1
|
Jiang H, Zhou Y, Zhang W, Li H, Ma W, Ji X, Zhou C. Molecular mechanisms of endothelial-mesenchymal transition and its pathophysiological feature in cerebrovascular disease. Cell Biosci 2025; 15:49. [PMID: 40253404 PMCID: PMC12008988 DOI: 10.1186/s13578-025-01393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
The phenomenon of endothelial-mesenchymal transition (EndMT), a distinct subtype of epithelial-mesenchymal transition (EMT), has garnered significant attention from scholars. EndMT refers to the process whereby endothelial cells (ECs) transform into mesenchymal cells in response to various stimuli, resulting in the loss of their original characteristics. This process has diverse implications in both physiological and pathological states. Under physiological conditions, EndMT plays a crucial role in the development of the cardiovascular system. Conversely, under pathological conditions, EndMT has been identified as a pivotal factor in the development of cardiovascular diseases. Nonetheless, a comprehensive overview of EndMT in cerebrovascular disease is currently lacking. Here, we discuss the heterogeneity of EndMT occurrence and the regulatory factors involved in its development and analyze the feasibility of EndMT as a therapeutic target, aiming to provide a solid theoretical foundation and evidence to address diseases caused by pathological EndMT.
Collapse
Affiliation(s)
- Huimin Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Weiyue Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Zhao Y, Du L, Sun J, Wang X, Cong Z, Chen S, Wang F, Li Z. Exosomal miR-218 derived from mesenchymal stem cells inhibits endothelial-to-mesenchymal transition by epigenetically modulating of BMP2 in pulmonary fibrosis. Cell Biol Toxicol 2023; 39:2919-2936. [PMID: 37247103 DOI: 10.1007/s10565-023-09810-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Endothelial-to-mesenchymal transition (EndMT), the process by which endothelial cells lose their characteristics and acquire mesenchymal phenotypes, participates in the pathogenic mechanism of idiopathic pulmonary fibrosis. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-Exos) has been introduced as a promising treatment in organ fibrosis. This study aimed to explore the effects as well as the molecular mechanism for hucMSC-Exo in pulmonary fibrosis. The intravenous administration of hucMSC-Exos alleviated bleomycin-induced pulmonary fibrosis in vivo. Moreover, hucMSC-Exos elevated miR-218 expression and restored endothelial properties weakened by TGF-β in endothelial cells. Knockdown of miR-218 partially abrogated the inhibition effect of hucMSC-Exos on EndMT. Our mechanistic study further demonstrated that MeCP2 was the direct target of miR-218. Overexpressing MeCP2 aggravated EndMT and caused increased CpG islands methylation at BMP2 promoter, which lead to BMP2 post-transcriptional gene silence. Transfection of miR-218 mimic increased BMP2 expression as well, which was downregulated by overexpression of MeCP2. Taken together, these findings indicate exosomal miR-218 derived from hucMSCs may possess anti-fibrotic properties and inhibit EndMT through MeCP2/BMP2 pathway, providing a new avenue of preventive application in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuhao Zhao
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Lei Du
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Jiali Sun
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Xuelian Wang
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Zhilei Cong
- Department of Emergency, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shuyan Chen
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Fei Wang
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| | - Zhen Li
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
3
|
Vallese A, Cordone V, Pecorelli A, Valacchi G. Ox-inflammasome involvement in neuroinflammation. Free Radic Biol Med 2023; 207:161-177. [PMID: 37442280 DOI: 10.1016/j.freeradbiomed.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
Neuroinflammation plays a crucial role in the onset and the progression of several neuropathologies, from neurodegenerative disorders to migraine, from Rett syndrome to post-COVID 19 neurological manifestations. Inflammasomes are cytosolic multiprotein complexes of the innate immune system that fuel inflammation. They have been under study for the last twenty years and more recently their involvement in neuro-related conditions has been of great interest as possible therapeutic target. The role of oxidative stress in inflammasome activation has been described, however the exact way of action of specific endogenous and exogenous oxidants needs to be better clarified. In this review, we provide the current knowledge on the involvement of inflammasome in the main neuropathologies, emphasizing the importance to further clarify the role of oxidative stress in its activation including the role of mitochondria in inflammasome-induced neuroinflammation.
Collapse
Affiliation(s)
- Andrea Vallese
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Valeria Cordone
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Alessandra Pecorelli
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy; Department of Animal Science, North Carolina State University, 28081, Kannapolis, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
4
|
Khairnar RC, Parihar N, Prabhavalkar KS, Bhatt LK. Emerging targets signaling for inflammation in Parkinson's disease drug discovery. Metab Brain Dis 2022; 37:2143-2161. [PMID: 35536461 DOI: 10.1007/s11011-022-00999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) patients not only show motor features such as bradykinesia, tremor, and rigidity but also non-motor features such as anxiety, depression, psychosis, memory loss, attention deficits, fatigue, sexual dysfunction, gastrointestinal issues, and pain. Many pharmacological treatments are available for PD patients; however, these treatments are partially or transiently effective since they only decrease the symptoms. As these therapies are unable to restore dopaminergic neurons and stop the development of Parkinson's disease, therefore, the need for an effective therapeutic approach is required. The current review summarizes novel targets for PD, that can be utilized to identify disease-modifying treatments.
Collapse
Affiliation(s)
- Rhema Chandan Khairnar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Niraj Parihar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (West), Mumbai, 400056, India.
| |
Collapse
|
5
|
Pecorelli A, Cordone V, Schiavone ML, Caffarelli C, Cervellati C, Cerbone G, Gonnelli S, Hayek J, Valacchi G. Altered Bone Status in Rett Syndrome. Life (Basel) 2021; 11:life11060521. [PMID: 34205017 PMCID: PMC8230033 DOI: 10.3390/life11060521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is a monogenic neurodevelopmental disorder primarily caused by mutations in X-linked MECP2 gene, encoding for methyl-CpG binding protein 2 (MeCP2), a multifaceted modulator of gene expression and chromatin organization. Based on the type of mutation, RTT patients exhibit a broad spectrum of clinical phenotypes with various degrees of severity. In addition, as a complex multisystem disease, RTT shows several clinical manifestations ranging from neurological to non-neurological symptoms. The most common non-neurological comorbidities include, among others, orthopedic complications, mainly scoliosis but also early osteopenia/osteoporosis and a high frequency of fractures. A characteristic low bone mineral density dependent on a slow rate of bone formation due to dysfunctional osteoblast activity rather than an increase in bone resorption is at the root of these complications. Evidence from human and animal studies supports the idea that MECP2 mutation could be associated with altered epigenetic regulation of bone-related factors and signaling pathways, including SFRP4/WNT/β-catenin axis and RANKL/RANK/OPG system. More research is needed to better understand the role of MeCP2 in bone homeostasis. Indeed, uncovering the molecular mechanisms underlying RTT bone problems could reveal new potential pharmacological targets for the treatment of these complications that adversely affect the quality of life of RTT patients for whom the only therapeutic approaches currently available include bisphosphonates, dietary supplements, and physical activity.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Correspondence: (A.P.); (G.V.)
| | - Valeria Cordone
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Lucia Schiavone
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Carla Caffarelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy;
| | - Gaetana Cerbone
- Division of Medical Genetics, “S.G. Moscati” Hospital, 74100 Avellino, Italy;
| | - Stefano Gonnelli
- Department of Medicine, Surgery and Neuroscience, University of Siena, Policlinico Le Scotte, 53100 Siena, Italy; (C.C.); (S.G.)
| | - Joussef Hayek
- Toscana Life Sciences Foundation, 53100 Siena, Italy;
| | - Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (A.P.); (G.V.)
| |
Collapse
|
6
|
Cordone V, Pecorelli A, Amicarelli F, Hayek J, Valacchi G. The complexity of Rett syndrome models: Primary fibroblasts as a disease-in-a-dish reliable approach. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ddmod.2019.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Bian E, Chen X, Xu Y, Ji X, Cheng M, Wang H, Fang Z, Zhao B. A central role for MeCP2 in the epigenetic repression of miR-200c during epithelial-to-mesenchymal transition of glioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:366. [PMID: 31429770 PMCID: PMC6702741 DOI: 10.1186/s13046-019-1341-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
Background The epithelial-to-mesenchymal transition (EMT) has been linked to the regulation of glioma progression. However, the underlying signaling mechanisms that regulate EMT are poorly understood. Methods Quantitative real-time PCR (RT-qPCR) and western blot were performed to detect the expression of MeCP2 in glioma tissues and cell lines. MeCP2 functions were tested with cell immunofluorescence staining and western blot. For in vivo experiments, mouse xenograft model was used to investigate the effects of MeCP2 on glioma. ChIP and Co-IP were used to detect the relationships among MeCP2, miR-200c and Suv39H1. Results In this study, we found that MeCP2 was frequently up-regulated in human glioma tissues and cell lines. MeCP2 knockdown remarkably induced cell epithelial phenotype and inhibited mesenchymal marker ZEB1 and ZEB2 in vitro and in vivo. In addition, MeCP2 in glioma tissues was negatively correlated with miR-200c expression, and miR-200c overexpression partially abrogated mesenchymal phenotype induced by MeCP2. More importantly, we showed that MeCP2 recruited H3K9 to the promoter of miR-200c by interacting with SUV39H1, resulting in EMT of glioma cells. Conclusions This study for the first time reveals MeCP2 as a novel regulator of EMT in glioma and suggest that MeCP2 inhibition may represent a promising therapeutic option for suppressing EMT in glioma. Electronic supplementary material The online version of this article (10.1186/s13046-019-1341-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Xinghu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Hongliang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China. .,Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|