1
|
Ponti D. The Nucleolus: A Central Hub for Ribosome Biogenesis and Cellular Regulatory Signals. Int J Mol Sci 2025; 26:4174. [PMID: 40362410 PMCID: PMC12071546 DOI: 10.3390/ijms26094174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The nucleolus is the most prominent nuclear domain in eukaryotic cells, primarily responsible for ribosome biogenesis. It synthesizes and processes precursor ribosomal RNA (pre-rRNA) into mature rRNAs, assembling the 40S and 60S ribosomal subunits, which later form the 80S ribosome-the essential molecular machine for protein synthesis. Beyond ribosome production, the nucleolus lacks a delimiting membrane, allowing it to rapidly regulate cellular homeostasis by sequestering key stress response factors. This adaptability enables dynamic changes in size, number, and protein composition in response to cellular stress and signaling. Recent research highlights the nucleolus as a critical regulator of chemoresistance. Given its central role in cell survival and stress adaptation, the nucleolus has become an attractive therapeutic target, particularly in cancer treatment. A deeper understanding of nucleolar metabolism could pave the way for novel therapeutic strategies against various human diseases.
Collapse
Affiliation(s)
- Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso Della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
2
|
Tang J, Wang J, Ou J, Cui Z, Yao C, Yang D. A DNA/Poly-(L-lysine) Hydrogel with Long Shelf-Time for 3D Cell Culture. SMALL METHODS 2024; 8:e2301236. [PMID: 38351479 DOI: 10.1002/smtd.202301236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Indexed: 07/21/2024]
Abstract
Deoxyribonucleic acid (DNA)-based hydrogels are emerging as promising functional materials for biomedical applications. However, the shelf-time of DNA hydrogels in biological media is severely shortened by nucleases, which limit the application of DNA hydrogels. Herein, a DNA hydrogel with long shelf-time is reported for 3D cell culture. Poly-(L-lysine) (PLL) is introduced as both a cross-linker and a protectant. The electrostatic interaction between PLL and DNA drove the formation of hydrogel. PLL coating on DNA increased the steric hindrance between DNA and nucleases, thus weakening the digestion of nucleases toward phosphodiester bond. As a result, the shelf-time of DNA/PLL hydrogel for 3D cell culture is extended from generally 1 day to longer than 15 days, which has not been achieved previously. Notably, poly-AS1411-aptamers are integrated to DNA/PLL hydrogels for anchoring U87 cells, and the cell encapsulation efficiency of the DNA/PLL hydrogels with aptamer is 4-time higher than that of the hydrogels without aptamer. DNA/PLL hydrogel provided a favorable microenvironment to support the proliferation of cells, which formed cell spheroid in 15 days. This protective coating strategy solves the long-standing problem on the shelf-time of DNA hydrogel, and is envisioned to promote the development of DNA hydrogel in more biomedical applications.
Collapse
Affiliation(s)
- Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jing Wang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Junhan Ou
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhen Cui
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
3
|
Volnitskiy A, Shabalin K, Pantina R, Varfolomeeva E, Kovalev R, Burdakov V, Emelianova S, Garaeva L, Yakimov A, Sogoyan M, Filatov M, Konevega AL, Shtam T. OCT4 Expression in Gliomas Is Dependent on Cell Metabolism. Curr Issues Mol Biol 2024; 46:1107-1120. [PMID: 38392188 PMCID: PMC10887564 DOI: 10.3390/cimb46020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
The OCT4 transcription factor is necessary to maintain cell stemness in the early stages of embryogenesis and is involved in the formation of induced pluripotent stem cells, but its role in oncogenesis is not yet entirely clear. In this work, OCT4 expression was investigated in malignant gliomas. Twenty glioma cell lines and a sample of normal adult brain tissue were used. OCT4 expression was found in all studied glioma cell lines but was not detected in normal adult brain tissue. For one of these lines, OCT4 knockdown caused tumor cell death. By varying the culture conditions of these cells, we unexpectedly found that OCT4 expression increased when cells were incubated in serum-free medium, and this effect was significantly enhanced in serum-free and L-glutamine-free medium. L-glutamine and the Krebs cycle, which is slowed down in serum-free medium according to our NMR data, are sources of α-KG. Thus, our data indicate that OCT4 expression in gliomas may be regulated by the α-KG-dependent metabolic reprogramming of cells.
Collapse
Affiliation(s)
- Andrey Volnitskiy
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Konstantin Shabalin
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Rimma Pantina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Elena Varfolomeeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Roman Kovalev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Vladimir Burdakov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Svetlana Emelianova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Luiza Garaeva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Alexander Yakimov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
| | - Marina Sogoyan
- H.Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Parkovaya 64-68, Pushkin, 196603 St. Petersburg, Russia
| | - Michael Filatov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
| | - Andrey L Konevega
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
- Institute of Biomedical Systems and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, Politehnicheskaya 29, 195251 St. Petersburg, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, 123182 Moscow, Russia
| | - Tatiana Shtam
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, 188300 Gatchina, Russia
- National Research Center "Kurchatov Institute", Akademika Kurchatova pl. 1, 123182 Moscow, Russia
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
4
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
5
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
6
|
Paris EA, Bahr JM, Basu S, Barua A. Changes in Nucleolin Expression during Malignant Transformation Leading to Ovarian High-Grade Serous Carcinoma. Cancers (Basel) 2023; 15:cancers15030661. [PMID: 36765618 PMCID: PMC9913361 DOI: 10.3390/cancers15030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Ovarian high-grade serous carcinoma (HGSC) is a fatal malignancy of women. Alterations in the expression of nuclear proteins are early steps in malignant transformation; nucleolin is one such protein. Changes in nucleolin expression and circulatory levels during ovarian HGSC development are unknown. The study goal was to determine if tissue and circulatory levels of nucleolin change in response to malignant transformation leading to ovarian HGSC. METHODS Sera, ovaries, and BRCA+ fimbria from healthy subjects, and sera and tumor tissues from patients (n = 10 each), and healthy hens and hens with HGSC were examined in exploratory and prospective studies for nucleolin expression by immunohistochemistry, immunoblotting, gene expression, and immunoassay, and analyzed by analysis of variance (ANOVA). RESULTS Compared with normal, nucleolin expression was higher in patients and hens with ovarian HGSC and in women with a risk of HGSC (P < 0.05). Compared with normal (1400 + 105 pg/mL, n = 8), serum nucleolin levels were 1.5 and 1.7-fold higher in patients with early- (n = 5) and late-stage (n = 5) HGSC, respectively. Additionally, serum nucleolin levels increased significantly (P < 0.05) prior to the formation of detectable masses. CONCLUSION This pilot study concluded that tissue and serum levels of nucleolin increase in association with malignant changes in ovaries and fimbriae leading to ovarian HGSC.
Collapse
Affiliation(s)
- Elizabeth A. Paris
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Janice M. Bahr
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sanjib Basu
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| | - Animesh Barua
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Obstetrics and Gynecology, Rush University Medical Center, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
7
|
Using ELP Repeats as a Scaffold for De Novo Construction of Gadolinium-Binding Domains within Multifunctional Recombinant Proteins for Targeted Delivery of Gadolinium to Tumour Cells. Int J Mol Sci 2022; 23:ijms23063297. [PMID: 35328725 PMCID: PMC8949254 DOI: 10.3390/ijms23063297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023] Open
Abstract
Three artificial proteins that bind the gadolinium ion (Gd3+) with tumour-specific ligands were de novo engineered and tested as candidate drugs for binary radiotherapy (BRT) and contrast agents for magnetic resonance imaging (MRI). Gd3+-binding modules were derived from calmodulin. They were joined with elastin-like polypeptide (ELP) repeats from human elastin to form the four-centre Gd3+-binding domain (4MBS-domain) that further was combined with F3 peptide (a ligand of nucleolin, a tumour marker) to form the F3-W4 block. The F3-W4 block was taken alone (E2-13W4 protein), as two repeats (E1-W8) and as three repeats (E1-W12). Each protein was supplemented with three copies of the RGD motif (a ligand of integrin αvβ3) and green fluorescent protein (GFP). In contrast to Magnevist (a Gd-containing contrast agent), the proteins exhibited three to four times higher accumulation in U87MG glioma and A375 melanoma cell lines than in normal fibroblasts. The proteins remained for >24 h in tumours induced by Ca755 adenocarcinoma in C57BL/6 mice. They exhibited stability towards blood proteases and only accumulated in the liver and kidney. The technological advantages of using the engineered proteins as a basis for developing efficient and non-toxic agents for early diagnosis of tumours by MRI as well as part of BRT were demonstrated.
Collapse
|
8
|
Tagliaferro M, Rosa P, Bellenchi GC, Bastianelli D, Trotta R, Tito C, Fazi F, Calogero A, Ponti D. Nucleolar localization of the ErbB3 receptor as a new target in glioblastoma. BMC Mol Cell Biol 2022; 23:13. [PMID: 35255831 PMCID: PMC8900349 DOI: 10.1186/s12860-022-00411-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background The nucleolus is a subnuclear, non-membrane bound domain that is the hub of ribosome biogenesis and a critical regulator of cell homeostasis. Rapid growth and division of cells in tumors are correlated with intensive nucleolar metabolism as a response to oncogenic factors overexpression. Several members of the Epidermal Growth Factor Receptor (EGFR) family, have been identified in the nucleus and nucleolus of many cancer cells, but their function in these compartments remains unexplored. Results We focused our research on the nucleolar function that a specific member of EGFR family, the ErbB3 receptor, plays in glioblastoma, a tumor without effective therapies. Here, Neuregulin 1 mediated proliferative stimuli, promotes ErbB3 relocalization from the nucleolus to the cytoplasm and increases pre-rRNA synthesis. Instead ErbB3 silencing or nucleolar stress reduce cell proliferation and affect cell cycle progression. Conclusions These data point to the existence of an ErbB3-mediated non canonical pathway that glioblastoma cells use to control ribosomes synthesis and cell proliferation. These results highlight the potential role for the nucleolar ErbB3 receptor, as a new target in glioblastoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00411-y.
Collapse
Affiliation(s)
- Marzia Tagliaferro
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Corso della Repubblica 79, 04100, Latina, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Corso della Repubblica 79, 04100, Latina, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" CNR, 80131, Naples, Italy.,Fondazione Santa Lucia IRCCS, 00143, Rome, Italy.,Department of Systems Medicine, University of Tor Vergata, 00133, Rome, Italy
| | | | - Rosa Trotta
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium.,Laboratory of Tumor Inflammation and Angiogenesis, and Department of Oncology, KU Leuven, Leuven, Belgium
| | - Claudia Tito
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00185, Rome, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.,Istituto Chirurgico Ortopedico Traumatologico, 04100, Latina, Italy
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Corso della Repubblica 79, 04100, Latina, Italy. .,Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium.
| |
Collapse
|
9
|
Wang B, Guo H, Xu H, Chen Y, Zhao G, Yu H. The Role of Graphene Oxide Nanocarriers in Treating Gliomas. Front Oncol 2022; 12:736177. [PMID: 35155223 PMCID: PMC8831729 DOI: 10.3389/fonc.2022.736177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common primary malignant tumors of the central nervous system, and their conventional treatment involves maximal safe surgical resection combined with radiotherapy and temozolomide chemotherapy; however, this treatment does not meet the requirements of patients in terms of survival and quality of life. Graphene oxide (GO) has excellent physical and chemical properties and plays an important role in the treatment of gliomas mainly through four applications, viz. direct killing, drug delivery, immunotherapy, and phototherapy. This article reviews research on GO nanocarriers in the treatment of gliomas in recent years and also highlights new ideas for the treatment of these tumors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| |
Collapse
|
10
|
Brignole C, Bensa V, Fonseca NA, Del Zotto G, Bruno S, Cruz AF, Malaguti F, Carlini B, Morandi F, Calarco E, Perri P, Moura V, Emionite L, Cilli M, De Leonardis F, Tondo A, Amoroso L, Conte M, Garaventa A, Sementa AR, Corrias MV, Ponzoni M, Moreira JN, Pastorino F. Cell surface Nucleolin represents a novel cellular target for neuroblastoma therapy. J Exp Clin Cancer Res 2021; 40:180. [PMID: 34078433 PMCID: PMC8170797 DOI: 10.1186/s13046-021-01993-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) represents the most frequent and aggressive form of extracranial solid tumor of infants. Nucleolin (NCL) is a protein overexpressed and partially localized on the cell surface of tumor cells of adult cancers. Little is known about NCL and pediatric tumors and nothing is reported about cell surface NCL and NB. METHODS NB cell lines, Schwannian stroma-poor NB tumors and bone marrow (BM)-infiltrating NB cells were evaluated for the expression of cell surface NCL by Flow Cytometry, Imaging Flow Cytometry and Immunohistochemistry analyses. The cytotoxic activity of doxorubicin (DXR)-loaded nanocarriers decorated with the NCL-recognizing F3 peptide (T-DXR) was evaluated in terms of inhibition of NB cell proliferation and induction of cell death in vitro, whereas metastatic and orthotopic animal models of NB were used to examine their in vivo anti-tumor potential. RESULTS NB cell lines, NB tumor cells (including patient-derived and Patient-Derived Xenografts-PDX) and 70% of BM-infiltrating NB cells show cell surface NCL expression. NCL staining was evident on both tumor and endothelial tumor cells in NB xenografts. F3 peptide-targeted nanoparticles, co-localizing with cell surface NCL, strongly associates with NB cells showing selective tumor cell internalization. T-DXR result significantly more effective, in terms of inhibition of cell proliferation and reduction of cell viability in vitro, and in terms of delay of tumor growth in all NB animal model tested, when compared to both control mice and those treated with the untargeted formulation. CONCLUSIONS Our findings demonstrate that NCL could represent an innovative therapeutic cellular target for NB.
Collapse
Affiliation(s)
- Chiara Brignole
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Veronica Bensa
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nuno A Fonseca
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- TREAT U, SA - Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Genny Del Zotto
- Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Ana F Cruz
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Fabiana Malaguti
- Department of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Barbara Carlini
- Department of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Morandi
- Stem Cell Laboratory and Cell Therapy Center, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enzo Calarco
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Vera Moura
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- TREAT U, SA - Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Laura Emionite
- Animal Facility, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cilli
- Animal Facility, IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Annalisa Tondo
- UOC Oncologia Pediatrica, Ospedale Meyer, Florence, Italy
| | | | | | | | - Angela R Sementa
- Department of Pathology, Istituto Giannina Gaslini, Genoa, Italy
| | - Maria V Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Joao N Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Coimbra, Portugal
- UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Fabio Pastorino
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
11
|
The Importance of Tumor Stem Cells in Glioblastoma Resistance to Therapy. Int J Mol Sci 2021; 22:ijms22083863. [PMID: 33917954 PMCID: PMC8068366 DOI: 10.3390/ijms22083863] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) is known to be the most common and lethal primary malignant brain tumor. Therapies against this neoplasia have a high percentage of failure, associated with the survival of self-renewing glioblastoma stem cells (GSCs), which repopulate treated tumors. In addition, despite new radical surgery protocols and the introduction of new anticancer drugs, protocols for treatment, and technical advances in radiotherapy, no significant improvement in the survival rate for GBMs has been realized. Thus, novel antitarget therapies could be used in conjunction with standard radiochemotherapy approaches. Targeted therapy, indeed, may address specific targets that play an essential role in the proliferation, survival, and invasiveness of GBM cells, including numerous molecules involved in signal transduction pathways. Significant cellular heterogeneity and the hierarchy with GSCs showing a therapy-resistant phenotype could explain tumor recurrence and local invasiveness and, therefore, may be a target for new therapies. Therefore, the forced differentiation of GSCs may be a promising new approach in GBM treatment. This article provides an updated review of the current standard and experimental therapies for GBM, as well as an overview of the molecular characteristics of GSCs, the mechanisms that activate resistance to current treatments, and a new antitumor strategy for treating GSCs for use as therapy.
Collapse
|
12
|
Zhou Y, Yang Q, Wang F, Zhou Z, Xu J, Cheng S, Cheng Y. Self-Assembled DNA Nanostructure as a Carrier for Targeted siRNA Delivery in Glioma Cells. Int J Nanomedicine 2021; 16:1805-1817. [PMID: 33692623 PMCID: PMC7938230 DOI: 10.2147/ijn.s295598] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/13/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION RNA interference is a promising therapy in glioma treatment. However, the application of RNA interference has been limited in glioma therapy by RNA instability and the lack of tumor targeting. Here, we report a novel DNA tetrahedron, which can effectively deliver small interfering RNA to glioma cells and induce apoptosis. METHODS siRNA, a small interfering RNA that can suppress the expression of survivin in glioma, was loaded into the DNA tetrahedron (TDN). To enhance the ability of active targeting of this nanoparticle, we modified one side of the DNA nanostructure with aptamer as1411 (As-TDN-R), which can selectively recognize the nucleolin in the cytomembrane of tumor cells. The modified nanoparticles were characterized by agarose gel electrophoresis, dynamic light scattering, and transmission electron microscopy. The serum stability was evaluated by agarose gel electrophoresis. Nucleolin was detected by Western blot and immunofluorescence, and targeted cellular uptake was examined by flow cytometry. The TUNEL assay, flow cytometry, and Western Blot were used to detect apoptosis in U87 cells. The gene silencing of survivin was examined by qPCR, Western Blot, and immunofluorescence. RESULTS As-TDN-R alone showed better stability towards siRNA, indicating that TDN was a good siRNA protector. Compared with TDN alone, there was increased intercellular uptake of As-TDN-R by U87 cells, evidenced by overexpressed nucleolin in glioma cell lines. TUNEL assay, flow cytometry, and Western Blot revealed increased apoptosis in the As-TDN-R group. The downregulation of survivin protein and mRNA expression levels indicated that As-TDN-R effectively silenced the target gene. CONCLUSION The novel nanoparticle can serve as a good carrier for targeting siRNA delivery in glioma. Further exploration of the DNA nanostructure can greatly promote the application of DNA-based drug systems in glioma.
Collapse
Affiliation(s)
- Yanghao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Qiang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Feng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Zunjie Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jing Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Si Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| |
Collapse
|
13
|
Cai Y, Xu Z, Shuai Q, Zhu F, Xu J, Gao X, Sun X. Tumor-targeting peptide functionalized PEG-PLA micelles for efficient drug delivery. Biomater Sci 2020; 8:2274-2282. [PMID: 32162618 DOI: 10.1039/c9bm02036e] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Because of their excellent capacity to significantly improve the bioavailability and solubility of chemotherapy drugs, block copolymer micelles are widely utilized for chemotherapy drug delivery. In order to further improve the anti-tumor ability and reduce unwanted side effects of drugs, tumor-targeting peptides were used to functionalize the surface of polymer micelles so that the micelles can target tumor tissues. Herein, we synthesized a kind of PEG-PLA that is maleimide-terminated and then conjugated with a specific peptide F3 which revealed specific capacity binding to nucleolin that is overexpressed on the surface of many tumor cells. Then, F3 conjugated, paclitaxel loaded nanoparticles (F3-NP-PTX) were prepared as stable micelles that displayed an enhanced accumulation via a peptide-mediated cellular association in human breast cancer cells (MCF-7). Furthermore, F3-NP-PTX showed a prominent anti-tumor efficacy compared with non-targeting nanoparticles (NP-PTX) both in vitro and in vivo, and showed great potential as an efficacious targeting drug delivery system for breast cancer treatment.
Collapse
Affiliation(s)
- Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Zhuomin Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Fangtao Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Jiao Xu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Xin Gao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310006, China.
| |
Collapse
|
14
|
Hassn Mesrati M, Behrooz AB, Y. Abuhamad A, Syahir A. Understanding Glioblastoma Biomarkers: Knocking a Mountain with a Hammer. Cells 2020; 9:E1236. [PMID: 32429463 PMCID: PMC7291262 DOI: 10.3390/cells9051236] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
Collapse
Affiliation(s)
| | | | | | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.H.M.); (A.B.B.); (A.Y.A.)
| |
Collapse
|
15
|
Nucleolin represses transcription of the androgen receptor gene through a G-quadruplex. Oncotarget 2020; 11:1758-1776. [PMID: 32477465 PMCID: PMC7233804 DOI: 10.18632/oncotarget.27589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/14/2020] [Indexed: 02/03/2023] Open
Abstract
The androgen receptor (AR) is a major driver of prostate cancer development and progression. Men who develop advanced prostate cancer often have long-term cancer control when treated with androgen-deprivation therapies (ADT). Still, their disease inevitably becomes resistant to ADT and progresses to castration-resistant prostate cancer (CRPC). ADT involves potent competitive AR antagonists and androgen synthesis inhibitors. Resistance to these types of treatments emerges, primarily through the maintenance of AR signaling by ligand-independent activation mechanisms. There is a need to find better ways to block AR to overcome CRPC. In the findings reported here, we demonstrate that the nuclear scaffold protein, nucleolin (NCL), suppresses the expression of AR. NCL binds to a G-rich region in the AR promoter that forms a G-quadruplex (G4) structure. Binding of NCL to this G4-element is required for NCL to suppress AR expression, specifically in AR-expressing tumor cells. Compounds that stabilize G4 structures require NCL to associate with the G4-element of the AR promoter in order to decrease AR expression. A newly discovered G4 compound that suppresses AR expression demonstrates selective killing of AR-expressing tumor cells, including CRPC lines. Our findings raise the significant possibility that G4-stabilizing drugs can be used to increase NCL transcriptional repressor activity to block AR expression in prostate cancer. Our studies contribute to a clearer understanding of the mechanisms that control AR expression, which could be exploited to overcome CRPC.
Collapse
|
16
|
Pesarrodona M, Sánchez-García L, Seras-Franzoso J, Sánchez-Chardi A, Baltá-Foix R, Cámara-Sánchez P, Gener P, Jara JJ, Pulido D, Serna N, Schwartz S, Royo M, Villaverde A, Abasolo I, Vazquez E. Engineering a Nanostructured Nucleolin-Binding Peptide for Intracellular Drug Delivery in Triple-Negative Breast Cancer Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5381-5388. [PMID: 31840972 DOI: 10.1021/acsami.9b15803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Five peptide ligands of four different cell surface receptors (nucleolin, CXCR1, CMKLR1, and CD44v6) have been evaluated as targeting moieties for triple-negative human breast cancers. Among them, the peptide F3, derived from phage display, promotes the fast and efficient internalization of a genetically fused green fluorescent protein (GFP) inside MDA-MB-231 cancer stem cells in a specific receptor-dependent fashion. The further engineering of this protein into the modular construct F3-RK-GFP-H6 and the subsequent construct F3-RK-PE24-H6 resulted in self-assembling polypeptides that organize as discrete and regular nanoparticles. These materials, 15-20 nm in size, show enhanced nucleolin-dependent cell penetrability. We show that the F3-RK-PE24-H6, based on the Pseudomonas aeruginosa exotoxin A (PE24) as a core functional domain, is highly cytotoxic over target cells. The combination of F3, the cationic peptide (RK)n, and the toxin domain PE24 in such unusual presentation appears as a promising approach to cell-targeted drug carriers in breast cancers and addresses selective drug delivery in otherwise difficult-to-treat triple-negative breast cancers.
Collapse
Affiliation(s)
- Mireia Pesarrodona
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Laura Sánchez-García
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | | | | | | | - Patricia Cámara-Sánchez
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Petra Gener
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - José Juan Jara
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Daniel Pulido
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
- Multivalent Systems for Nanomedicine , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Barcelona , 08034 , Spain
| | - Naroa Serna
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Simó Schwartz
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Miriam Royo
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
- Multivalent Systems for Nanomedicine , Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) , Barcelona , 08034 , Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Ibane Abasolo
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| | - Esther Vazquez
- CIBER de Bioingeniería , Biomateriales y Nanomedicina (CIBER-BBN) , C/ Monforte de Lemos 3-5 , 28029 Madrid , Spain
| |
Collapse
|
17
|
Lin HC, Li WT, Madanayake TW, Tao C, Niu Q, Yan SQ, Gao BA, Ping Z. Aptamer-guided upconversion nanoplatform for targeted drug delivery and near-infrared light-triggered photodynamic therapy. J Biomater Appl 2019; 34:875-888. [PMID: 31623518 DOI: 10.1177/0885328219882152] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hui-Chao Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wen-Tian Li
- First Clinical Medical College of Three Gorges University, Yichang Central People's Hospital, Yichang City, Hubei Province, PR China
| | | | - Can Tao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Qiang Niu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Si-Qi Yan
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Bao-An Gao
- First Clinical Medical College of Three Gorges University, Yichang Central People's Hospital, Yichang City, Hubei Province, PR China
| | - Zhao Ping
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
18
|
Indira Chandran V, Welinder C, Gonçalves de Oliveira K, Cerezo-Magaña M, Månsson AS, Johansson MC, Marko-Varga G, Belting M. Global extracellular vesicle proteomic signature defines U87-MG glioma cell hypoxic status with potential implications for non-invasive diagnostics. J Neurooncol 2019; 144:477-488. [PMID: 31414377 PMCID: PMC6764937 DOI: 10.1007/s11060-019-03262-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Purpose Glioblastoma multiforme (GBM) is the most common and lethal of primary malignant brain tumors. Hypoxia constitutes a major determining factor for the poor prognosis of high-grade glioma patients, and is known to contribute to the development of treatment resistance. Therefore, new strategies to comprehensively profile and monitor the hypoxic status of gliomas are of high clinical relevance. Here, we have explored how the proteome of secreted extracellular vesicles (EVs) at the global level may reflect hypoxic glioma cells. Methods We have employed shotgun proteomics and label free quantification to profile EVs isolated from human high-grade glioma U87-MG cells cultured at normoxia or hypoxia. Parallel reaction monitoring was used to quantify the identified, hypoxia-associated EV proteins. To determine the potential biological significance of hypoxia-associated proteins, the cumulative Z score of identified EV proteins was compared with GBM subtypes from HGCC and TCGA databases. Results In total, 2928 proteins were identified in EVs, out of which 1654 proteins overlapped with the ExoCarta EV-specific database. We found 1034 proteins in EVs that were unique to the hypoxic status of U87-MG cells. We subsequently identified an EV protein signature, “HYPSIGNATURE”, encompassing nine proteins that strongly represented the hypoxic situation and exhibited close proximity to the mesenchymal GBM subtype. Conclusions We propose, for the first time, an EV protein signature that could comprehensively reflect the hypoxic status of high-grade glioma cells. The presented data provide proof-of-concept for targeted proteomic profiling of glioma derived EVs, which should motivate future studies exploring its utility in non-invasive diagnosis and monitoring of brain tumor patients. Electronic supplementary material The online version of this article (10.1007/s11060-019-03262-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vineesh Indira Chandran
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden.
| | - Charlotte Welinder
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | | | - Myriam Cerezo-Magaña
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Ann-Sofie Månsson
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Maria C Johansson
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Gyorgy Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Center, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|