1
|
Biju T, Venkatesh C, Honnasiddappa DB, Sajjan M, Mahadeva NK, Dinesh BGH, Kumar BS, Ganjipete S, Ramar M, Kunjiappan S, Theivendren P, Madasamy S, Chidambaram K, Ammunje DN, Pavadai P. ATAD2 bromodomain in cancer therapy: current status and future perspectives. Int J Biol Macromol 2025; 311:143948. [PMID: 40334884 DOI: 10.1016/j.ijbiomac.2025.143948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/22/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
ATPase family AAA domain-containing protein 2, or ATAD2, is a novel carcinogen, essential for cancer development, chromatin remodeling, and transcriptional control. It contains a bromodomain, which binds to acetylated histones to control gene expression. It also impacts pathways that regulate the cell cycle, DNA replication, and hormone signalling. ATAD2 is overexpressed in several malignancies, including colorectal, lung, ovarian, and breast cancers, and cancer metastasis. Investigations into the function of ATAD2 in oncogenesis and its interactions may offer fresh approaches to creating cancer treatment plans. Although preclinical research is very encouraging, many unresolved aspects regarding therapeutic development remain, including toxicity being explored concurrently. Investigations into the function of ATAD2 in oncogenesis may offer fresh approaches to developing chemotherapy strategies. Most of ATAD2's molecular mechanisms behind carcinogenesis and functions are discussed here. Additionally, we included progress, including potential monoclonal antibodies, RNA-based therapies, and small chemical inhibitors, in the review. Therefore, we guarantee this study will provide researchers with new opportunities and directions for cancer therapeutics.
Collapse
Affiliation(s)
- Tincy Biju
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Chidananda Venkatesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Darshana Ballagere Honnasiddappa
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Mallikarjun Sajjan
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Nayan Kumar Mahadeva
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Basavana Gowda Hosur Dinesh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Bandral Sunil Kumar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Srinivas Ganjipete
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, Storrs CT-06269, USA
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Panneerselvam Theivendren
- Department of Pharmaceutical Chemistry & Analysis, School of Pharmaceutical Sciences, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai, Tamil Nadu 600117, India
| | - Sundar Madasamy
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, Tamil Nadu, India
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Damodar Nayak Ammunje
- Department of Pharmacology, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India.
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru 560054, Karnataka, India.
| |
Collapse
|
2
|
Roy A, Sudhamalla B. ATAD2 and TWIST1 Interaction Promotes MYC Activation in Colorectal Carcinoma. Biochemistry 2025; 64:114-126. [PMID: 39686835 DOI: 10.1021/acs.biochem.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) is significantly up-regulated in many cancer types and contributes to poor patient outcomes. ATAD2 exhibits a multidomain architecture comprising an N-terminal acidic domain, two AAA+ ATPase domains, a bromodomain, and a C-terminal domain. The AAA+ ATPase domain facilitates protein oligomerization and ATP binding, while the bromodomain recognizes acetylated lysine in histones and nonhistone proteins. ATAD2 involvement in cancer extends across multiple signaling pathways, such as Rb-E2F1, PI3K/AKT, and TGF-β1/Smad3, which promotes cell proliferation and cancer progression. Herein, we report that ATAD2 directly interacts with TWIST1, and both N-terminal regions of proteins mediate the interaction. Immunofluorescence experiments suggested that ATAD2 and TWIST1 primarily colocalize in the nucleus. Notably, our qPCR results revealed the functional significance of ATAD2-TWIST1 interaction by demonstrating their synergistic effect on the transcriptional activation of MYC in colorectal carcinoma cell lines. Moreover, the ChIP-qPCR result further indicates that ATAD2 and TWIST1 significantly localize in the promoter of the MYC gene. In addition, analysis of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) data suggests a correlation between ATAD2, TWIST1, and MYC overexpression and poor survival rates in colorectal carcinoma. Lastly, the overexpression of ATAD2 and TWIST1 enhances cell proliferation, emphasizing their role in colorectal carcinoma progression through MYC activation. Together, these results suggest that ATAD2 is a crucial factor in TWIST1-dependent MYC gene activation, resulting in an active ATAD2-TWIST1-MYC axis that contributes to colon cancer cell proliferation.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
3
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
4
|
Putri HMAR, Novianti PW, Pradjatmo H, Haryana SM. MicroRNA‑mediated approaches in ovarian cancer therapy: A comprehensive systematic review. Oncol Lett 2024; 28:491. [PMID: 39185494 PMCID: PMC11342411 DOI: 10.3892/ol.2024.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/05/2024] [Indexed: 08/27/2024] Open
Abstract
Ovarian cancer (OC) poses a significant health risk to women worldwide, with late diagnoses and chemotherapy resistance leading to high mortality rates. Despite several histological subtypes, the primary challenge remains the subtle nature of its symptoms, resulting in advanced-stage diagnosis and reduced treatment success rates. With platinum-based therapies showing relative efficacy but limited survival enhancements, the emergence of chemotherapy resistance during recurrence remains a critical obstacle. Precision medicine development has aimed to address these challenges in the context of the molecular diversity of OC. The present review explored the landscape of microRNA (miRNA)-mediated approaches in OC treatment. miRNAs have emerged as regulators of gene expression, serving as both oncogenes and tumor suppressors in OC. Dysregulated miRNAs are associated with disease progression and chemotherapy resistance, underscoring their significance in diagnosis and tailored treatment strategies. The present review extracted 295 publications from the PUBMED database. Out of the 73 eligible studies, 55 miRNAs were assessed. A total of three of these miRNAs were not associated with any disease or cancer, whilst eight were associated with OC, albeit also associated with other diseases. The present review encompassed three dimensions: i) The role of miRNAs in treatment efficacy; ii) the use of miRNAs to enhance therapy outcomes; and iii) adjunctive strategies for improved treatment results. Furthermore, it offered insights into potential avenues for improving OC treatment using miRNA-based approaches.
Collapse
Affiliation(s)
| | | | - Heru Pradjatmo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Depok, Yogyakarta 55281, Indonesia
- Department of Obstetrics and Gynecology, Sardjito Hospital, Depok, Yogyakarta 55281, Indonesia
| | - Sofia Mubarika Haryana
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Depok, Yogyakarta 55281, Indonesia
| |
Collapse
|
5
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Li Z, Duan Y, Yan S, Zhang Y, Wu Y. The miR-302/367 cluster: Aging, inflammation, and cancer. Cell Biochem Funct 2023; 41:752-766. [PMID: 37555645 DOI: 10.1002/cbf.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that occupy a significant role in biological processes as important regulators of intracellular homeostasis. First, we will discuss the biological genesis and functions of the miR-302/367 cluster, including miR-302a, miR-302b, miR-302c, miR-302d, and miR-367, as well as their roles in physiologically healthy tissues. The second section of this study reviews the progress of the miR-302/367 cluster in the treatment of cancer, inflammation, and diseases associated with aging. This cluster's aberrant expression in cells and/or tissues exhibits similar or different effects in various diseases through molecular mechanisms such as proliferation, apoptosis, cycling, drug resistance, and invasion. This article also discusses the upstream and downstream regulatory networks of miR-302/367 clusters and their related mechanisms. Particularly because studies on the upstream regulatory molecules of miR-302/367 clusters, which include age-related macular degeneration, myocardial infarction, and cancer, have become more prevalent in recent years. MiR-302/367 cluster can be an important therapeutic target and the use of miRNAs in combination with other molecular markers may improve diagnostic or therapeutic capabilities, providing unique insights and a more dynamic view of various diseases. It is noted that miRNAs can be an important bio-diagnostic target and offer a promising method for illness diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Zhou Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yan Duan
- Department of Stomatology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Shaofu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yao Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yunxia Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
7
|
Sun T, Liu Z. MicroRNA-139-5p suppresses non-small cell lung cancer progression by targeting ATAD2. Pathol Res Pract 2023; 249:154719. [PMID: 37595446 DOI: 10.1016/j.prp.2023.154719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
MiR-139-5p is a suppressor in multiple types of cancer. However, whether miR-139-5p affects NSCLC is unknown. In this study, miR-139-5p expression in clinical samples was examined by real-time PCR and in situ hybridization (ISH). MiR-139-5p mimic was transfected to monitor NSCLC cell behaviors. Potential target was predicated using bioinformatics database. Next, whether miR-139-5p impacted cell behaviors via regulation of its predicted target gene were further evaluated. The result revealed that miR-139-5p was lower in NSCLC samples/cells. MiR-139-5p restrained A549 cell proliferation, accelerated apoptosis, and inhibited the β-catenin signaling. ATAD2 was a predicted target of miR-139-5p, and it was highly expressed in NSCLC tissues. ATAD2 overexpression abolished the miR-139-5p's anti-tumor effect on cell proliferation and apoptosis. TWS119 (a β-catenin signaling activator) partially reversed miR-139-5p overexpression-induced suppression of cell proliferation and promotion of cell apoptosis. In tumor xenografts, miR-139-5p restrained tumor growth. MiR-139-5p was a tumor suppressor in NSCLC by regulating the oncogene ATAD2 and β-catenin signaling. Our study provides a promising target for cancer treatment.
Collapse
Affiliation(s)
- Tong Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
8
|
Zhang K, Sun X, Sun W, Wang M, Han F. Exosomal microRNA-506 inhibits biological activity of lung adenocarcinoma cells and increases sensitivity to cisplatin-based hyperthermia. Cell Signal 2022; 100:110469. [PMID: 36115547 DOI: 10.1016/j.cellsig.2022.110469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
Exosomal microRNAs (miRNAs) play a vital role in the occurrence and development of lung adenocarcinoma (LUAD). Based on the bioinformatics analyses, the current study sought to explore the effects of exosomal miR-506 on LUAD cell biology and the efficacy of cisplatin (CDDP)-based hyperthermia (HT). After sample preparation, we identified decreased miR-506 and elevated ATAD2. LUAD cells were subsequently transfected with miR-506 mimic, oe-ATAD2 and PI3K/AKT signaling pathway inhibitor LY294002 to analyze effects of the miR-506/ATAD2/PI3K/AKT axis on cell biological processes and chemoresistance. Effects of exosomal miR-506 on sensitivity of LUAD cells to CDDP-based HT were further assessed in a co-culture system of BMSC-derived exosomes and LUAD cells, which was also validated in tumor-bearing nude mice. miR-506 down-regulated ATAD2 to inhibit the PI3K/AKT signaling pathway, thereby inhibiting the malignant phenotypes of LUAD cells and augmenting LUAD cell sensitivity to CDDP-based HT. Further, BMSCs-derived exosomes harboring miR-506 sensitized LUAD cells to DDP/HT both in vitro and in vivo. Collectively, our findings revealed that exosomal miR-506 sensitized LUAD cells to CDDP-based HT by inhibiting ATAD2/PI3K/AKT signaling pathway, offering a potential therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Kunming Zhang
- Department of Internal Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Xiwen Sun
- Department of Medical Imaging, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Weikai Sun
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Meng Wang
- Department of Radiotherapy, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Fushi Han
- Department of Nuclear Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China.
| |
Collapse
|
9
|
Kandettu A, Adiga D, Devi V, Suresh PS, Chakrabarty S, Radhakrishnan R, Kabekkodu SP. Deregulated miRNA clusters in ovarian cancer: Imperative implications in personalized medicine. Genes Dis 2022; 9:1443-1465. [PMID: 36157483 PMCID: PMC9485269 DOI: 10.1016/j.gendis.2021.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/04/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. OC is usually detected at the advanced stages of the disease, making it highly lethal. miRNAs are single-stranded, small non-coding RNAs with an approximate size ranging around 22 nt. Interestingly, a considerable proportion of miRNAs are organized in clusters with miRNA genes placed adjacent to one another, getting transcribed together to result in miRNA clusters (MCs). MCs comprise two or more miRNAs that follow the same orientation during transcription. Abnormal expression of the miRNA cluster has been identified as one of the key drivers in OC. MC exists both as tumor-suppressive and oncogenic clusters and has a significant role in OC pathogenesis by facilitating cancer cells to acquire various hallmarks. The present review summarizes the regulation and biological function of MCs in OC. The review also highlights the utility of abnormally expressed MCs in the clinical management of OC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Vasudha Devi
- Department of Pharmacology, Centre for Cardiovascular Pharmacology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal Campus, Manipal, Karnataka 576104, India
| | - Padmanaban S. Suresh
- School of Biotechnology, National Institute of Technology, Calicut, Kerala 673601, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
10
|
Duan X, Luo M, Li J, Shen Z, Xie K. Overcoming therapeutic resistance to platinum-based drugs by targeting Epithelial–Mesenchymal transition. Front Oncol 2022; 12:1008027. [PMID: 36313710 PMCID: PMC9614084 DOI: 10.3389/fonc.2022.1008027] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum-based drugs (PBDs), including cisplatin, carboplatin, and oxaliplatin, have been widely used in clinical practice as mainstay treatments for various types of cancer. Although there is firm evidence of notable achievements with PBDs in the management of cancers, the acquisition of resistance to these agents is still a major challenge to efforts at cure. The introduction of the epithelial-mesenchymal transition (EMT) concept, a critical process during embryonic morphogenesis and carcinoma progression, has offered a mechanistic explanation for the phenotypic switch of cancer cells upon PBD exposure. Accumulating evidence has suggested that carcinoma cells can enter a resistant state via induction of the EMT. In this review, we discussed the underlying mechanism of PBD-induced EMT and the current understanding of its role in cancer drug resistance, with emphasis on how this novel knowledge can be exploited to overcome PBD resistance via EMT-targeted compounds, especially those under clinical trials.
Collapse
Affiliation(s)
- Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian Li
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Ke Xie, ; Zhisen Shen,
| |
Collapse
|
11
|
miR-302 Suppresses the Proliferation, Migration, and Invasion of Breast Cancer Cells by Downregulating ATAD2. Cancers (Basel) 2022; 14:cancers14184345. [PMID: 36139505 PMCID: PMC9497224 DOI: 10.3390/cancers14184345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary ATPase family AAA domain-containing protein 2 (ATAD2) overexpression is associated with poor survival and disease recurrence in multiple cancers. The current study aimed to investigate the expression and function of ATAD2 in breast cancer. Our results showed that ATAD2 expression was upregulated in human breast cancer tissues and cell lines, while ATAD2 knockdown inhibited the proliferation, migration, and invasion of breast cancer cells. Moreover, we provide evidence suggesting that miR-302 directly targets ATAD2 and thus modulates cancer cell proliferation, migration, and invasion in vitro. Moreover, ATAD2 overexpression rescued the inhibition of tumor growth caused by miR-302 in xenograft mice. These findings indicate that miR-302 plays a crucial role in inhibiting the malignant phenotypes of breast cancer cells by targeting ATAD2. Abstract Breast cancer is the most common malignant tumor in women. The ATPase family AAA domain-containing protein 2 (ATAD2) contains an ATPase domain and a bromodomain, and is abnormally expressed in various human cancers, including breast cancer. However, the molecular mechanisms underlying the regulation of ATAD2 expression in breast cancer remain unclear. This study aimed to investigate the expression and function of ATAD2 in breast cancer. We found that ATAD2 was highly expressed in human breast cancer tissues and cell lines. ATAD2 depletion via RNA interference inhibited the proliferation, migration, and invasive ability of the SKBR3 and T47D breast cancer cell lines. Furthermore, Western blot analysis and luciferase assay results revealed that ATAD2 is a putative target of miR-302. Transfection with miR-302 mimics markedly reduced cell migration and invasion. These inhibitory effects of miR-302 were restored by ATAD2 overexpression. Moreover, miR-302 overexpression in SKBR3 and T47D cells suppressed tumor growth in the xenograft mouse model. However, ATAD2 overexpression rescued the decreased tumor growth seen after miR-302 overexpression. Our findings indicate that miR-302 plays a prominent role in inhibiting the cancer cell behavior associated with tumor progression by targeting ATAD2, and could thus be a valuable target for breast cancer therapy.
Collapse
|
12
|
Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022; 12:biom12081040. [PMID: 36008934 PMCID: PMC9405547 DOI: 10.3390/biom12081040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has received extensive attention in recent years as one prospective oncogene with tumor-promoting features in many malignancies. ATAD2 is a highly conserved bromodomain family protein that exerts its biological functions by mainly AAA ATPase and bromodomain. ATAD2 acts as an epigenetic decoder and transcription factor or co-activator, which is engaged in cellular activities, such as transcriptional regulation, DNA replication, and protein modification. ATAD2 has been reported to be highly expressed in a variety of human malignancies, including gastrointestinal malignancies, reproductive malignancies, urological malignancies, lung cancer, and other types of malignancies. ATAD2 is involved in the activation of multiple oncogenic signaling pathways and is closely associated with tumorigenesis, progression, chemoresistance, and poor prognosis, but the oncogenic mechanisms vary in different cancer types. Moreover, the direct targeting of ATAD2’s bromodomain may be a very challenging task. In this review, we summarized the role of ATAD2 in various types of malignancies and pointed out the pharmacological direction.
Collapse
|
13
|
Dutta M, Das B, Mohapatra D, Behera P, Senapati S, Roychowdhury A. MicroRNA-217 modulates pancreatic cancer progression via targeting ATAD2. Life Sci 2022; 301:120592. [PMID: 35504332 DOI: 10.1016/j.lfs.2022.120592] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022]
Abstract
AIMS Pancreatic cancer is a fatal disease across the world with 5 years survival rate less than 10%. ATAD2, a valid cancer drug-target, is overexpressed in pancreatic malignancy with high oncogenic potential. However, the mechanism of the upregulated expression of ATAD2 in pancreatic cancer is unknown. Since microRNAs (miRNAs) could potentially control target mRNA expressions, and are involved in cancer as tumor-suppressors, oncomiR or both, we examine the possibility of miRNA-mediated regulation of ATAD2 in pancreatic cancer cells (PCCs). MAIN METHODS Our in-silico approach first identifies hsa-miR-217 as a candidate regulator for ATAD2 expression. For further validation, luciferase reporter assay is performed. We overexpress hsa-miRNA-217 and assess cellular viability, migration, apoptosis and cell cycle progression in three different PCCs (BxPC3, PANC1, and MiaPaCa2). KEY FINDINGS We find hsa-miRNA-217 has potential binding site at the 3'UTR of ATAD2. Luciferase assay confirms that ATAD2 is a direct target of hsa-miR-217. Overexpression of hsa-miR-217 drastically downregulates ATAD2 expression in PCCs, thus, corroborating binding studies. The elevated expression of hsa-miRNA-217 diminishes cell proliferation and migration as well as induces apoptosis and cell cycle arrest in PCCs. Finally, siRNA mediated ATAD2 knockdown or overexpression of hsa-miRNA-217 in PCCs showed inactivation of the AKT signaling pathway. Therefore, hsa-miR-217 abrogates pancreatic cancer progression through inactivation of the AKT signaling pathway and this might be partly due to miR-217 mediated suppression of ATAD2 expression. SIGNIFICANCE The application of hsa-miR-217 mimic could be a promising therapeutic strategy for the treatment of pancreatic cancer patients in near future.
Collapse
Affiliation(s)
- Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Debasish Mohapatra
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Padmanava Behera
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India; Department of Microbiology, Shiksha 'O' Anusandhan (SOA) University, Bhubaneswar, Odisha 751003, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha 751023, India.
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
14
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
15
|
Dou L, Zhang Y. miR-4461 Regulates the Proliferation and Metastasis of Ovarian Cancer Cells and Cisplatin Resistance. Front Oncol 2021; 11:614035. [PMID: 33767986 PMCID: PMC7985457 DOI: 10.3389/fonc.2021.614035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
microRNAs (miRNAs) are of great significance in cancer treatment, which may have a desirable result on the regulation of tumorigenesis, progression, recurrence, and chemo-resistance of ovarian cancer. However, the research on the further potential application of miR-4461 in ovarian cancer is little and limited. Therefore, the study in this paper focus on the investigation of the of miR-4461 in ovarian cancer progression and chemo-resistance. The phenomenon that the proliferation and metastasis of ovarian cancer cells can be promoted by miR4461 is revealed in functional assays. Through the bioinformatics and luciferase reporter analysis, the PTEN is validated to be the direct target of miR-4461 in ovarian. The association between the expression of miR-4461 and PTEN is negative in in human ovarian cancer tissues. The distinction of growth and metastasis capacity between miR-4461 knockdown ovarian cancer cells and control cells is partially abolished by si-PTEN. Moreover, it was found that cisplatin treatment has obvious effect on the miR-4461 knockdown ovarian cancer cells. In summary, the data given in this paper indicate that the miR-4461 can be regarded as a potential onco-miRNA in ovarian cancer by targeting PTEN.
Collapse
Affiliation(s)
- Lei Dou
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|