1
|
Watson EV, Lee JJK, Gulhan DC, Melloni GEM, Venev SV, Magesh RY, Frederick A, Chiba K, Wooten EC, Naxerova K, Dekker J, Park PJ, Elledge SJ. Chromosome evolution screens recapitulate tissue-specific tumor aneuploidy patterns. Nat Genet 2024; 56:900-912. [PMID: 38388848 PMCID: PMC11096114 DOI: 10.1038/s41588-024-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Whole chromosome and arm-level copy number alterations occur at high frequencies in tumors, but their selective advantages, if any, are poorly understood. Here, utilizing unbiased whole chromosome genetic screens combined with in vitro evolution to generate arm- and subarm-level events, we iteratively selected the fittest karyotypes from aneuploidized human renal and mammary epithelial cells. Proliferation-based karyotype selection in these epithelial lines modeled tissue-specific tumor aneuploidy patterns in patient cohorts in the absence of driver mutations. Hi-C-based translocation mapping revealed that arm-level events usually emerged in multiples of two via centromeric translocations and occurred more frequently in tetraploids than diploids, contributing to the increased diversity in evolving tetraploid populations. Isogenic clonal lineages enabled elucidation of pro-tumorigenic mechanisms associated with common copy number alterations, revealing Notch signaling potentiation as a driver of 1q gain in breast cancer. We propose that intrinsic, tissue-specific proliferative effects underlie tumor copy number patterns in cancer.
Collapse
Affiliation(s)
- Emma V Watson
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jake June-Koo Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Doga C Gulhan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giorgio E M Melloni
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rayna Y Magesh
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Abdulrazak Frederick
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kunitoshi Chiba
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric C Wooten
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Braune EB, Geist F, Tang X, Kalari K, Boughey J, Wang L, Leon-Ferre RA, D'Assoro AB, Ingle JN, Goetz MP, Kreis J, Wang K, Foukakis T, Seshire A, Wienke D, Lendahl U. Identification of a Notch transcriptomic signature for breast cancer. Breast Cancer Res 2024; 26:4. [PMID: 38172915 PMCID: PMC10765899 DOI: 10.1186/s13058-023-01757-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Dysregulated Notch signalling contributes to breast cancer development and progression, but validated tools to measure the level of Notch signalling in breast cancer subtypes and in response to systemic therapy are largely lacking. A transcriptomic signature of Notch signalling would be warranted, for example to monitor the effects of future Notch-targeting therapies and to learn whether altered Notch signalling is an off-target effect of current breast cancer therapies. In this report, we have established such a classifier. METHODS To generate the signature, we first identified Notch-regulated genes from six basal-like breast cancer cell lines subjected to elevated or reduced Notch signalling by culturing on immobilized Notch ligand Jagged1 or blockade of Notch by γ-secretase inhibitors, respectively. From this cadre of Notch-regulated genes, we developed candidate transcriptomic signatures that were trained on a breast cancer patient dataset (the TCGA-BRCA cohort) and a broader breast cancer cell line cohort and sought to validate in independent datasets. RESULTS An optimal 20-gene transcriptomic signature was selected. We validated the signature on two independent patient datasets (METABRIC and Oslo2), and it showed an improved coherence score and tumour specificity compared with previously published signatures. Furthermore, the signature score was particularly high for basal-like breast cancer, indicating an enhanced level of Notch signalling in this subtype. The signature score was increased after neoadjuvant treatment in the PROMIX and BEAUTY patient cohorts, and a lower signature score generally correlated with better clinical outcome. CONCLUSIONS The 20-gene transcriptional signature will be a valuable tool to evaluate the response of future Notch-targeting therapies for breast cancer, to learn about potential effects on Notch signalling from conventional breast cancer therapies and to better stratify patients for therapy considerations.
Collapse
Affiliation(s)
- Eike-Benjamin Braune
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Xiaojia Tang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Krishna Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Judy Boughey
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | | | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Kang Wang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Wang Z, Zhang L, Li B, Song J, Yu M, Zhang J, Chen C, Zhan J, Zhang H. Kindlin-2 in myoepithelium controls luminal progenitor commitment to alveoli in mouse mammary gland. Cell Death Dis 2023; 14:675. [PMID: 37833248 PMCID: PMC10576046 DOI: 10.1038/s41419-023-06184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Myoepithelium plays an important role in mammary gland development, but less is known about the molecular mechanism underlying how myoepithelium controls acinus differentiation during gestation. Herein, we found that loss of Kindlin-2 in myoepithelial cells impaired mammary morphogenesis, alveologenesis, and lactation. Using five genetically modified mouse lines combined with single-cell RNA sequencing, we found a Kindlin-2-Stat3-Dll1 signaling cascade in myoepithelial cells that inactivates Notch signaling in luminal cells and consequently drives luminal progenitor commitment to alveolar cells identity. Single-cell profiling revealed that Kindlin-2 loss significantly reduces the proportion of matured alveolar cells. Mechanistically, Kindlin-2 depletion in myoepithelial cells promotes Stat3 activation and upregulates Dll1, which activates the Notch pathway in luminal cells and inhibits luminal progenitor differentiation and maturation during gestation. Inhibition of Notch1 with tangeretin allowed luminal progenitors to regain commitment ability in the pregnant mice with Kindlin-2 depletion in myoepithelium. Taken together, we demonstrated that Kindlin-2 is essential to myoepithelium-controlled luminal progenitors to alveoli transition during gestation.
Collapse
Affiliation(s)
- Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Bing Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
- Department of Histology and Embryology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
4
|
Ehnes DD, Alghadeer A, Hanson-Drury S, Zhao YT, Tilmes G, Mathieu J, Ruohola-Baker H. Sci-Seq of Human Fetal Salivary Tissue Introduces Human Transcriptional Paradigms and a Novel Cell Population. FRONTIERS IN DENTAL MEDICINE 2022; 3:887057. [PMID: 36540608 PMCID: PMC9762771 DOI: 10.3389/fdmed.2022.887057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Multiple pathologies and non-pathological factors can disrupt the function of the non-regenerative human salivary gland including cancer and cancer therapeutics, autoimmune diseases, infections, pharmaceutical side effects, and traumatic injury. Despite the wide range of pathologies, no therapeutic or regenerative approaches exist to address salivary gland loss, likely due to significant gaps in our understanding of salivary gland development. Moreover, identifying the tissue of origin when diagnosing salivary carcinomas requires an understanding of human fetal development. Using computational tools, we identify developmental branchpoints, a novel stem cell-like population, and key signaling pathways in the human developing salivary glands by analyzing our human fetal single-cell sequencing data. Trajectory and transcriptional analysis suggest that the earliest progenitors yield excretory duct and myoepithelial cells and a transitional population that will yield later ductal cell types. Importantly, this single-cell analysis revealed a previously undescribed population of stem cell-like cells that are derived from SD and expresses high levels of genes associated with stem cell-like function. We have observed these rare cells, not in a single niche location but dispersed within the developing duct at later developmental stages. Our studies introduce new human-specific developmental paradigms for the salivary gland and lay the groundwork for the development of translational human therapeutics.
Collapse
Affiliation(s)
- Devon Duron Ehnes
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Ammar Alghadeer
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Sesha Hanson-Drury
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Yan Ting Zhao
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States
| | - Gwen Tilmes
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
| | - Julie Mathieu
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Hannele Ruohola-Baker
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA, United States
- Institute for Stem Cells and Regenerative Medicine, School of Medicine, University of Washington, Seattle, WA, United States
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Zhong XD, Chen LJ, Xu XY, Liu YJ, Tao F, Zhu MH, Li CY, Zhao D, Yang GJ, Chen J. Berberine as a potential agent for breast cancer therapy. Front Oncol 2022; 12:993775. [PMID: 36119505 PMCID: PMC9480097 DOI: 10.3389/fonc.2022.993775] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 01/02/2023] Open
Abstract
Breast cancer (BC) is a common malignancy that mainly occurred in women and it has become the most diagnosed cancer annually since 2020. Berberine (BBR), an alkaloid extracted from the Berberidacea family, has been found with broad pharmacological bioactivities including anti-inflammatory, anti-diabetic, anti-hypertensive, anti-obesity, antidepressant, and anticancer effects. Mounting evidence shows that BBR is a safe and effective agent with good anticancer activity against BC. However, its detailed underlying mechanism in BC treatment remains unclear. Here, we will provide the evidence for BBR in BC therapy and summarize its potential mechanisms. This review briefly introduces the source, metabolism, and biological function of BBR and emphasizes the therapeutic effects of BBR against BC via directly interacting with effector proteins, transcriptional regulatory elements, miRNA, and several BBR-mediated signaling pathways. Moreover, the novel BBR-based therapeutic strategies against BC improve biocompatibility and water solubility, and the efficacies of BBR are also briefly discussed. Finally, the status of BBR in BC treatment and future research directions is also prospected.
Collapse
Affiliation(s)
- Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Li-Juan Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xin-Yang Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Dan Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Pincha N, Marangoni P, Haque A, Klein OD. Parallels in signaling between development and regeneration in ectodermal organs. Curr Top Dev Biol 2022; 149:373-419. [PMID: 35606061 PMCID: PMC10049776 DOI: 10.1016/bs.ctdb.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ectodermal organs originate from the outermost germ layer of the developing embryo and include the skin, hair, tooth, nails, and exocrine glands. These organs develop through tightly regulated, sequential and reciprocal epithelial-mesenchymal crosstalk, and they eventually assume various morphologies and functions while retaining the ability to regenerate. As with many other tissues in the body, the development and morphogenesis of these organs are regulated by a set of common signaling pathways, such as Shh, Wnt, Bmp, Notch, Tgf-β, and Eda. However, subtle differences in the temporal activation, the multiple possible combinations of ligand-receptor activation, the various cofactors, as well as the underlying epigenetic modulation determine how each organ develops into its adult form. Although each organ has been studied separately in considerable detail, the mechanisms underlying the parallels and differences in signaling that regulate their development have rarely been investigated. First, we will use the tooth, the hair follicle, and the mammary gland as representative ectodermal organs to explore how the development of signaling centers and establishment of stem cell populations influence overall growth and morphogenesis. Then we will compare how some of the major signaling pathways (Shh, Wnt, Notch and Yap/Taz) differentially regulate developmental events. Finally, we will discuss how signaling regulates regenerative processes in all three.
Collapse
Affiliation(s)
- Neha Pincha
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ameera Haque
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, United States.
| |
Collapse
|
7
|
How Lineage Tracing Studies Can Unveil Tumor Heterogeneity in Breast Cancer. Biomedicines 2021; 10:biomedicines10010003. [PMID: 35052683 PMCID: PMC8772890 DOI: 10.3390/biomedicines10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 11/17/2022] Open
Abstract
Lineage tracing studies have become a well-suited approach to reveal cellular hierarchies and tumor heterogeneity. Cellular heterogeneity, particularly in breast cancer, is still one of the main concerns regarding tumor progression and resistance to anti-cancer therapies. Here, we review the current knowledge about lineage tracing analyses that have contributed to an improved comprehension of the complexity of mammary tumors, highlighting how targeting different mammary epithelial cells and tracing their progeny can be useful to explore the intra- and inter-heterogeneity observed in breast cancer. In addition, we examine the strategies used to identify the cell of origin in different breast cancer subtypes and summarize how cellular plasticity plays an important role during tumorigenesis. Finally, we evaluate the clinical implications of lineage tracing studies and the challenges remaining to address tumor heterogeneity in breast cancer.
Collapse
|