1
|
Wu A, Li S, Feng C, He R, Wu R, Hu Z, Huang J, Wang W, Huang L, Qiu L. Fn14 Controls the SIRT2-Mediated Deacetylation of Slug to Inhibit the Metastasis of Epithelial Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501552. [PMID: 40344622 DOI: 10.1002/advs.202501552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Indexed: 05/11/2025]
Abstract
Metastatic spread of cancer is the leading cause of death in patients with epithelial ovarian cancer (EOC), and elucidation of the molecular mechanisms underlying this process is a major focus of cancer research. Fibroblast growth factor-inducible 14 (Fn14) has been shown to regulate wound repair, inflammation, angiogenesis, and chemoresistance, but its functional role in metastasis in EOC is still unknown. Here it is reported that Fn14 is identified as a cancer metastasis suppressor that inhibits the migratory and invasive potential of EOC cells by down-regulating epithelial-mesenchymal transition (EMT). Mechanistically, it is identified that Fn14 promotes acetylation-dependent protein degradation of Slug, a key transcriptional factor associated with EMT. The deacetylase Sirtuin 2 (SIRT2) has been reported to be involved in the deacetylation of Slug protein to stabilize it and then prevent its degradation in the nucleus. The results showed that Fn14 alters the subcellular localization of (SIRT2) by interacting with SIRT2, leading to reduced SIRT2 shuttling into the nucleus and subsequently promoting the acetylated degradation of Slug. Collectively, the work has demonstrated for the first time that Fn14 inhibits EOC metastasis by regulating SIRT2-mediated Slug deacetylation, providing a new perspective and method for the development of future novel therapeutic strategies for the treatment of EOC metastasis.
Collapse
Affiliation(s)
- Anyue Wu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Shengze Li
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyang Feng
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Ruiju He
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Ruolan Wu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Zhijun Hu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Jinhua Huang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Wenjing Wang
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Qiu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Piergentili R, Sechi S, De Paola L, Zaami S, Marinelli E. Building a Hand-Curated ceRNET for Endometrial Cancer, Striving for Clinical as Well as Medicolegal Soundness: A Systematic Review. Noncoding RNA 2025; 11:34. [PMID: 40407592 PMCID: PMC12101250 DOI: 10.3390/ncrna11030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/31/2025] [Accepted: 04/27/2025] [Indexed: 05/26/2025] Open
Abstract
Background/Objectives: Competing endogenous RNAs (ceRNA) are molecules that compete for the binding to a microRNA (miR). Usually, there are two ceRNA, one of which is a protein-coding RNA (mRNA), with the other being a long non-coding RNA (lncRNA). The miR role is to inhibit mRNA expression, either promoting its degradation or impairing its translation. The lncRNA can "sponge" the miR, thus impeding its inhibitory action on the mRNA. In their easier configuration, these three molecules constitute a regulatory axis for protein expression. However, each RNA can interact with multiple targets, creating branched and intersected axes that, all together, constitute what is known as a competing endogenous RNA network (ceRNET). Methods: In this systematic review, we collected all available data from PubMed about experimentally verified (by luciferase assay) regulatory axes in endometrial cancer (EC), excluding works not using this test; Results: This search allowed the selection of 172 bibliographic sources, and manually building a series of ceRNETs of variable complexity showed the known axes and the deduced intersections. The main limitation of this search is the highly stringent selection criteria, possibly leading to an underestimation of the complexity of the networks identified. However, this work allows us not only to hypothesize possible gap fillings but also to set the basis to instruct artificial intelligence, using adequate prompts, to expand the EC ceRNET by comparing it with ceRNETs of other cancers. Moreover, these networks can be used to inform and guide research toward specific, though still unidentified, axes in EC, to complete parts of the network that are only partially described, or even to integrate low complexity subnetworks into larger more complex ones. Filling the gaps among the existing EC ceRNET will allow physicians to hypothesize new therapeutic strategies that may either potentiate or substitute existing ones. Conclusions: These ceRNETs allow us to easily visualize long-distance interactions, thus helping to select the best treatment, depending on the molecular profile of each patient, for personalized medicine. This would yield higher efficiency rates and lower toxicity levels, both of which are extremely relevant factors not only for patients' wellbeing, but also for the legal, regulatory, and ethical aspects of miR-based innovative treatments and personalized medicine as a whole. This systematic review has been registered in PROSPERO (ID: PROSPERO 2025 CRD420251035222).
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Stefano Sechi
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Lina De Paola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (L.D.P.); (S.Z.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00161 Rome, Italy; (L.D.P.); (S.Z.)
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy;
| |
Collapse
|
3
|
Cossu AM, Melisi F, Noviello TMR, Pasquale LS, Grisolia P, Reale C, Bocchetti M, Falco M, Tammaro C, Accardo N, Longo F, Allosso S, Mesolella M, Addeo R, Perri F, Ottaiano A, Ricciardiello F, Amler E, Ambrosino C, Misso G, Ceccarelli M, Caraglia M, Scrima M. MiR-449a antagonizes EMT through IL-6-mediated trans-signaling in laryngeal squamous cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102140. [PMID: 38425711 PMCID: PMC10901858 DOI: 10.1016/j.omtn.2024.102140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
MicroRNAs (miRNAs) are involved in post-transcriptional gene expression regulation and in mechanisms of cancer growth and metastases. In this light, miRNAs could be promising therapeutic targets and biomarkers in clinical practice. Therefore, we investigated if specific miRNAs and their target genes contribute to laryngeal squamous cell carcinoma (LSCC) development. We found a significant decrease of miR-449a in LSCC patients with nodal metastases (63.3%) compared with patients without nodal involvement (44%). The AmpliSeq Transcriptome of HNO-210 miR-449a-transfected cell lines allowed the identification of IL6-R as a potential target. Moreover, the downregulation of IL6-R and the phosphorylation reduction of the downstream signaling effectors, suggested the inhibition of the IL-6 trans-signaling pathway. These biochemical effects were paralleled by a significant inhibition of invasion and migration in vitro and in vivo, supporting an involvement of epithelial-mesenchymal transition. These findings indicate that miR-449a contributes to suppress the metastasization of LSCC by the IL-6 trans-signaling block and affects sensitivity to external stimuli that mimic pro-inflammatory conditions.
Collapse
Affiliation(s)
- Alessia Maria Cossu
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Federica Melisi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Teresa Maria Rosaria Noviello
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Napoli, Italy
| | - Lucia Stefania Pasquale
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Piera Grisolia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Carla Reale
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Michela Falco
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Chiara Tammaro
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Nunzio Accardo
- Ear, Nose, and Throat Unit, AORN "Antonio Cardarelli", Naples, Italy
| | - Francesco Longo
- Head and Neck Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Salvatore Allosso
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, UOC Federico II, 80121 Naples, Italy
| | - Massimo Mesolella
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, UOC Federico II, 80121 Naples, Italy
| | - Raffaele Addeo
- Medical Oncology Unit, San Giovanni di Dio Hospital, 80027 Frattamaggiore, Italy
| | - Francesco Perri
- Head and Neck Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | | | - Evzen Amler
- UCEEB, Czech Technical University, Třinecká 1024, 273 43 Buštěhrad, Czech
| | - Concetta Ambrosino
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Michele Ceccarelli
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Napoli, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Marianna Scrima
- Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| |
Collapse
|
4
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Wang YY, Zhou YQ, Xie JX, Zhang X, Wang SC, Li Q, Hu LP, Jiang SH, Yi SQ, Xu J, Cao H, Zhao EH, Li J. MAOA suppresses the growth of gastric cancer by interacting with NDRG1 and regulating the Warburg effect through the PI3K/AKT/mTOR pathway. Cell Oncol (Dordr) 2023; 46:1429-1444. [PMID: 37249744 DOI: 10.1007/s13402-023-00821-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVE Previous studies have indicated that neurotransmitters play important roles in the occurrence and development of gastric cancer. MAOA is an important catecholamine neurotransmitter-degrading enzyme involved in the degradation of norepinephrine, epinephrine and serotonin. To find a potential therapeutic target for the treatment of gastric cancer, the biological functions of MAOA and the underlying mechanism in gastric cancer need to be explored. METHODS The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets, Kaplan‒Meier (KM) plotter were used to identify the differentially expressed genes, which mainly involved the degradation and synthesis enzymes of neurotransmitters in gastric cancer. We also investigated the expression pattern of MAOA in human and mouse tissues and cell lines by immunohistochemistry and Western blotting analysis. Western blotting, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA) and a Seahorse experiment were used to identify the molecular mechanism of cancer cell glycolysis. MAOA expression and patient survival were analysed in the Ren Ji cohort, and univariate and multivariate analyses were performed based on the clinicopathological characteristics of the above samples. RESULTS MAOA expression was significantly downregulated in gastric cancer tissue and associated with poor patient prognosis. Moreover, the expression level of MAOA in gastric cancer tissue had a close negative correlation with the SUXmax value of PET-CT in patients. MAOA suppressed tumour growth and glycolysis and promoted cancer cell apoptosis. We also reported that MAOA can interact with NDRG1 and regulate glycolysis through suppression of the PI3K/Akt/mTOR pathway. MAOA expression may serve as an independent prognostic factor in gastric cancer patients. CONCLUSIONS MAOA attenuated glycolysis and inhibited the progression of gastric cancer through the PI3K/Akt/mTOR pathway. Loss of function or downregulation of MAOA can facilitate gastric cancer progression. Overexpression of MAOA and inhibition of the PI3K/Akt/mTOR pathway may provide a potential method for gastric cancer treatment in clinical therapeutic regimens.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yao-Qi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia-Xuan Xie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shu-Chang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuang-Qin Yi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Jia Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - En-Hao Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
6
|
Thakur L, Thakur S. The interplay of sex steroid hormones and microRNAs in endometrial cancer: current understanding and future directions. Front Endocrinol (Lausanne) 2023; 14:1166948. [PMID: 37152960 PMCID: PMC10161733 DOI: 10.3389/fendo.2023.1166948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Endometrial cancer is a hormone-dependent malignancy, and sex steroid hormones play a crucial role in its pathogenesis. Recent studies have demonstrated that microRNAs (miRNAs) can regulate the expression of sex steroid hormone receptors and modulate hormone signaling pathways. Our aim is to provide an overview of the current understanding of the role of miRNAs in endometrial cancer regulated by sex steroid hormone pathways. Methods A thorough literature search was carried out in the PubMed database. The articles published from 2018 to the present were included. Keywords related to miRNAs, endometrial cancer, and sex steroid hormones were used in the search. Results Dysregulation of miRNAs has been linked to abnormal sex steroid hormone signaling and the development of endometrial cancer. Various miRNAs have been identified as modulators of estrogen and progesterone receptor expression, and the miRNA expression profile has been shown to be a predictor of response to hormone therapy. Additionally, specific miRNAs have been implicated in the regulation of genes involved in hormone-related signaling pathways, such as the PI3K/Akt/mTOR and MAPK/ERK pathways. Conclusion The regulation of sex steroid hormones by miRNAs is a promising area of research in endometrial cancer. Future studies should focus on elucidating the functional roles of specific miRNAs in sex steroid hormone signaling and identifying novel miRNA targets for hormone therapy in endometrial cancer management.
Collapse
Affiliation(s)
- Lovlesh Thakur
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sunil Thakur
- Origin LIFE Healthcare Solutions and Research Center, Chandigarh, India
- *Correspondence: Sunil Thakur,
| |
Collapse
|
7
|
Lu J, Liang J, Xu M, Wu Z, Cheng W, Wu J. Identification of an eleven-miRNA signature to predict the prognosis of endometrial cancer. Bioengineered 2021; 12:4201-4216. [PMID: 34338136 PMCID: PMC8806668 DOI: 10.1080/21655979.2021.1952051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. Recent studies have uncovered miRNA acted a striking role in predicting the prognosis of multiple tumors. Over 500 EC samples were selected from the Cancer Genome Atlas (TCGA) database. Univariate, LASSO and multivariate Cox regression analysis were employed to screen out the prognosis-involved miRNAs. Kaplan-Meier (K-M) and time-dependent receiver operation characteristic (ROC) curves were conducted to reveal survival analysis and assess the accuracy of the signature. The independence of the model was verified via univariate and multivariate Cox regression analysis. Besides, qRT-PCR was conducted to testified the expression of 11 miRNAs in 16 paired tissues. A total of 514 specimens were randomly divided into the training set and the testing set, then an 11 miRNAs-based signature were determined which divided the patients into high-risk group and low-risk group. The survival was markedly different and the ROC curve exhibited a precise prediction. Meanwhile, the univariate and multivariate Cox regression analysis verified the miRNAs-based model was an independent indicator of EC. Moreove, the prediction ability of this model with clinicopathological features was more efficient. Finally, functional enrichment analysis demonstrated these miRNAs were associated with the occurrence and progression of cancer. Additionally, hsa-mir-216b, hsa-mir-363, hsa-mir-940 and hsa-mir-1301 were highly expressed in EC tissues in contrast to normal tissues through qRT-PCR. Importantly, the eleven-miRNA signature was full of robust ability to predict the prognosis of EC.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, Nanjing, China
| | - Jianqiang Liang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu province, China
| | - Mengting Xu
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu province, China
| | - Zhipeng Wu
- Department of Urology, the Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing 221116, Jiangsu province, China
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu province, China
| | - Jie Wu
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, Nanjing, China
| |
Collapse
|
8
|
Klicka K, Grzywa TM, Klinke A, Mielniczuk A, Włodarski PK. The Role of miRNAs in the Regulation of Endometrial Cancer Invasiveness and Metastasis-A Systematic Review. Cancers (Basel) 2021; 13:3393. [PMID: 34298609 PMCID: PMC8304659 DOI: 10.3390/cancers13143393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endometrial cancer (EC) is the most common genital cancer in women with increasing death rates. MiRNAs are short non-coding RNAs that regulate gene expression on the post-transcriptional levels. Multiple studies demonstrated a fundamental role of miRNAs in the regulation of carcinogenesis. This systematic review is a comprehensive overview of the role of miRNAs in the regulation of cancer cell invasiveness and metastasis in EC. The literature was searched for studies investigating the role of miRNAs in the regulation of invasiveness and metastasis in EC. We explored PubMed, Embase, and Scopus using the following keywords: miRNA, metastasis, invasiveness, endometrial cancer. Data were collected from 163 articles that described the expression and role of 106 miRNAs in the regulation of EC invasiveness and metastasis out of which 63 were tumor suppressor miRNAs, and 38 were oncomiRNAs. Five miRNAs had a discordant role in different studies. Moreover, we identified 66 miRNAs whose expression in tumor tissue or concentration in serum correlated with at least one clinical parameter. These findings suggest a crucial role of miRNAs in the regulation of EC invasiveness and metastasis and present them as potential prognostic factors for patients with EC.
Collapse
Affiliation(s)
- Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Alicja Klinke
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Aleksandra Mielniczuk
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.K.); (T.M.G.); (A.K.); (A.M.)
| |
Collapse
|
9
|
Fu K, Li Y, Song J, Cai W, Wu W, Ye X, Xu J. Identification of a MicroRNA Signature Associated With Lymph Node Metastasis in Endometrial Endometrioid Cancer. Front Genet 2021; 12:650102. [PMID: 33936173 PMCID: PMC8082502 DOI: 10.3389/fgene.2021.650102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/12/2021] [Indexed: 11/13/2022] Open
Abstract
Background Lymph node metastasis (LNM) is an important prognostic factor in endometrial cancer. Anomalous microRNAs (miRNAs) are associated with cell functions and are becoming a powerful tool to characterize malignant transformation and metastasis. The aim of this study was to construct a miRNA signature to predict LNM in endometrial endometrioid carcinoma (EEC). Method Candidate target miRNAs related to LNM in EEC were screened by three methods including differentially expressed miRNAs (DEmiRs), weighted gene co-expression network analysis (WGCNA), and decision tree algorithms. Samples were randomly divided into the training and validation cohorts. A miRNA signature was built using a logistic regression model and was evaluated by the area under the curve (AUC) of receiver operating characteristic curve (ROC) and decision curve analysis (DCA). We also conducted pathway enrichment analysis and miRNA-gene regulatory network to look for potential genes and pathways engaged in LNM progression. Survival analysis was performed, and the miRNAs were tested whether they expressed differently in another independent GEO database. Result Thirty-one candidate miRNAs were screened and a final 15-miRNA signature was constructed by logistic regression. The model showed good calibration in the training and validation cohorts, with AUC of 0.824 (95% CI, 0.739-0.912) and 0.821 (95% CI, 0.691-0.925), respectively. The DCA demonstrated the miRNA signature was clinically useful. Hub miRNAs in signature seemed to contribute to EEC progression via mitotic cell cycle, cellular protein modification process, and molecular function. MiR-34c was statistically significant in survival that a higher expression of miR-34c indicated a higher survival time. MiR-34c-3p, miR-34c-5p, and miR-34b-5p were expressed differentially in GSE75968. Conclusion The miRNA signature could work as a noninvasive method to detect LNM in EEC with a high prediction accuracy. In addition, miR-34c cluster may be a key biomarker referring LNM in endometrial cancer.
Collapse
Affiliation(s)
- Kaiyou Fu
- School of Medicine, Zhejiang University, Hangzhou, China.,Women's hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanrui Li
- School of Control Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jianyuan Song
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wangyu Cai
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohang Ye
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Xu
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Piergentili R, Zaami S, Cavaliere AF, Signore F, Scambia G, Mattei A, Marinelli E, Gulia C, Perelli F. Non-Coding RNAs as Prognostic Markers for Endometrial Cancer. Int J Mol Sci 2021; 22:3151. [PMID: 33808791 PMCID: PMC8003471 DOI: 10.3390/ijms22063151] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometrial cancer (EC) has been classified over the years, for prognostic and therapeutic purposes. In recent years, classification systems have been emerging not only based on EC clinical and pathological characteristics but also on its genetic and epigenetic features. Noncoding RNAs (ncRNAs) are emerging as promising markers in several cancer types, including EC, for which their prognostic value is currently under investigation and will likely integrate the present prognostic tools based on protein coding genes. This review aims to underline the importance of the genetic and epigenetic events in the EC tumorigenesis, by expounding upon the prognostic role of ncRNAs.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy;
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, “Sapienza” University of Rome, Viale Regina Elena 336, 00161 Rome, Italy
| | - Anna Franca Cavaliere
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santo Stefano Hospital, 59100 Prato, Italy;
| | - Fabrizio Signore
- Obstetrics and Gynecology Department, USL Roma2, Sant’Eugenio Hospital, 00144 Rome, Italy;
| | - Giovanni Scambia
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Gynecologic Oncology Unit, 00168 Rome, Italy;
- Universita’ Cattolica Del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Mattei
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| | - Enrico Marinelli
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University, 00161 Rome, Italy;
| | - Caterina Gulia
- Department of Urology, Misericordia Hospital, 58100 Grosseto, Italy;
| | - Federica Perelli
- Gynecology and Obstetric Department, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, 50012 Florence, Italy; (A.M.); (F.P.)
| |
Collapse
|
11
|
Favier A, Rocher G, Larsen AK, Delangle R, Uzan C, Sabbah M, Castela M, Duval A, Mehats C, Canlorbe G. MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review. Cancers (Basel) 2021; 13:cancers13051137. [PMID: 33800944 PMCID: PMC7961497 DOI: 10.3390/cancers13051137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endometrial cancer (EC) is the 2nd most common gynecologic cancer worldwide. MicroRNAs (miRNAs) are small noncoding RNAs that contribute to epigenetic regulation. The objective of this systematic review is to summarize our current knowledge on the role of miRNAs in the epigenetic deregulation of tumor-related genes in EC. It includes all miRNAs reported to be involved in EC including their roles in DNA methylation and RNA-associated silencing. This systematic review should be useful for development of novel strategies to improve diagnosis and risk assessment as well as for new treatments aimed at miRNAs, their target genes or DNA methylation. Abstract The objective of this systematic review is to summarize our current knowledge on the influence of miRNAs in the epigenetic deregulation of tumor-related genes in endometrial cancer (EC). We conducted a literature search on the role of miRNAs in the epigenetic regulation of EC applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following terms were used: microRNA, miRNA, miR, endometrial cancer, endometrium, epigenetic, epimutation, hypermethylation, lynch, deacetylase, DICER, novel biomarker, histone, chromatin. The miRNAs were classified and are presented according to their function (tumor suppressor or onco-miRNA), their targets (when known), their expression levels in EC tissue vs the normal surrounding tissue, and the degree of DNA methylation in miRNA loci and CpG sites. Data were collected from 201 articles, including 190 original articles, published between November 1, 2008 and September 30, 2020 identifying 313 different miRNAs implicated in epigenetic regulation of EC. Overall, we identified a total of 148 miRNAs with decreased expression in EC, 140 miRNAs with increased expression in EC, and 22 miRNAs with discordant expression levels. The literature implicated different epigenetic phenomena including altered miRNA expression levels (miR-182, -230), changes in the methylation of miRNA loci (miR-34b, -129-2, -130a/b, -152, -200b, -625) and increased/decreased methylation of target genes (miR-30d,-191). This work provides an overview of all miRNAs reported to be involved in epigenetic regulation in EC including DNA methylation and RNA-associated silencing. These findings may contribute to novel strategies in diagnosis, risk assessment, and treatments aimed at miRNAs, their target genes or DNA methylation.
Collapse
Affiliation(s)
- Amélia Favier
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
- Correspondence: (A.F.); (G.C.)
| | - Grégoire Rocher
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Annette K. Larsen
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Romain Delangle
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Catherine Uzan
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Michèle Sabbah
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Mathieu Castela
- Scarcell Therapeutics, 101 rue de Sèvres, 75006 Paris, France;
| | - Alex Duval
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Céline Mehats
- U1016, CNRS, UMR8104, Institut Cochin, INSERM, Université de Paris, 75014 Paris, France;
| | - Geoffroy Canlorbe
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Correspondence: (A.F.); (G.C.)
| |
Collapse
|
12
|
Chen W, Gu M, Gao C, Chen B, Yang J, Xie X, Wang X, Sun J, Wang J. The Prognostic Value and Mechanisms of TMEM16A in Human Cancer. Front Mol Biosci 2021; 8:542156. [PMID: 33681289 PMCID: PMC7930745 DOI: 10.3389/fmolb.2021.542156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
As a calcium ion-dependent chloride channel transmembrane protein 16A (TMEM16A) locates on the cell membrane. Numerous research results have shown that TMEM16A is abnormally expressed in many cancers. Mechanically, TMEM16A participates in cancer proliferation and migration by affecting the MAPK and CAMK signaling pathways. Additionally, it is well documented that TMEM16A exerts a regulative impact on the hyperplasia of cancer cells by interacting with EGFR in head and neck squamous cell carcinoma (HNSCC), an epithelial growth factor receptor in head and neck squamous cell carcinoma respectively. Meanwhile, as an EGFR activator, TMEM16A is considered as an oncogene or a tumor-promoting factor. More and more experimental data showed that down-regulation of TMEM16A or gene targeted therapy may be an effective treatment for cancer. This review summarized its role in various cancers and research advances related to its clinical application included treatment and diagnosis.
Collapse
Affiliation(s)
- Wenjian Chen
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China
| | - Meng Gu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chaobing Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of AnHui Medical University, Hefei, China
| | - Bangjie Chen
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Junfa Yang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaoli Xie
- Anhui Medicine Centralized Procurement Service Center, Hefei, China
| | - Xinyi Wang
- First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Jun Sun
- Anhui Province Children's Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jinian Wang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
14
|
Razavi ZS, Tajiknia V, Majidi S, Ghandali M, Mirzaei HR, Rahimian N, Hamblin MR, Mirzaei H. Gynecologic cancers and non-coding RNAs: Epigenetic regulators with emerging roles. Crit Rev Oncol Hematol 2020; 157:103192. [PMID: 33290823 DOI: 10.1016/j.critrevonc.2020.103192] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/24/2022] Open
Abstract
Gynecologic cancers involve the female genital organs, such as the vulva, vagina, cervix, endometrium, ovaries, and fallopian tubes. The occurrence and frequency of gynecologic cancer depends on personal lifestyle, history of exposure to viruses or carcinogens, genetics, body shape, and geographical habitat. For a long time, research into the molecular biology of cancer was broadly restricted to protein-coding genes. Recently it has been realized that non-coding RNAs (ncRNA), including long noncoding RNAs (LncRNAs), microRNAs, circular RNAs and piRNAs (PIWI-interacting RNAs), can all play a role in the regulation of cellular function within gynecological cancer. It is now known that ncRNAs are able to play dual roles, i.e. can exert both oncogenic or tumor suppressive functions in gynecological cancer. Moreover, several clinical trials are underway looking at the biomarker and therapeutic roles of ncRNAs. These efforts may provide a new horizon for the diagnosis and treatment of gynecological cancer. Herein, we summarize some of the ncRNAs that have been shown to be important in gynecological cancers.
Collapse
Affiliation(s)
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Majidi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Gao X, Yu L, Zhang J, Xue P. Silencing of Long Non-Coding RNA LINC01106 Suppresses the Proliferation, Migration and Invasion of Endometrial Cancer Cells Through Regulating the miR-449a/MET Axis. Onco Targets Ther 2020; 13:9643-9655. [PMID: 33061446 PMCID: PMC7532893 DOI: 10.2147/ott.s264642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Endometrial cancer (EC) is an aggressive tumor in females and the development of EC is considered to regulate by some long non-coding RNAs (lncRNAs). Therefore, this study aimed to investigate the regulatory mechanism of lncRNA LINC01106 on EC. METHODS The expression of lncRNA LINC01106, miR-449a and MET in EC tissues and cells was detected by qRT-PCR. Through MTT, wound healing and transwell invasion assays, the proliferation, migration and invasion of EC cells were detected, respectively. The xenograft tumor model was constructed in nude mice to confirm the inhibiting effect of LINC01106 knockdown on EC in vivo. The interactions between miR-449a and LINC01106/MET were predicted by Starbase/Targetscan software and verified by the dual-luciferase reporter assay or RNA immunoprecipitation assay. Western blot assay was performed to determine the protein level of MET. RESULTS LncRNA LINC01106 expression was highly up-regulated in EC tissues and cells. The proliferation, migration and invasion of EC cells in vitro were inhibited by the transfection of sh-LINC01106. The growth of tumor xenograft was suppressed by injection of sh-LINC01106. MiR-449a was a target of LINC01106and was negatively modulated by LINC01106. MiR-449a overexpression suppressed the proliferation, migration and invasion of EC cells. In addition, MET was identified as a target gene of miR-449a. Both the high expression of miR-449a and low expression of MET reversed the inhibiting effects of LINC01106 knockdown on Ishikawa cells. CONCLUSION Silencing of LINC01106 inhibits the occurrence and development of EC via regulating the miR-449a/MET axis. This study provides a possible therapeutic strategy for EC.
Collapse
Affiliation(s)
- Xihuan Gao
- Department of Gynecology, Qingdao Traditional Chinese Medicine Hospital, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Liming Yu
- Department of Gynecology, Qingdao Traditional Chinese Medicine Hospital, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Jingjing Zhang
- Department of Gynecology, Qingdao Traditional Chinese Medicine Hospital, Qingdao City, Shandong Province 266000, People's Republic of China
| | - Ping Xue
- Department of Gynecology, Qingdao Traditional Chinese Medicine Hospital, Qingdao City, Shandong Province 266000, People's Republic of China
| |
Collapse
|
16
|
Ren MM, Xu S, Wei YB, Yang JJ, Yang YN, Sun SS, Li YJ, Wang PY, Xie SY. Roles of HOTAIR in lung cancer susceptibility and prognosis. Mol Genet Genomic Med 2020; 8:e1299. [PMID: 32394637 PMCID: PMC7336741 DOI: 10.1002/mgg3.1299] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background Long noncoding (lncRNA) single‐nucleotide polymorphisms (SNPs) are associated with the susceptibility to the development of various malignant tumors. The aim of this study was to investigate the roles of HOX transcript antisense intergenic RNA (HOTAIR) and its SNPs in lung cancer. Methods Initially, the expression of HOTAIR in different tumors was investigated using the online Gene Expression Profiling Interactive Analysis (GEPIA) resource. Three SNPs (rs920778, rs1899663, and rs4759314) of HOTAIR were identified using the MassArray system. Following this, the relationship between these SNPs and susceptibility to lung cancer was investigated. Results Expression of HOTAIR was found to increase in a variety of cancers, including nonsmall cell lung cancer (NSCLC). We found that the genotypes of these SNPs (rs920778, rs1899663, and rs4759314) were not significantly associated with lung cancer type, family history, lymph node metastasis, or lung cancer stage. In gender stratification, the results of rs920778 genotypes showed that, compared to genotype AA, the AG (OR = 0.344, 95% CI: 0.133–0.893, p = .028) and AG + GG (OR = 0.378, 95% CI: 0.153–0.932, p = .035) genotypes of rs920778 are protective factors against NSCLC in females. In smoking stratification, compared with AA of rs920778, the genotype AG + GG (OR = 0.507, 95% CI: 0.263–0.975, p = .042) was a protective factor against NSCLC in nonsmoking people. No statistical differences were observed in the classifications of rs1899663 and rs4759314 genotypes. Linkage disequilibrium analysis revealed a high linkage disequilibrium between the rs920778 and rs1899663 (D′ = 0.99, r2 = .74), rs920778 and rs4759314 (D′ = 0.85, r2 = .13), and rs1899663 and rs4759314 (D′ = 0.79, r2 = .00). Conclusion Our study demonstrated that HOTAIR expression increased in NSCLC, and that the genotypes of rs920778 could be useful in the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Meng-Meng Ren
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, P.R. China.,Department of Epidemiology, Binzhou Medical University, YanTai, P.R. China
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, P.R. China
| | - Yu-Bo Wei
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, P.R. China
| | - Juan-Juan Yang
- Dongying People's Hospital, Binzhou Medical College Affiliated Teaching Hospital, Dongying, P.R. China
| | - Ya-Nan Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, P.R. China
| | - Shan-Shan Sun
- Department of Epidemiology, Binzhou Medical University, YanTai, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, P.R. China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, P.R. China.,Department of Epidemiology, Binzhou Medical University, YanTai, P.R. China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, P.R. China
| |
Collapse
|
17
|
Wu X, Wang Y, Zhong W, Cheng H, Tian Z. RNA Binding Protein RNPC1 Suppresses the Stemness of Human Endometrial Cancer Cells via Stabilizing MST1/2 mRNA. Med Sci Monit 2020; 26:e921389. [PMID: 32088727 PMCID: PMC7055196 DOI: 10.12659/msm.921389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background RNA binding protein RNPC1 has a tumor-suppressive role in various tumors, nevertheless, the role of RNPC1 in human endometrial cancer (EC) are never been reported. Material/Methods Western blot, quantitative polymerase chain reaction and sphere forming analysis were performed to evaluate the stem-like traits of cells and RNPC1-induced effects on EC cell stemness. RNA immunoprecipitation (RIP) was constructed to investigate the underlying mechanisms. Results The spheres formed by EC cells, named EC spheres, exhibited a remarkably higher stemness than the parental cells, which is characterized as the increase of sphere forming ability, ALDH1 activity, stemness marker expression and migration ability. Notably, RNPC1 expression was decreased in poorly differentiated EC cells than that in EC cells with moderately differentiated. Additionally, RNPC1 expression was significantly decreased in EC spheres and RNPC1 overexpression attenuated the stemness of EC spheres. Moreover, RNPC1 overexpression decreased the migration ability of EC spheres. Mechanistic studies showed that RNPC1 overexpression activated the Hippo pathway through directly binding to MST1/2. Inhibition of MST1/2 rescued RNPC1-mediated effects on EC sphere stemness. Conclusions Therefore, our results indicate a novel RNPC1/MST1/2 signaling responsible for EC cell stemness.
Collapse
Affiliation(s)
- XingMei Wu
- Department of Gynecology, The People's Hospital of Lishui, Lishui, Zhejiang, China (mainland)
| | - YongHui Wang
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang, China (mainland)
| | - WeiJuan Zhong
- Department of Gynecology, The People's Hospital of Lishui, Lishui, Zhejiang, China (mainland)
| | - HuiFei Cheng
- Department of Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang, China (mainland)
| | - ZhiFeng Tian
- Department of Radiation Oncology, Lishui Municipal Central Hospital, Lishui, Zhejiang, China (mainland)
| |
Collapse
|
18
|
Sheng Y, Jiang Q, Dong X, Liu J, Liu L, Wang H, Wang L, Li H, Yang X, Dong J. 3-Bromopyruvate inhibits the malignant phenotype of malignantly transformed macrophages and dendritic cells induced by glioma stem cells in the glioma microenvironment via miR-449a/MCT1. Biomed Pharmacother 2019; 121:109610. [PMID: 31710894 DOI: 10.1016/j.biopha.2019.109610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 02/08/2023] Open
Abstract
Bromopyruvate (3-BrPA) is a glycolysis inhibitor that has been reported to have a strong anti-tumour effect in many human tumours. Several studies have reported that 3-BrPA could inhibit glioma progression; however, its role on the interstitial cells in the glioma microenvironment has not been investigated. In previous studies, we found that in the glioma microenvironment, glioma stem cells can induce the malignant transformation of macrophages and dendritic cells. In this study, we focused on the effects of 3-BrPA on malignantly transformed macrophages and dendritic cells. First, we found that 3-BrPA inhibited the proliferation of malignantly transformed macrophages and dendritic cells in a dose-dependent and time-dependent manner. Further study indicated that 3-BrPA significantly decreased extracellular lactate and inhibited the clone formation, migration and invasion of malignantly transformed macrophages and dendritic cells. Using an online database and a series of experiments, we demonstrated that 3-BrPA inhibits the malignant progression of malignantly transformed macrophages and dendritic cells via the miR-449a/MCT1 axis. These findings built experimental basis for new approach against glioma.
Collapse
Affiliation(s)
- Yujing Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Qianqian Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Xuchen Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Jiachi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Liang Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Haiyang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Liping Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Haoran Li
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| | - Jun Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.
| |
Collapse
|