cell growth,
migration and invasion were detected by colony formation assay, Matrigel-free transwell and Matrigel transwell assays,
respectively. Changes of the key protein expression in Hippo and NOTCH signaling pathways, as well as epithelialmesenchymal transition (EMT) markers, were analyzed using western blot. Interaction of PVT1 with enhancer of zeste
homolog 2 (EZH2) was verified by RNA pull-down, and their binding to the downstream targets was detected by
Chromatin Immunoprecipitation (ChIP) assays. Results: These results showed that PVT1 was up-regulated in NSCLC tissue and cell lines, promoting NSCLC cell
proliferation, migration and invasion. Knockdown of PVT1 inhibited the expression of Yes-associated protein 1 (YAP1)
and NOTCH1 signaling activation. Further, we have confirmed that PVT1 regulated expression of YAP1 through
EZH2-mediated miR-497 promoter methylation resulting in the inhibition of miR-497 transcription and its target YAP1
upregulation, and finally NOTCH signaling pathway was activated, which promoted EMT and invasion and metastasis. Conclusion: These results suggested that lncRNA PVT1 promotes NSCLC metastasis through EZH2-mediated
activation of Hippo/NOTCH1 signaling pathways. This study provides a new opportunity to advance our understanding
in the potential mechanism of NSCLC development.
Collapse
Affiliation(s)
- S Hang Gan Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Jian-Hong Xie
- Department of Surgery, Suichuan People's Hospital, Ji'an 343900, P.R China
| | - Qun-Ying Zeng
- Department of Surgery, Suichuan People's Hospital, Ji'an 343900, P.R China
| | - S Hao Hua Dai
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Yun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Xue-Mei Wan
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R China
| | - Ji C Hun Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R China.
| |
Collapse
|
11
|
Xie L, Feng G, Zhu P, Xie J. The effects of LncRNA PVT1 on clinical characteristics and survival in breast cancer patients: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2021; 100:e24774. [PMID: 33663093 PMCID: PMC7909102 DOI: 10.1097/md.0000000000024774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Currently, an increasing number of long noncoding RNAs (LncRNAs) have been reported to be abnormally expressed in human carcinomas and play a vital role in tumourigenesis. Some studies were carried out to investigate the influence of the expression of plasmacytoma variant translocation 1 (PVT1) on prognosis and its clinical significance in patients with breast cancer, while the results were contradictory and uncertain. A meta-analysis was conducted with controversial data to accurately assess the issue. METHODS A detailed search of relevant researches was performed in Wanfang, Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, Chongqing VIP Chinese Science and Technology Periodical Database, PubMed, Embase, and Web of Science. Two reviewers independently conducted data extraction and literature quality evaluation. Odd ratio and its 95% confidence intervals were applied to evaluate the relationship between PVT1 and clinicopathological characteristics of breast cancer patients. Hazard ratios and its 95% confidence intervals were adopted to assess the prognostic effects of PVT1 on overall survival and disease-free survival. Meta-analysis was conducted with Stata 14.0 software. RESULTS This study will provide high-quality evidence-based medical evidence for the correlation between PVT1 expression and overall survival, and disease-free survival and clinicopathological features. CONCLUSION The study will provide updated evidence to evaluate whether the expression of PVT1 is in association with poor prognosis in patients with breast cancer. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/C2TYE.
Collapse
Affiliation(s)
- Li Xie
- Department of Thyroid Breast Surgery
| | - Gang Feng
- Department of Thyroid Breast Surgery
| | - Ping Zhu
- Department of Nephrology, The First College of Clinical Medical Science, ChinaThree Gorges University, Yichang Central People's Hospital, Yichang
| | - Jiang Xie
- Department of Hepatological surgery, China Resources Wisco General Hospital, Wuhan, China
| |
Collapse
|
12
|
Tolomeo D, Agostini A, Visci G, Traversa D, Storlazzi CT. PVT1: A long non-coding RNA recurrently involved in neoplasia-associated fusion transcripts. Gene 2021; 779:145497. [PMID: 33600954 DOI: 10.1016/j.gene.2021.145497] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
NGS technologies and bioinformatics tools allow the rapid identification of chimeric transcripts in cancer. More than 40,000 fusions are so far reported in the literature; however, for most of them, the role in oncogenesis is still not fully understood. This is the case for fusions involving the long non-coding RNA (lncRNA) Plasmacytoma variant translocation 1 (PVT1) (8q24.21). This lncRNA displays oncogenic functions in several cancer types interacting with microRNAs and proteins, but the role of PVT1 fusion transcripts is more obscure. These chimeras have been identified in both hematological malignancies and solid tumors, mainly arising from rearrangements and/or amplification of the 8q24 chromosomal region. In this review, we detail the full spectrum of PVT1 fusions in cancer, summarizing current knowledge about their genesis, function, and role as biomarkers.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biology, University of Bari, Via Orabona no.4, 70125 Bari, Italy.
| | - Antonio Agostini
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy.
| | - Grazia Visci
- Department of Biology, University of Bari, Via Orabona no.4, 70125 Bari, Italy.
| | - Debora Traversa
- Department of Biology, University of Bari, Via Orabona no.4, 70125 Bari, Italy.
| | | |
Collapse
|
13
|
Pang L, Zhang Q, Wu Y, Yang Q, Zhang J, Liu Y, Li R. Long non-coding RNA CCAT1 promotes non-small cell lung cancer progression by regulating the miR-216a-5p/RAP2B axis. Exp Biol Med (Maywood) 2021; 246:142-152. [PMID: 33023331 PMCID: PMC7871119 DOI: 10.1177/1535370220961013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The long non-coding RNA colon cancer-associated transcript 1 (CCAT1) has been investigated to involve in the progression of non-small cell lung cancer (NSCLC). Thus, this study aims to explore the detailed molecular mechanisms of CCAT1 in NSCLC. The expression of CCAT1, miR-216a-5p, RAP2B, Bax, Bcl-2, and cleaved caspase 3 was detected by qRT-PCR or Western blot. Cell proliferation, apoptosis, migration, and invasion were analyzed using cell counting kit-8, flow cytometry or Transwell assays, respectively. The interaction between miR-216a-5p and CCAT1 or RAP2B was analyzed by luciferase reporter, RNA immunoprecipitation, and pull-down assays. The expression of CCAT1 was elevated in NSCLC, and CCAT1 deletion could inhibit NSCLC cell proliferation, migration, and invasion but induce apoptosis in vitro as well as imped tumor growth in vivo. MiR-216a-5p was confirmed to be a target of CCAT1, and silencing miR-216a-5p could reverse CCAT1 depletion-mediated inhibitory effects on cell tumorigenesis in NSCLC. Besides that, miR-216a-5p was decreased in NSCLC, and miR-216a-5p restoration inhibited cell tumorigenesis by regulating RAP2B, which was verified to be a target of miR-216a-5p. Additionally, co-expression analysis suggested that CCAT1 indirectly regulated RAP2B level by targeting miR-216a-5p in NSCLC cells. Taken together, CCAT1 deletion could inhibit cell progression in NSCLC through miR-216a-5p/RAP2B axis, indicating a novel pathway underlying NSCLC cell progression and providing new potential targets for NSCLC treatment.
Collapse
Affiliation(s)
- Lingling Pang
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai 264000, China
| | - Qianqian Zhang
- Department of Respiratory Medicine, Yantai Muping District Chinese Medical Hospital, Yantai 264100, China
| | - Yanmin Wu
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Qingru Yang
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Jinghao Zhang
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Yuanyuan Liu
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| | - Ruoran Li
- Department of Respiratory Medicine, Xuzhou Central Hospital, Xuzhou 221009, China
| |
Collapse
|
14
|
Wang L, Lin C, Sun N, Wang Q, Ding X, Sun Y. Long non-coding RNA CASC19 facilitates non-small cell lung cancer cell proliferation and metastasis by targeting the miR-301b-3p/LDLR axis. J Gene Med 2020; 22:e3254. [PMID: 32677267 DOI: 10.1002/jgm.3254] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a lethal tumor resulting in a large number of cancer-related deaths globally. Long noncoding RNAs (lncRNAs) may modulate tumor initiation and metastasis. Although dysregulation of lncRNA cancer susceptibility 19 (CASC19) is validated in NSCLC, further exploration of the CASC19-regulated mechanism in NSCLC is still needed. METHODS CASC19 expression was examined in NSCLC cells by a quantitative reverse transcriptase-polymerase chain reaction. The specific role of CASC19 in NSCLC was analyzed by cell counting kit-8, EdU, Transwell and western blot assays. The interaction between miR-301b-3p and CASC19 or low-density lipoprotein receptor (LDLR) was confirmed by luciferase reporter and RNA immunoprecipitation assays. RESULTS CASC19 is markedly overexpressed in NSCLC. Its deficiency impairs cell proliferation, as well as metastasis in NSCLC. Molecular mechanism experiments indicated that CASC19 negatively modulates the expression of miR-301b-3p and miR-301b-3p can bind with CASC19 in NSCLC. In addition, miR-301b-3p binds to LDLR to impair its expression in NSCLC. Finally, rescue experiments showed that miR-301b-3p inhibition or LDLR overexpression counteracted the CASC19 knockdown-mediated function on cell proliferation and metastasis in NSCLC. CONCLUSIONS CASC19 facilitates NSCLC cell proliferation and metastasis by targeting the miR-301b-3p/LDLR axis, offering a possible strategy for lncRNA-targeted treatment in NSCLC.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/secondary
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- MicroRNAs/genetics
- RNA, Long Noncoding/genetics
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lijun Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cunzhi Lin
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Nina Sun
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiang Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoqian Ding
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yong Sun
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
15
|
Ogunwobi OO, Segura MF. Editorial: PVT1 in Cancer. Front Oncol 2020; 10:588786. [PMID: 33194746 PMCID: PMC7606904 DOI: 10.3389/fonc.2020.588786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Affiliation(s)
- Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, VHIR, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Luo G, He K, Xia Z, Liu S, Liu H, Xiang G. Regulation of microRNA-497 expression in human cancer. Oncol Lett 2020; 21:23. [PMID: 33240429 PMCID: PMC7681205 DOI: 10.3892/ol.2020.12284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of non-coding single-stranded RNA, with a length of ~22 nt, which are encoded by endogenous genes and are involved in the post-transcriptional regulation of gene expression in animals and plants. Studies have demonstrated that miRNAs play an important role in the occurrence, development, metastasis, diagnosis and treatment of cancer. In recent years, miR-497 has been identified as one of the key miRNAs in a variety of cancer types and has been shown to be downregulated in a variety of solid tumors. However, the regulation of miR-497 expression involves a complex network, which is affected by several factors. The aim of the present review was to summarize the mechanism of regulation of miR-497 expression at the pre-transcriptional and transcriptional levels in cancer, as well as the role of miR-497 expression imbalance in cancer diagnosis, treatment and prognosis. The regulatory mechanisms of miR-497 expression may aid in our understanding of the causes of miR-497 expression imbalance and provide a reference value for further research on the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Guanshui Luo
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China.,Department of Postgraduate Studies, The Second Clinical College of Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Zhenglin Xia
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Shuai Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Hong Liu
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
17
|
Xia H, Zhang Z, Yuan J, Niu Q. The lncRNA PVT1 promotes invasive growth of lung adenocarcinoma cells by targeting miR-378c to regulate SLC2A1 expression. Hum Cell 2020; 34:201-210. [PMID: 32960438 DOI: 10.1007/s13577-020-00434-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
As an oncogene, plasmacytoma variant translocation 1 (PVT1) has been found to be highly expressed in several cancers. However, its specific role in lung adenocarcinoma (ADC) has not been fully elucidated. In this study, the expression of PVT1, miR-378c, and solute carrier family 2 member 1 (SLC2A1) was determined by quantitative real-time PCR and western blot. Dual-luciferase reporter assay was used to explore the relationship between PVT1 and miR-378c, as well as miR-378c and SLC2A1. The effects of PVT1 on the lung ADC cells proliferation, invasion, and migration were detected using MTT, wound-healing, and transwell assays. The results revealed that PVT1 was highly expressed in lung ADC cells, and the overexpression of PVT1 promoted the proliferation, migration, and invasion of lung ADC cells. In lung ADC cells, PVT1 negatively regulated miR-378c expression, and miR-378c negatively regulated SLC2A1 expression through binding to its 3'-untranslated coding regions. Knocking down of PVT1 inhibited the abilities of cell proliferation, migration, and invasion, while miR-378c inhibitor or SLC2A1 Vector diminished the effect. Together, silencing PVT1 downregulated SLC2A1 expression via targeting miR-378c, and then repressed lung ADC cells growth, migration, and invasion.
Collapse
Affiliation(s)
- Hongwei Xia
- Department of Thoracic, Qingpu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai, 201700, China
| | - Zhiqiang Zhang
- Department of Thoracic, Qingpu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai, 201700, China
| | - Jun Yuan
- Department of Thoracic, Qingpu Branch of Zhongshan Hospital Affiliated To Fudan University, Shanghai, 201700, China
| | - Qingling Niu
- Department of Peditrict, Qingpu Branch of Zhongshan Hospital Affiliated To Fudan University, No. 1158, East Park Road, Qingpu District, Shanghai, 201700, China.
| |
Collapse
|
18
|
Zhang T, Feng X, Zhou T, Zhou N, Shi X, Zhu X, Qiu J, Deng G, Qiu C. miR-497 induces apoptosis by the IRAK2/NF-κB axis in the canine mammary tumour. Vet Comp Oncol 2020; 19:69-78. [PMID: 32706167 DOI: 10.1111/vco.12626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022]
Abstract
Since companion dogs have the same living environment as humans, they are a good animal model for the study of human diseases; this is especially true of canine spontaneous mammary tumours models. A better understanding of the natural history and molecular mechanisms of canine mammary tumour is of great significance in comparative medicine. Here, we collected canine mammary tumour cases and then assayed the clinical cases by pathological examination and classification by HE staining and IHC. miRNA-497 family members (miR-497, miR-16, miR-195 and miR-15) were positively correlated with the breast cancer marker genes p63 and PTEN. Modulation of the expression of miR-497 in the canine mammary tumour cell lines CMT1211 and CMT 7364 induced apoptosis and inhibited cell proliferation. Mechanistically, IRAK2 was shown to be a functional target of miR-497 that affects the characteristics of cancer cells by inhibiting the activity of the NF-κB pathway. Overall, our work reveals the miR-497/IRAK2/NF-κB axis as a vital mechanism of canine mammary tumour progression and suggests this axis as a target in breast cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiujuan Feng
- Nanjing Police Dog Research Institute of the Ministry of the Public Security, Nanjing, China
| | - Tianhong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ning Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xue Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinying Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinxia Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Hu W, Li H, Wang S. LncRNA SNHG7 promotes the proliferation of nasopharyngeal carcinoma by miR-514a-5p/ELAVL1 axis. BMC Cancer 2020; 20:376. [PMID: 32370736 PMCID: PMC7202000 DOI: 10.1186/s12885-020-06775-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC), with distinct geographical distribution, has gathered public attention. Despite that radiotherapy and chemotherapy are applied to treat NPC, cell metastasis still cannot be avoided. Numerous works have elucidated that lncRNAs are essential players in the development of multiple cancers. LncRNA SNHG7 has been reported as a contributing factor in the occurrence of certain cancers, but its mechanism in NPC deserves further investigation. The purpose of the study is to figure out the role and molecular regulation mechanism of SNHG7 in NPC. Methods The role of SNHG7 in NPC was verified by CCK-8, colony formation, EdU staining, western blot and capase-3 assays. The interactions between SNHG7/ELAVL1 and miR-514a-5p were confirmed by RNA pull down, RT-qPCR, RIP and luciferase reporter assays. Results SNHG7 was upregulated in NPC cells, and absence of SNHG7 suppressed cell proliferation as well as promoted cell apoptosis in NPC. Furthermore, SNHG7 was confirmed to bind with miR-514a-5p and negatively modulate miR-514a-5p expression. Besides, miR-514a-5p was found to be able to bind with ELAVL1 and negatively regulate ELAVL1 mRNA and protein expressions. In the end, rescue assays demonstrated that the miR-514a-5p deficiency restored the NPC progression inhibited by SNHG7 silence, and ELAVL1 partly counteracted the restoration caused by miR-514a-5p inhibitor in HNE1 cells. Conclusions LncRNA SNHG7 promotes the proliferation and migration of nasopharyngeal carcinoma by miR-514a-5p/ ELAVL1 axis.
Collapse
Affiliation(s)
- Weiqun Hu
- Department of Otolaryngology, Putian University Affiliated Hospital, Putian, 351100, Fujian, China
| | - Haolin Li
- Department of Otolaryngology, Xinxiang First People's Hospital, Xinxiang, 453000, Henan, China
| | - Shaozhong Wang
- Otolaryngngology of Qinghai Provincial People's Hospital, Gonghe Road No.2, Xining, 810007, Qinghai Province, China.
| |
Collapse
|
20
|
Pan J, Tang Y, Liu S, Li L, Yu B, Lu Y, Wang Y. LIMD1-AS1 suppressed non-small cell lung cancer progression through stabilizing LIMD1 mRNA via hnRNP U. Cancer Med 2020; 9:3829-3839. [PMID: 32239804 PMCID: PMC7286462 DOI: 10.1002/cam4.2898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/30/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) occupies the majority of lung cancer cases and is notorious for the awful prognosis. LIM domains‐containing 1 (LIMD1) is suggested as a tumor suppressor in lung cancer, but its mechanism in NSCLC remains elusive. Present study aimed to uncover the mechanism of LIMD1 in NSCLC. Methods qRT‐PCR was performed to analyze the level of LIMD1. The functions of LIMD1 in NSCLC cells were evaluated by CCK‐8, EdU, and caspase‐3 activity assays. RIP and pull‐down assays were applied to determine the interaction of LIMD1 with heterogeneous nuclear ribonucleoprotein U (hnRNP U) and LIMD1‐AS1. Results LIMD1 was downregulated in NSCLC samples and cells. Functionally, LIMD1 hindered proliferation and drove apoptosis in NSCLC cells. Moreover, long noncoding RNA (lncRNA) LIMD1 antisense RNA 1 (LIMD1‐AS1) was downregulated in NSCLC samples and cell lines. LIMD1‐AS1 knockdown abrogated NSCLC cell growth in vitro and in vivo. Mechanistically, LIMD1‐AS1 stabilized LIMD1 mRNA through interacting with hnRNP U. Rescue experiments suggested that LIMD1‐AS1 repressed NSCLC progression through LIMD1. Conclusions LIMD1‐AS1 suppressed NSCLC progression through stabilizing LIMD1 mRNA via hnRNP U, providing new thoughts for the improvement of molecular‐targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Jianyuan Pan
- Cardiovascular Department, The Second People's Hospital of Hefei, Hefei, China
| | - Yongqin Tang
- General Surgery, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Shumei Liu
- Respiratory Medicine Department, Liaocheng People's Hospital, Liaocheng, China
| | - Lily Li
- Respiratory Medicine Department, Liaocheng People's Hospital, Liaocheng, China
| | - Bo Yu
- Respiratory Medicine Department, Liaocheng People's Hospital, Liaocheng, China
| | - Yuanyuan Lu
- Respiratory Medicine Department, Liaocheng People's Hospital, Liaocheng, China
| | - Yu Wang
- Respiratory Medicine Department, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
21
|
Liu S, Yang N, Wang L, Wei B, Chen J, Gao Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β-catenin signaling pathway. J Cell Physiol 2020; 235:7541-7553. [PMID: 32239719 DOI: 10.1002/jcp.29656] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/22/2020] [Indexed: 12/27/2022]
Abstract
Lung cancer ranks topmost among the most frequently diagnosed cancers. Despite increasing research, there are still unresolved mysteries in the molecular mechanism of lung cancer. Long noncoding RNA small nucleolar RNA host gene 11 (SNHG11) was found to be upregulated in lung cancer and facilitated lung cancer cell proliferation, migration, invasion, and epithelial-mesenchymal transition progression while suppressed cell apoptosis. Moreover, the high expression of SNHG11 was correlated with poor prognosis of lung cancer patients, TNM stage, and tumor size. Further assays demonstrated that SNHG11 functioned in lung cancer cells via Wnt/β-catenin signaling pathway. Subsequently, Wnt/β-catenin pathway was found to be activated through SNHG11/miR-4436a/CTNNB1 ceRNA axis. As inhibiting miR-4436 could only partly rescue the suppression of cell function induced by silencing SNHG11, it was suspected that β-catenin might enter cell nucleus through other pathways. Mechanism investigation proved that SNHG11 would directly bind with β-catenin to activate classic Wnt pathway. Subsequently, in vivo tumorigenesis was also demonstrated to be enhanced by SNHG11. Hence, SNHG11 was found to promote lung cancer progression by activating Wnt/β-catenin pathway in two different patterns, implying that SNHG11 might contribute to lung cancer treatment by acting as a therapeutic target.
Collapse
Affiliation(s)
- Shaoxia Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ningning Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Wei
- Department of Molecular Pathology, The Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jiayao Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yonghua Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Qi G, Li L. Long non-coding RNA PVT1 contributes to cell growth and metastasis in non-small-cell lung cancer by regulating miR-361-3p/SOX9 axis and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother 2020; 126:110100. [PMID: 32197208 DOI: 10.1016/j.biopha.2020.110100] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is the most frequent cause of cancer-related mortality in men, and 85 % of lung cancer is diagnosed as non-small-cell lung cancer (NSCLC). Plasmacytoma variant translocation1 (PVT1) serves as an oncogenic factor in NSCLC. However, the pathogenesis of PVT1 in NSCLC is still vague. The expression levels of PVT1, sex determining region Y (SRY)-related high mobility group (HMG)-box9 (SOX9), and microRNA (miR)-361-3p in NSCLC tissues and cells were detected by quantitative real-time polymerase chain reaction (RT-qPCR). The protein levels of SOX9, β-catenin, and c-Myc were detected by western blot assay. Cell proliferation, apoptosis, migration and invasion were measured by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry, transwell assays, severally. The interaction between miR-361-3p and PVT1 or SOX9was predicted by starBase, and then verified by the dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. PVT1 and SOX9 was highly expressed in NSCLC tumor tissues and cells. PVT1 facilitated proliferation, migration, invasion and hindered apoptosis of NSCLC cells. MiR-361-3p was a target of PVT1 in NSCLC cells. SOX9 acted as a target of miR-361-3p. PVT1 worked as a miR-361-3p sponge to regulate SOX9 expression. PVT1 modulate the Wnt/β-catenin Signaling Pathway by miR-361-3p/SOX9 axis. Our studies disclosed that PVT1 boosted proliferation, migration, invasion and curbed apoptosis by miR-361-3p/SOX9 axis, providing the possible therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Guanbin Qi
- Department of Respiratory and Critical Care Medicine, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China
| | - Lei Li
- Department of Respiratory and Critical Care Medicine, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, China.
| |
Collapse
|
23
|
Ghafouri-Fard S, Shoorei H, Branicki W, Taheri M. Non-coding RNA profile in lung cancer. Exp Mol Pathol 2020; 114:104411. [PMID: 32112788 DOI: 10.1016/j.yexmp.2020.104411] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Lung cancer is the most frequently diagnosed malignancy and the leading source of cancer-associated mortality. This kind of cancer has heterogeneous nature and is divided into two broad classes of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). In addition to aberrant expression of several signaling pathways and oncogenes, lung cancer is associated with dysregulation of expression of non-coding RNAs including both long non-coding RNAs (lncRNAs) and miRNAs. These aberrantly expressed transcripts are putative therapeutic targets and diagnostic/ prognostic markers. Integrative assessment of expression of lncRNAs, miRNAs and mRNAs has led to construction of competing endogenous RNA networks in which several lncRNAs act as molecular sponges to inhibit regulatory function of miRNAs on mRNAs. Notably, some of these networks seem to have subtype-specific functions in lung cancer. In this review, we summarize recent findings about the importance of these networks in the pathogenesis of lung cancer and provide a list of onco-miRNAs, tumor suppressor miRNAs, oncogenic lncRNAs and tumor suppressor lncRNAs based on their roles in the carcinogenic process in lung cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology of the Jagiellonian University, Kraków, Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Xu P, Xiao H, Yang Q, Hu R, Jiang L, Bi R, Jiang X, Wang L, Mei J, Ding F, Huang J. The USP21/YY1/SNHG16 axis contributes to tumor proliferation, migration, and invasion of non-small-cell lung cancer. Exp Mol Med 2020; 52:41-55. [PMID: 31956270 PMCID: PMC7000404 DOI: 10.1038/s12276-019-0356-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Deubiquitinases (DUBs) and noncoding RNAs have been the subjects of recent extensive studies regarding their roles in lung cancer, but the mechanisms involved are largely unknown. In our study, we used The Cancer Genome Atlas data set and bioinformatics analyses and identified USP21, a DUB, as a potential contributor to oncogenesis in non-small-cell lung cancer (NSCLC). We further demonstrated that USP21 was highly expressed in NSCLCs. We then conducted a series of in vitro and in vivo assays to explore the effect of USP21 on NSCLC progression and the underlying mechanism involved. USP21 promoted NSCLC cell proliferation, migration, and invasion and in vivo tumor growth by stabilizing a well-known oncogene, Yin Yang-1 (YY1), via mediating its deubiquitination. Furthermore, YY1 transcriptionally regulates the expression of SNHG16. Moreover, StarBase bioinformatics analyses predicted that miR-4500 targets SNHG16 and USP21. A series of in vitro experiments indicated that SNHG16 increased the expression of USP21 through miR-4500. In summary, the USP21/YY1/SNHG16 axis plays a role in promoting the progression of NSCLC. Therefore, the USP21/YY1/SNHG16/miR-4500 axis may be a potential therapeutic target in NSCLC treatment. Therapies targeting a molecular feedback loop involved in tumor growth may prove valuable for treating non-small-cell lung cancer. Fangbao Ding, Jianbing Huang, and co-workers at Shanghai Jiao Tong University in Shanghai, China, have shown how an enzyme called USP21 promotes cancer cell proliferation and tumor growth in non-small-cell lung cancer. The team took cancerous and non-cancerous lung tissue samples from 42 patients, and analyzed the expression and behavior of USP21. The enzyme was highly expressed in cancerous tissues, where it stabilized a known gene with the potential to cause cancer called YY1. This gene also regulated the expression of a particular RNA molecule, which in turn worked to increase levels of USP21. This cyclical process encouraged the proliferation, migration and invasion of non-small-cell lung cancer cells, and may provide a future therapeutic target.
Collapse
Affiliation(s)
- Pei Xu
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Qi Yang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Rui Bi
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Xueyan Jiang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Ju Mei
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| | - Jianbing Huang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| |
Collapse
|
25
|
Wang Z, Zhang Q, Sun Y, Shao F. Long Non-Coding RNA PVT1 Regulates BAMBI To Promote Tumor Progression In Non-Small Cell Lung Cancer By Sponging miR-17-5p. Onco Targets Ther 2020; 13:131-142. [PMID: 32021261 PMCID: PMC6954835 DOI: 10.2147/ott.s217335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/14/2019] [Indexed: 12/26/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a common malignancy over the world. Previous report indicated that the plasmacytoma variant translocation 1 (PVT1) has been documented to function as an oncogene in various types of human cancers. However, the biological mechanism of PVT1 was still rarely reported in NSCLC. Methods The levels of PVT1, miR-17-5p, and bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) in NSCLC tissues (n=64) and cells (H1299 and A549) were detected by qRT-PCR and immunohistochemistry (IHC). The protein level of BAMBI was measured by Western blot assay. Cell viability and apoptotic rate were evaluated by MTT assay and flow cytometry, respectively. The migrated and invaded abilities were assessed by Transwell assay and Wound healing assay. The interactions between miR-17-5p and PVT1 or BAMBI were predicted by starBase v2.0 and TargetScan, respectively, and then dual-luciferase reporter assay and RNA pull-down assay were performed to verify these interactions. The mice model experiments were constructed to further validate the roles of PVT1 in vivo. Results The levels of PVT1 and BAMBI were both apparently increased, and miR-17-5p was declined in NSCLC tissues and cells. The depletion of PVT1 or BAMBI blocked cell viability, migrated and invaded abilities but impelled apoptotic rate in A549 and H1299 cells. PVT1 was validated as a sponge to miR-17-5p and BAMBI was a direct target of miR-17-5p. PVT1 promoted cell viability, migrated and invaded abilities but repressed apoptotic rate by targeting BAMBI. MiR-17-5p regulated cell behaviors mediated by PVT1. PVT1 silencing decreased BAMBI expression by sponging miR-17-5p. In addition, PVT1 knockdown blocked the xenograft tumor growth in vivo. Conclusion These results manifested that PVT1 modulated BAMBI to promote tumor progression in NSCLC by sponging miR-17-5p. Thus, the novel regulatory pathway may provide a new therapeutic target for NSCLC patients.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Thoracic Surgery, The Nanjing Chest Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Qiang Zhang
- Department of Thoracic Surgery, The Nanjing Chest Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yungang Sun
- Department of Thoracic Surgery, The Nanjing Chest Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Feng Shao
- Department of Thoracic Surgery, The Nanjing Chest Hospital, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
26
|
Boloix A, Masanas M, Jiménez C, Antonelli R, Soriano A, Roma J, Sánchez de Toledo J, Gallego S, Segura MF. Long Non-coding RNA PVT1 as a Prognostic and Therapeutic Target in Pediatric Cancer. Front Oncol 2019; 9:1173. [PMID: 31781490 PMCID: PMC6853055 DOI: 10.3389/fonc.2019.01173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/18/2019] [Indexed: 12/27/2022] Open
Abstract
In recent decades, biomedical research has focused on understanding the functionality of the human translated genome, which represents a minor part of all genetic information transcribed from the human genome. However, researchers have become aware of the importance of non-coding RNA species that constitute the vast majority of the transcriptome. In addition to their crucial role in tissue development and homeostasis, mounting evidence shows non-coding RNA to be deregulated and functionally contributing to the development and progression of different types of human disease including cancer both in adults and children. Small non-coding RNAs (i.e., microRNA) are in the vanguard of clinical research which revealed that RNA could be used as disease biomarkers or new therapeutic targets. Furthermore, many more expectations have been raised for long non-coding RNAs, by far the largest fraction of non-coding transcripts, and still fewer findings have been translated into clinical applications. In this review, we center on PVT1, a large and complex long non-coding RNA that usually confers oncogenic properties on different tumor types. We focus on the compilation of early advances in the field of pediatric tumors which often lags behind clinical improvements in adult tumors, and provide a rationale to continue studying PVT1 as a possible functional contributor to pediatric malignancies and as a potential prognostic marker or therapeutic target.
Collapse
Affiliation(s)
- Ariadna Boloix
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Esfera UAB, Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Marc Masanas
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carlos Jiménez
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roberta Antonelli
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Miguel F Segura
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
27
|
Li R, Liu Y, Wang T, Tang J, Xie L, Yao Z, Li K, Liao Y, Zhou L, Geng Z, Huang Z, Yang Z, Han L. The characteristics of lung cancer in Xuanwei County: A review of differentially expressed genes and noncoding RNAs on cell proliferation and migration. Biomed Pharmacother 2019; 119:109312. [PMID: 31518876 DOI: 10.1016/j.biopha.2019.109312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
The occurrence of lung cancers is the highest in Xuanwei County, Yunnan province, China, especially among nonsmoking women. Domestic combustion of smoky coal induces serious indoor air pollution and is considered to be the main cause of human lung cancers. The occurrence of lung cancer in Xuanwei County has unique characteristics, such as the high morbidity in nonsmoking women or people with no family history. In the present review, we summarize advances in identification of differentially expressed genes, regulatory lncRNAs and miRNAs in cell proliferation and migration of lung cancers in Xuanwei County. Moreover, several regulatory differentially expressed genes (DEGs) or noncoding RNAs have diagnostic and prognostic significance for lung cancers in Xuanwei County and have the potential to serve as biomarkers.
Collapse
Affiliation(s)
- Rong Li
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Yan Liu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Tiying Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Jiadai Tang
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Lin Xie
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China.
| | - Zhihong Yao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Kechen Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Yedan Liao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Ling Zhou
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Zhenqin Geng
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| | - Zeyong Huang
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, 650504, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China.
| | - Lei Han
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Cancer Hospital of Yunnan Province), Kunming, Yunnan, 650118, China
| |
Collapse
|
28
|
Liu J, Li R, Liao X, Hu B, Yu J. Comprehensive investigation of the clinical significance and molecular mechanisms of plasmacytoma variant translocation 1 in sarcoma using genome-wide RNA sequencing data. J Cancer 2019; 10:4961-4977. [PMID: 31598169 PMCID: PMC6775530 DOI: 10.7150/jca.31675] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: The present study aims to identify the potential clinical application and molecular mechanism of plasmacytoma variant translocation 1 (PVT1) in patients with sarcomas by mining an RNA sequencing dataset from The Cancer Genome Atlas (TCGA) through multiple genome-wide analysis approaches. Methods: A genome-wide RNA sequencing dataset was downloaded from TCGA, survival analysis was used to evaluate the prognostic value of PVT1 in sarcoma. The potential mechanism was investigated by multiple tools: Database for Annotation, Visualization, and Integrated Discovery v6.8, gene set enrichment analysis (GSEA), and Connectivity Map (CMap). Results: Comprehensive survival analysis indicated that overexpression of PVT1 was significantly associated with poor prognosis in patients with sarcoma, and nomogram demonstrated that PVT1 contributed more than other traditional clinical parameters in sarcoma survival prediction. Weighted gene co-expression network analysis identified ten hub differentially expressed genes (DEGs) between sarcoma tissues with low and overexpression of PVT1, and substantiated that these DEGs have a complex co-expression network relationship. CMap analysis has identified that antipyrine, ondansetron, and econazole may be candidate targeted drugs for sarcoma patients with PVT1 overexpression. GSEA revealed that overexpression of PVT1 may be involved in the posttranscriptional regulation of gene expression, tumor invasiveness and metastasis, osteoblast differentiation and development, apoptosis, nuclear factor kappa B, Wnt, and apoptotic related signaling pathways. Conclusions: Our findings indicate that PVT1 may serve as a prognostic indicator in patients with sarcoma. Its underlying mechanism is revealed by GSEA, and CMap offers three candidate drugs for the individualized targeted therapy of sarcoma patients with overexpression of PVT1.
Collapse
Affiliation(s)
- Jianwei Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Rong Li
- Department of Reproductive Center, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Bangli Hu
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jia Yu
- Department of Spine Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
29
|
Ogunwobi OO, Kumar A. Chemoresistance Mediated by ceRNA Networks Associated With the PVT1 Locus. Front Oncol 2019; 9:834. [PMID: 31508377 PMCID: PMC6718704 DOI: 10.3389/fonc.2019.00834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/13/2019] [Indexed: 12/24/2022] Open
Abstract
Competitive endogenous RNA (ceRNA) networks have emerged as critical regulators of carcinogenesis. Their activity is mediated by various non-coding RNAs (ncRNAs), including long non-coding RNAs and microRNAs, which competitively bind to targets, thereby modulating gene expression and activity of proteins. Of particular interest, ncRNAs encoded by the 8q24 chromosomal region are associated with the development and progression of several human cancers, most prominently lncPVT1. Chemoresistance presents a significant obstacle in the treatment of cancer and is associated with dysregulation of normal cell processes, including abnormal proliferation, differentiation, and epithelial-mesenchymal transition. CeRNA networks have been shown to regulate these processes via both direct sponging/repression and epigenetic mechanisms. Here we present a review of recent literature examining the contribution of ncRNAs encoded by the PVT1 locus and their associated ceRNA networks to the development of resistance to common chemotherapeutic agents used to treat human cancers.
Collapse
Affiliation(s)
- Olorunseun O. Ogunwobi
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Adithya Kumar
- Department of Biological Sciences, Hunter College of the City University of New York, New York, NY, United States
| |
Collapse
|
30
|
Li MY, Tang XH, Fu Y, Wang TJ, Zhu JM. Regulatory Mechanisms and Clinical Applications of the Long Non-coding RNA PVT1 in Cancer Treatment. Front Oncol 2019; 9:787. [PMID: 31497532 PMCID: PMC6712078 DOI: 10.3389/fonc.2019.00787] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death worldwide, and no obvious decline in incidence and mortality has occurred in recent years. It is imperative to further investigate the mechanisms underlying tumor progression. Long non-coding RNAs have received considerable attention in recent years because of their major regulatory roles in gene expression. Among them, PVT1 is well-studied, and substantial evidence indicates that PVT1 plays critical roles in the onset and development of cancers. Normally, PVT1 acts as an oncogenic factor by promoting cancer cell proliferation, invasion, metastasis, and drug resistance. Herein, we summarize current knowledge regarding the regulatory effects of PVT1 in cancer progression, as well as the related underlying mechanisms, such as interaction with Myc, modulation of miRNAs, and regulation of gene transcription and protein expression. In extracellular fluid, PVT1 mainly promotes cancer initiation, and it normally enhances cellular cancer characteristics in the cytoplasm and cell nucleus. Regarding clinical applications, its role in drug resistance and its potential use as a diagnostic and prognostic marker have received increasing attention. We hope that this review will contribute to a better understanding of the regulatory role of PVT1 in cancer progression, paving the way for the development of PVT1-based therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Xiao-Huan Tang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tie-Jun Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Jia-Ming Zhu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Jiang L, Li Z, Wang R. Long non‑coding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications (Review). Int J Oncol 2019; 55:585-596. [PMID: 31364742 PMCID: PMC6685594 DOI: 10.3892/ijo.2019.4850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common malignancy with the highest mortality worldwide. Emerging research has demonstrated that long non-coding RNAs (lncRNAs), a key genomic product, are commonly dysregulated in lung cancer and have significant functions in lung cancer initiation, progression and therapeutic response. lncRNAs may interact with DNA, RNA or proteins, as tumor suppressor genes or oncogenes, to regulate gene expression and cell signaling pathways. In the present review, first a summary was presented of the causal effects of dysregulated lncRNAs in lung cancer. Next, the function and specific mechanisms of lncRNA-mediated tumorigenesis, metastasis and drug resistance in lung cancer were discussed. Finally, the potential roles of lncRNAs as biomarkers for lung cancer were explored.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Ranran Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
32
|
Ghafouri-Fard S, Omrani MD, Taheri M. Long noncoding RNA PVT1: A highly dysregulated gene in malignancy. J Cell Physiol 2019; 235:818-835. [PMID: 31297833 DOI: 10.1002/jcp.29060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
Recent studies have verified the contribution of several long noncoding RNAs (lncRNAs) in the carcinogenesis. Among the highly acknowledged lncRNAs is the human homolog of the plasmacytoma variant translocation gene, which is called PVT1. PVT1 resides near Myc oncogene and regulates the oncogenic process through modulation of several signaling pathways, such as TGF-β, Wnt/ β-catenin, PI3K/AKT, and mTOR pathways. This lncRNA has a circular form as well. Expression analyses and functional studies have appraised the oncogenic roles of PVT1 and circPVT1. Experiments in several cancer cell lines have shown that PVT1 silencing suppresses cancer cell proliferation, whereas its overexpression has the opposite effect. Its silencing has led to the accumulation of cells in the G0/G1 phase and diminished the number of cells in the S phase. Moreover, genome-wide association studies have signified the role of single nucleotide polymorphisms of this lncRNA in conferring risk of lymphoma in different populations. In the current study, we have summarized recent data about the role of PVT1 and circPVT1 in the carcinogenesis process.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Wang C, Zou H, Yang H, Wang L, Chu H, Jiao J, Wang Y, Chen A. Long non‑coding RNA plasmacytoma variant translocation 1 gene promotes the development of cervical cancer via the NF‑κB pathway. Mol Med Rep 2019; 20:2433-2440. [PMID: 31322217 DOI: 10.3892/mmr.2019.10479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/20/2019] [Indexed: 11/06/2022] Open
Abstract
The long noncoding RNA plasmacytoma variant translocation 1 gene (LncRNA PVT1) has an important role in tumor occurrence and development, yet the role and underlying molecular mechanisms of this RNA in cervical cancer have not yet been elucidated. In the present study, three cervical cancer cell lines (HeLa, Ca Ski and SiHa) were used to verify how LncRNA PVT1 mediates cervical cancer development, and the H8 cell line was used as a control. A LncRNA PVT1 overexpression vector or small interfering RNAs targeting LncRNA PVT1 were transfected into cervical cancer cells to generate LncRNA PVT1 overexpression and silencing in these cells. LncRNA PVT1 overexpression accelerated the growth of cervical cancer cells by advancing the cell cycle and inhibiting cellular apoptosis; increases in Cyclin D1 (CCND1) mRNA and activated Bcl‑2 protein expression levels also supported this finding. Furthermore, NF‑κB activation and expression was increased by LncRNA PVT1 overexpression. In addition, NF‑κB activation or inhibition induced changes in cell viability, accompanied by changes in CCND1 and Bcl‑2 expression. Increases or decreases in microRNA‑16 (miR‑16) expression (using miR mimics and inhibitors) also corresponded to changes in LncRNA PVT1 expression, in vitro. miR‑16 mimics and inhibitor had opposite effects to those of NF‑κB activity, and miR‑16 was demonstrated to directly interact with the NF‑κB gene as measured using the dual‑luciferase assay. In summary, LncRNA PVT1 inhibits the effect of miR‑16, promoting the cell cycle and inhibiting cellular apoptosis of cervical cancer cells, potentially via the NF‑κB pathway. The data from the present study will contribute to the current knowledge surrounding the theoretical basis of cervical cancer and provide a new perspective for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Chang Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266590, P.R. China
| | - Hao Zou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hongjuan Yang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266590, P.R. China
| | - Lei Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266590, P.R. China
| | - Huijun Chu
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266590, P.R. China
| | - Jinwen Jiao
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266590, P.R. China
| | - Yankui Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266590, P.R. China
| | - Aiping Chen
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266590, P.R. China
| |
Collapse
|
34
|
Li Z, Zhang Y, Meng L, Yang S, Zhang P, Zhang J, Li C, Feng F, Zhang Q. LncRNA-ENST00000501520 promotes the proliferation of malignant-transformed BEAS-2B cells induced with coal tar pitch mediated by target genes. ENVIRONMENTAL TOXICOLOGY 2019; 34:869-877. [PMID: 31033183 DOI: 10.1002/tox.22759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/07/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
As a human carcinogen, coal tar pitch (CTP) can significantly increase the risk of lung cancer. However, the mechanism underlying CTP-induced lung carcinogenesis has not been well understood. This study aims to explore the role of the LncRNA-ENST00000501520 in the proliferation of malignant-transformed human bronchial epithelial cells (BAES-2B) induced by CTP extract for the first time. BEAS-2B cells were stimulated with 2.4 μg/mL CTP extract, and then passaged for three times, which were named passage 1 and then passaged until passage 30 (named as CTP group). The ENST000001520 of cells in CTP group was interfered using siRNA. The results showed that ENST000001520 located in cell nucleus (>80%) had no or weak ability of protein encoding. After interference of ENST000001520, the migration and proliferation of cells in CTP group were inhibited, and the cell cycle was arrested in the G0/G1 phase; however, the apoptosis of cells in CTP group was promoted. The target genes (SKB1, CLTB, TAP2, PIPK2, and SOCS3) of ENST000001520 were screened out, and the mRNA and protein expression of SBK1 and SOCS3 was significantly decreased after ENST000001520 interference. SBK1 and SOCS3 may play a promoting role in occurrence and development of cancers. The study suggests that LncRNA-ENST00000501520 could promote the proliferation in malignant-transformed BEAS-2B cells induced with CTP extract which may be mediated by target genes. This study may provide a new target for prevention and treatment of lung cancer.
Collapse
Affiliation(s)
- Zhongqiu Li
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yaping Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Liya Meng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Sa Yang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Zhang
- Department of Bone and soft tissue cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, Henan, China
| | - Jiatong Zhang
- Department of Disease Control and Prevention, Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chunyang Li
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Yu S, Yang D, Ye Y, Liu P, Chen Z, Lei T, Pu J, Liu L, Wang Z. Long noncoding RNA actin filament-associated protein 1 antisense RNA 1 promotes malignant phenotype through binding with lysine-specific demethylase 1 and repressing HMG box-containing protein 1 in non-small-cell lung cancer. Cancer Sci 2019; 110:2211-2225. [PMID: 31069893 PMCID: PMC6609801 DOI: 10.1111/cas.14039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 12/16/2022] Open
Abstract
The number of documented long noncoding RNAs (lncRNAs) has dramatically increased, and their biological functions and underlying mechanisms in pathological processes, especially cancer, remain to be elucidated. Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) is a 6810-nt lncRNA located on chromosome 4p16.1 that was first reported to be upregulated in esophageal adenocarcinoma tissues and cell lines. Here we reported that AFAP1-AS1, recruiting and binding to lysine-specific demethylase 1 (LSD1), was generally overexpressed in human non-small-cell lung cancer (NSCLC) tissues using quantitative real-time PCR. Higher AFAP1-AS1 expression was significantly correlated with larger tumor size (P = .008), lymph node metastasis (P = .025), higher TNM stage (P = .024), and worse overall survival in NSCLC patients. In vitro experiments revealed that AFAP1-AS1 downregulation inhibited cell migration and induced apoptosis; AFAP1-AS1 knockdown also hindered tumorigenesis in vivo. Moreover, mechanistic investigations including RNA immunoprecipitation and ChIP assays validated that AFAP1-AS1 repressed HMG box-containing protein 1 (HBP1) expression by recruiting LSD1 to the HBP1 promoter regions in PC-9 and H1975 cells. Furthermore, HBP1 functions as a tumor suppressor, and its ectopic expression hindered cell proliferation. Rescue assays determined that the oncogenic effect of AFAP1-AS1 is partially dependent on the epigenetic silencing of HBP1. In conclusion, our results indicate that AFAP1-AS1 is carcinogenic and that the AFAP1-AS1/LSD1/HBP1 axis could constitute a new therapeutic direction for NSCLC.
Collapse
Affiliation(s)
- Shanxun Yu
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Daolu Yang
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yunyao Ye
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of OncologyTaizhou People's HospitalTaizhouChina
| | - Pei Liu
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Digestive OncologyThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhenyao Chen
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tianyao Lei
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiaze Pu
- Department of Digestive OncologyThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Longfa Liu
- Department of Digestive OncologyThe Fourth Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhaoxia Wang
- Department of OncologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Cancer Medical CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
36
|
Derderian C, Orunmuyi AT, Olapade-Olaopa EO, Ogunwobi OO. PVT1 Signaling Is a Mediator of Cancer Progression. Front Oncol 2019; 9:502. [PMID: 31249809 PMCID: PMC6582247 DOI: 10.3389/fonc.2019.00502] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that PVT1 has oncogenic properties and regulates proliferation and growth of many cancers. Themolecular mechanisms of action of PVT1 are mediated, in part, by microRNAs (miRNAs). However, some well-established transcription factors involved in cancer cell proliferation share a common thread of microRNA associations with PVT1. Furthermore, these microRNAs are also involved in mechanisms that lead to the development of drug resistance in cancer cells. While several microRNAs have been implicated directly in PVT1-mediated tumorigenesis, significant steps need to be taken to elucidate these important relationships. We synthesize the current knowledge of the miRNAs and associated genes by which PVT1 contributes to tumorigenesis. Overall, the trend suggests a negative correlation of microRNA expression with PVT1. It is clear that future studies involving PVT1 should be carried out in conjunction with microRNA analysis and should include large scale lncRNA-miRNA-mRNA network analysis. Likewise, the relationship between established transcription factors such as p53 and MYC, and processes like epithelial-mesenchymal transition may offer valuable insight into the yet unknown mechanisms of PVTI-mediated cancer progression via microRNA-dependent signaling networks.
Collapse
Affiliation(s)
- Camille Derderian
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States
| | - Akintunde T Orunmuyi
- Department of Radiation Oncology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY, United States.,Hunter College Center for Cancer Health Disparities Research, Hunter College of The City University of New York, New York, NY, United States
| |
Collapse
|
37
|
Adhikary J, Chakraborty S, Dalal S, Basu S, Dey A, Ghosh A. Circular PVT1: an oncogenic non-coding RNA with emerging clinical importance. J Clin Pathol 2019; 72:513-519. [PMID: 31154423 DOI: 10.1136/jclinpath-2019-205891] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
The importance of circular RNAs (circRNAs) in pathological processes like cancer is evident. Among the circRNAs, recent studies have brought circPVT1 under focus as the most potent oncogenic non-coding RNA. Recent studies on various aspects of circPVT1, including its biogenesis, molecular alteration and its probable role in oncogenesis, have been conducted for research and clinical interest. In this review, a first attempt has been made to summarise the available data on circPVT1 from PubMed and other relevant databases with special emphasis on its role in development, progression and prognosis of various malignant conditions. CircPVT1 is derived from the same genetic locus encoding for long non-coding RNA lncPVT1; however, existing literature suggested circPVT1 and lncPVT1 are transcripted independently by different promoters. The interaction between circRNA and microRNA has been highlighted in majority of the few malignancies in which circPVT1 was studied. Besides its importance in diagnostic and prognostic procedures, circPVT1 seemed to have huge therapeutic potential as evident from differential drug response of cancer cell line as well as primary tumors depending on expression level of the candidate. circPVT1 in cancer therapeutics might be promising as a biomarker to make the existing treatment protocol more effective and also as potential target for designing novel therapeutic intervention.
Collapse
Affiliation(s)
- Jayashree Adhikary
- Department of Life Sciences, Presidency University Kolkata, Kolkata, India
| | | | - Subhamita Dalal
- Department of Life Sciences, Presidency University Kolkata, Kolkata, India
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University Kolkata, Kolkata, India
| | - Amlan Ghosh
- Department of Life Sciences, Presidency University Kolkata, Kolkata, India
| |
Collapse
|
38
|
Zou G, Wang R, Wang M. Clinical response and prognostic significance of serum miR-497 expression in colorectal cancer. Cancer Biomark 2019; 25:11-18. [PMID: 31006664 DOI: 10.3233/cbm-181902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Guicheng Zou
- Department of General Surgery, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
- Department of General Surgery, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Rui Wang
- Department of Anorectal, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
- Department of General Surgery, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Minghui Wang
- Department of Clinical Laboratory, Yantai Wanhua Hospital, Yantai, Shandong, China
| |
Collapse
|
39
|
Bian C, Yuan L, Gai H. A long non-coding RNA LINC01288 facilitates non-small cell lung cancer progression through stabilizing IL-6 mRNA. Biochem Biophys Res Commun 2019; 514:443-449. [PMID: 31054777 DOI: 10.1016/j.bbrc.2019.04.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022]
Abstract
The non-small cell lung cancer (NSCLC) denotes a malignant type of cancers. Long non-coding RNAs (lncRNAs) can actively participate in cancer development. However, the exact role of lncRNAs in NSCLC remains largely elusive. In current work, we report a novel intergenic lncRNA LINC01288 involved in NSCLC. We found that LINC01288 is frequently upregulated in NSCLC samples and cell lines. LINC01288 significantly promotes viability, migration, xenograft tumor growth and metastasis in vitro and in vivo. LINC01288 physically interacts with the IL-6 mRNA and increase the stability of IL-6 transcripts. Subsequently, the autocrine induction of IL-6 and enhanced STAT3 activation may facilitate NSCLC progression. Collectively, our data have demonstrated that LINC01288 serves as a crucial mediator of IL-6/STAT3 pathway and created novel interplay between lncRNAs and tumor development.
Collapse
Affiliation(s)
- Cuixia Bian
- Department of Respiratory Medicine, Jining First People's Hospital, Jining, 272000, Shandong, China
| | - Luna Yuan
- Department of Respiratory Medicine, Jining First People's Hospital, Jining, 272000, Shandong, China.
| | - Huirong Gai
- Department of Medicine II, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| |
Collapse
|
40
|
Zhang Z, Zou G, Chen X, Lu W, Liu J, Zhai S, Qiao G. Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model. Mol Cells 2019; 42:218-227. [PMID: 30726659 PMCID: PMC6449717 DOI: 10.14348/molcells.2018.0162] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023] Open
Abstract
This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient (ApoE-/-) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Angiotensin II/pharmacology
- Animals
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Apolipoproteins E/deficiency
- Apoptosis/drug effects
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Gene Knockdown Techniques
- Humans
- Inflammation/pathology
- Mice
- Middle Aged
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Zhidong Zhang
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Gangqiang Zou
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Xiaosan Chen
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Wei Lu
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Jianyang Liu
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Shuiting Zhai
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Vascular and Endovascular Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Gang Qiao
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| |
Collapse
|
41
|
Tang Y, Zhong Z, Wang X, Wang Y, Liu Y, Chang Z. microRNA-497 inhibition mitigates myocardial infarction via enhancing wingless/integrated signal pathway in bone marrow mesenchymal stem cells. J Cell Biochem 2019; 120:13403-13412. [PMID: 30927382 DOI: 10.1002/jcb.28615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 11/08/2022]
Abstract
OBJECTIVE High association between microRNA-497 (miR-497) inhibition and the improvement of myocardial infarction (MI) has been proved. Bone marrow mesenchymal stem cells (BMSCs) therapy is regarded as a highly promising approach to MI treatment. We studied the functional role of miR-497 inhibition in the transplantation of BMSCs for MI treatment. METHODS BMSCs were isolated from 10 to 14 days old male Sprague-Dawley (SD) rats for in vitro and in vivo experiments. First, flow cytometry was used for BMSCs identification. miR-497 antagomir and agomir were transfected into BMSCs, and the migratory capacity was detected by wound healing assay. Protein levels were analyzed by Western blot analysis. Second, rat MI models were constructed and injected with each experimental group BMSCs. Four weeks later, the cellular morphology of cardiomyocyte and infarcted size was observed after histopathologic evaluation (HE) and Masson's trichrome staining. Moreover, WNT3A siRNA (siWNT3A) was used for further investigating the involvement of Wnt/β-catenin pathway. RESULTS BMSCs were confirmed to be CD90+ CD45- CD11b/c- cells. The number of rats with wound closure increased more in miR-497 inhibitor group than that in agomir group, the number markedly decreased in agomir group ( P < 0.01). As the miR-497 decreased, the protein levels of WNT3A, matrix metalloproteinase-9 and β-catenin were notably increased. The injection of BMSCs inhibiting miR-497 repaired almost all infarcted zones. siWNT3A, on the contrary, could decrease the wound closure rate and relative protein levels and inhibit MI treatment. CONCLUSION miR-497 antagomir contributes to BMSCs transplantation for MI treatment by Wnt/β-catenin activation, and Wnt/β-catenin pathway is essential for the functional effects of miR-497 antagomir.
Collapse
Affiliation(s)
- Yu Tang
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Zhiying Zhong
- Department of Cardiology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaohua Wang
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Yunxia Wang
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Yanfeng Liu
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| | - Zhitang Chang
- Department of Cardiology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
42
|
The PVT1/miR-216b/Beclin-1 regulates cisplatin sensitivity of NSCLC cells via modulating autophagy and apoptosis. Cancer Chemother Pharmacol 2019; 83:921-931. [DOI: 10.1007/s00280-019-03808-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 03/06/2019] [Indexed: 01/19/2023]
|
43
|
Han Y, Li X, He F, Yan J, Ma C, Zheng X, Zhang J, Zhang D, Meng C, Zhang Z, Ji X. Knockdown of lncRNA PVT1 Inhibits Glioma Progression by Regulating miR-424 Expression. Oncol Res 2019; 27:681-690. [PMID: 30832754 PMCID: PMC7848267 DOI: 10.3727/096504018x15424939990246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plasmacytoma variability translocation 1 (PVT1), an oncogene, has been reported to be highly expressed in many tumors, including human glioma, gastric cancer, and non-small cell lung cancer. Functionally, it could also regulate the development of tumor cells. However, its specific roles and pathogenesis in human gliomas are still not clear. This study investigated the function and mechanism of PVT1 knockdown in the proliferation and malignant transformation of human gliomas. We first examined the expression levels of PVT1 and miR-424 in human glioma tissues and cell lines. We also used gene manipulation techniques to explore the effects of PVT1 knockdown on cell viability, migration, invasion, and miR-424. We found that PVT1 knockdown effectively inhibited cell viability, migration, and invasion of human glioma cells and increased miR-424 expression. Based on the negative correlation between PVT1 and miR-424, we then confirmed the direct interaction between PVT1 and miR-424 using RNA immunoprecipitation (RIP) and luciferase reporter assays. Further, we established a xenograft nude mouse model to determine the role and mechanism of PVT1 on tumor growth in vivo. In addition, PVT1 knockdown was shown to promote miR-424 in vivo. In summary, the present study demonstrated that PVT1 knockdown could negatively regulate miR-424 to inhibit human glioma cell activity, migration, and invasiveness. PVT1 knockdown could negatively regulate miR-424 to inhibit cellular activity, migration, and invasiveness in human gliomas, which explained the oncogenic mechanism of PVT1 in human gliomas. It also suggested that PVT1 might be a novel therapeutic target for human gliomas.
Collapse
Affiliation(s)
- Yanjie Han
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Xinxin Li
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Fei He
- Department of Cardiothoracic Surgery, Huai-He Hospital, College of Medicine, Henan University, Kaifeng, Henan, P.R. China
| | - Jiliang Yan
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Chunyan Ma
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Xiaoli Zheng
- Hospital Infection Control Office, First Affiliated Hospital of Henan University, Kaifeng, Henan, P.R. China
| | - Jinli Zhang
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Donghui Zhang
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Cuiping Meng
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Zhen Zhang
- Clinical Laboratory and Functional Laboratory, Kaifeng Central Hospital, Kaifeng, Henan, P.R. China
| | - Xinying Ji
- Henan International Joint Laboratory of Nuclear Protein Regulation, Henan University College of Medicine, Kaifeng, Henan, P.R. China
| |
Collapse
|
44
|
Islam Khan MZ, Tam SY, Law HKW. Autophagy-Modulating Long Non-coding RNAs (LncRNAs) and Their Molecular Events in Cancer. Front Genet 2019; 9:750. [PMID: 30693021 PMCID: PMC6340191 DOI: 10.3389/fgene.2018.00750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/31/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global threat of health. Cancer incidence and death is also increasing continuously because of poor understanding of diseases. Although, traditional treatments (surgery, radiotherapy, and chemotherapy) are effective against primary tumors, death rate is increasing because of metastasis development where traditional treatments have failed. Autophagy is a conserved regulatory process of eliminating proteins and damaged organelles. Numerous research revealed that autophagy has dual sword mechanisms including cancer progressions and suppressions. In most of the cases, it maintains homeostasis of cancer microenvironment by providing nutritional supplement under starvation and hypoxic conditions. Over the past few decades, stunning research evidence disclosed significant roles of long non-coding RNAs (lncRNAs) in the regulation of autophagy. LncRNAs are RNA containing more than 200 nucleotides, which have no protein-coding ability but they are found to be expressed in most of the cancers. It is also proved that, autophagy-modulating lncRNAs have significant impacts on pro-survival or pro-death roles in cancers. In this review, we highlighted the recently identified autophagy-modulating lncRNAs, their signaling transduction in cancer and mechanism in cancer. This review will explore newly emerging knowledge of cancer genetics and it may provide novel targets for cancer therapy.
Collapse
Affiliation(s)
| | | | - Helen Ka Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| |
Collapse
|
45
|
Do H, Kim W. Roles of Oncogenic Long Non-coding RNAs in Cancer Development. Genomics Inform 2018; 16:e18. [PMID: 30602079 PMCID: PMC6440676 DOI: 10.5808/gi.2018.16.4.e18] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/29/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as RNAs that are longer than 200 nucleotides and cannot be translated into protein. Several studies have demonstrated that lncRNAs are directly or indirectly involved in a variety of biological processes and in the regulation of gene expression. In addition, lncRNAs have important roles in many diseases including cancer. It has been shown that abnormal expression of lncRNAs is observed in several human solid tumors. Several studies have shown that many lncRNAs can function as oncogenes in cancer development through the induction of cell cycle progression, cell proliferation and invasion, anti-apoptosis, and metastasis. Oncogenic lncRNAs have the potential to become promising biomarkers and might be potent prognostic targets in cancer therapy. However, the biological and molecular mechanisms of lncRNA involvement in tumorigenesis have not yet been fully elucidated. This review summarizes studies on the regulatory and functional roles of oncogenic lncRNAs in the development and progression of various types of cancer.
Collapse
Affiliation(s)
- Hyunhee Do
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| | - Wanyeon Kim
- Department of Biology Education, Korea National University of Education, Cheongju 28173, Korea
| |
Collapse
|
46
|
Xiao M, Feng Y, Liu C, Zhang Z. Prognostic values of long noncoding RNA PVT1 in various carcinomas: An updated systematic review and meta-analysis. Cell Prolif 2018; 51:e12519. [PMID: 30252166 PMCID: PMC6528925 DOI: 10.1111/cpr.12519] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Cancers have been a worldwide health problem with a high mortality rate, but ideal biomarkers are not available to effectively screen and diagnose patients. Currently, an increasing number of long noncoding RNAs have been reported to be abnormally expressed in human carcinomas and play a vital role in tumourigenesis. Plasmacytoma variant translocation 1 (PVT1) is upregulated in various carcinomas, and its overexpression is associated with poor survival in cancer patients. We conduct an updated meta-analysis to determine its potential in prognosis for tumours. In total, 14 studies comprising 2435 patients were enrolled according to Reporting Recommendations for Tumour Marker Prognostic Studies guidelines. High PVT1 expression indicated poor overall survival (hazard ratio [HR] = 1.98, 95% confidence interval [CI]: 1.62-2.42, P < 0.00001) and disease-free survival (HR = 1.63, 95% CI: 1.45-1.84, P < 0.00001). Additionally, increased PVT1 expression was positively associated with lymphatic node metastasis (odd ratio [OR] = 2.87, 95% CI: 1.66-4.96, P = 0.0002), distant metastasis (OR = 2.47, 95% CI: 1.74-3.50, P < 0.00001), advanced tumour-node-metastasis stages (OR = 2.59, 95% CI: 1.38-4.88, P = 0.003). New findings highlight that PVT1 acts as competing RNA to microRNAs to protect mRNAs from miRNAs repression. Therefore, we also discuss PVT1-related microRNAs and their interaction in tumourigenesis. In conclusion, PVT1 may be a potential biomarker of poor prognosis for patients with different cancer types.
Collapse
Affiliation(s)
- Meizhu Xiao
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Ying Feng
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Chongdong Liu
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Zhenyu Zhang
- Department of Obstetrics and GynecologyBeijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
47
|
Fu C, Li D, Zhang X, Liu N, Chi G, Jin X. LncRNA PVT1 Facilitates Tumorigenesis and Progression of Glioma via Regulation of MiR-128-3p/GREM1 Axis and BMP Signaling Pathway. Neurotherapeutics 2018; 15:1139-1157. [PMID: 30120709 PMCID: PMC6277294 DOI: 10.1007/s13311-018-0649-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The current research was aimed at probing into the role of long noncoding RNA (lncRNA) PVT1 in the pathogenesis of glioma and the regulatory mechanism of PVT1/miR-128-3p/GREM1 network in glioma via regulation of the bone morphogenetic protein (BMP) signaling pathway. Microarray analysis was used for preliminary screening for candidate lncRNAs and mRNAs in glioma tissues. Real-time quantitative polymerase chain reaction, Western blot, MTT assay, flow cytometry, migration and invasion assays, and xenograft tumor model were utilized to examine the influence of the lncRNA PVT1/miR-128-3p/GREM1 network on the biological functions of glioma cells. Luciferase assay and RNA-binding protein immunoprecipitation assay were used to validate the miR-128-3p-target relationships with lncRNA PVT1 or GREM1. In addition, the impact of GREM1 on BMP signaling pathway downstream proteins BMP2 and BMP4 was detected via Western blot. LncRNA PVT1 was highly expressed in human glioma tissues and significantly associated with WHO grade (I-II vs III-IV; p < 0.05). There existed a regulatory relationship between lncRNA PVT1 and miR-128-3p as well as that between miR-128-3p and GREM1. MiR-128-3p was downregulated, whereas GREM1 was upregulated in glioma tissues in comparison with para-carcinoma tissues. Overexpression of GREM1 promoted the proliferation and metastatic potential of glioma cells, whereas miR-128-3p mimics inhibited the glioma cell activity through targeting GREM1. Furthermore, lncRNA PVT1 acted as a sponge of miR-128-3p and, thus, influenced the BMP signaling pathway downstream proteins BMP2 and BMP4 through regulating GREM1. LncRNA PVT1 modulated GREM1 and BMP downstream signaling proteins through sponging miR-128-3p, thereby promoting tumorigenesis and progression of glioma.
Collapse
Affiliation(s)
- Chao Fu
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Dongyuan Li
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Xiaonan Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, Liaoning, China
| | - Naijie Liu
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Guonan Chi
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, China
| | - Xingyi Jin
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
48
|
Jin B, Jin H, Wu H, Xu J, Li B. Long non-coding RNA SNHG15 promotes CDK14 expression via miR-486 to accelerate non-small cell lung cancer cells progression and metastasis. J Cell Physiol 2018; 233:7164-7172. [PMID: 29630731 PMCID: PMC6001572 DOI: 10.1002/jcp.26543] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/16/2018] [Indexed: 01/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been validated to play important role in multiple cancers, including non-small cell lung cancer (NSCLC). In present study, our team investigate the biologic role of SNHG15 in the NSCLC tumorigenesis. LncRNA SNHG15 was significantly upregulated in NSCLC tissue samples and cells, and its overexpression was associated with poor prognosis of NSCLC patients. In vitro, loss-of-functional cellular experiments showed that SNHG15 silencing significantly inhibited the proliferation, promoted the apoptosis, and induced the cycle arrest at G0//G1 phase. In vivo, xenograft assay showed that SNHG15 silencing suppressed tumor growth of NSCLC cells. Besides, SNHG15 silencing decreased CDK14 protein expression both in vivo and vitro. Bioinformatics tools and luciferase reporter assay confirmed that miR-486 both targeted the 3'-UTR of SNHG15 and CDK14 and was negatively correlated with their expression levels. In summary, our study conclude that the ectopic overexpression of SNHG15 contribute to the NSCLC tumorigenesis by regulating CDK14 protein via sponging miR-486, providing a novel insight for NSCLC pathogenesis and potential therapeutic strategy for NSCLC patients.
Collapse
Affiliation(s)
- Bing Jin
- Department of Chest SurgeryNanyang City Center HospitalNanyangChina
| | - Hua Jin
- Department of RespirationJinshan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Hai‐Bo Wu
- Fudan UniversityYangpu District, ShanghaiChina
| | - Jian‐Jun Xu
- Fudan UniversityYangpu District, ShanghaiChina
| | - Bing Li
- Central LaboratoryJinshan Hospital Affiliated to Fudan UniversityJinshan District, ShanghaiChina
| |
Collapse
|
49
|
Kong F, Ma J, Yang H, Yang D, Wang C, Ma X. Long non-coding RNA PVT1 promotes malignancy in human endometrial carcinoma cells through negative regulation of miR-195-5p. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:S0167-4889(18)30169-1. [PMID: 30031900 DOI: 10.1016/j.bbamcr.2018.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 07/04/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022]
Abstract
The plasmacytoma variant translocation 1 (PVT1)1 gene is a long non-coding RNA (lncRNA)2 that has been shown to be an oncogene in many cancers. Herein, the function and potential molecular mechanisms connecting PVT1 and miR-195-5p were elucidated in endometrial cancer cell lines. Quantitative real-time PCR and fluorescence in situ hybridization (FISH)3 demonstrated that PVT1 is up-regulated concomitant with miR-195-5p down-regulation in human endometrial carcinoma tissues. PVT1 knockdown inhibited cell proliferation, migration, and invasion while facilitating apoptosis of endometrial cancer cells. Moreover, restoration of miR-195-5p due to PVT1 knockdown exerted tumor-suppressive functions. We observed that PVT1 promotes malignant cell behavior by decreasing miR-195-5p expression. Binding of PVT1 and miR-195-5p was confirmed using luciferase assays. Furthermore, expression of miR-195-5p negatively correlates with PVT1 expression. At the molecular level, either PVT1 knockdown or miR-195-5p overexpression resulted in a decrease of acidic fibroblast growth factor receptor (FGFR1)4 and basic fibroblast growth factor (FGF2).5 FGFR1 and FGF2 are targets of miR-195-5p that play a critical role in endometrial carcinoma by activating PI3K/AKT and MAPK/Erk pathways. Remarkably, PVT1 knockdown combined with miR-195-5p overexpression led to tumor regression in vivo. Overall, these results depict a novel pathway mediated by PVT1 in endometrial carcinoma, which may have potential application for endometrial carcinoma therapy.
Collapse
Affiliation(s)
- Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Di Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
50
|
Long non-coding RNA PVT1 promotes cell proliferation and invasion through regulating miR-133a in ovarian cancer. Biomed Pharmacother 2018; 106:61-67. [PMID: 29957467 DOI: 10.1016/j.biopha.2018.06.112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
The long non-coding RNA, plasmacytoma variant translocation 1 (PVT1), was reportedly to be highly expressed in a variety of tumors including ovarian cancer (OC). However, the role and mechanism of action of PVT1 in the carcinogenesis and progression of OC remains largely unknown. PVT1 and miR-133a expression were detected by quantitative real time PCR(qRT-PCR) assays in OC tissues and cell lines. Cell Counting Kit-8 (CCK-8), flow cytometer, wound healing and transwell invasion assays were performed to evaluate cell proliferation, cycle, migration and invasion abilities, respectively. qRT-PCR and luciferase reporter assays demonstrated PVT1 regulated miR-133a expression. Here, we discovered that PVT1 shows higher expression in OC tissues than in normal ovarian tissues, and patients who show higher expression of PVT1 have worse progression-free and overall survivals compared to lower expression of PVT1. Additionally, we observed that knockdown of PVT1 significantly inhibited OC cell proliferation, and decreased the migration and invasion capabilities of OC cells. Mechanistically, miR-133a was identified to serve as a direct downstream target of PVT1 in OC. Knockdown of PVT1 inhibited cell proliferation, migration and invasion through negative regulating miR-133a in OC cells. Taken together, our finding shows that PVT1 may be a novel biomarker for prognosis and a promising therapeutic target for OC.
Collapse
|