1
|
Wang Z, Cheng S, Wei J, Hu J, Li F, Yang W. Evolving role of deubiquitinating enzymes in oral cancer (Review). Oncol Lett 2025; 30:354. [PMID: 40438866 PMCID: PMC12117358 DOI: 10.3892/ol.2025.15100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
Oral cancer affects the mucosal epithelium located within the oral cavity. The prevalence of oral cancer is projected to increase by ~40% by 2040, leading to a subsequent rise in mortality rates. Oral carcinogenesis is complex and multifactorial and numerous signaling pathways are involved in disease development. Deubiquitination is commonly involved in the post-translational process of proteins, and serves a key role in tumorigenesis and cancer development. The present review aims to discuss the function of deubiquitinating enzymes (DUBs) in oral cancer, with a particular focus on oral squamous cell carcinoma (OSCC). The present review also aims to investigate the functional mechanisms, tumorigenic regulation and therapeutic targets of DUBs in OSCC, which may potentially provide a novel theoretical basis for the utilization of DUBs as molecular targets in the treatment of OSCC in the future.
Collapse
Affiliation(s)
- Zidi Wang
- Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Siyuan Cheng
- Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Jianhui Wei
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Jiandong Hu
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Fenge Li
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
- Cancer Diagnosis and Treatment Center, Tianjin Union Medical Cancer (The First Affiliated Hospital of Nankai University), Tianjin 300121, China
| | - Wenhua Yang
- Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| |
Collapse
|
2
|
Zherong Z, Yan L, Meng G, Juan L, Yayun Z, Songze W, Yu Z, Deyun C, Tao F. Salivary metabolites profiling for diagnosis of COPD: an exploratory study. J Breath Res 2025; 19:026010. [PMID: 39999480 DOI: 10.1088/1752-7163/adba07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Pulmonary function tests (PFTs) are the gold standard for diagnosing of Chronic obstructive pulmonary disease (COPD). Given its limitation in some scenarios, it is imperative to develop new high-throughput screening methods for biomarkers in diagnosing COPD. This study aims to explore the feasibility of screening novel diagnostic biomarkers based on salivary metabolomics for the limited availability of PFTs and difficulties in implementation at primary care facilities. Participants were recruited from the outpatient department of West China Hospital. Saliva samples were collected to analyze the metabolites through the UPLC-Q-Exactive Orbitrap-MS platform. The raw data from the mass spectrometer was preprocessed with R software after peak extraction. The Wilcoxon rank sum test, Fold change analysis, PCA and orthogonal partial least squares - discriminant analysis were used to identify potential biomarkers. The receiver operating characteristic curve was used to assess the diagnostic efficacy of the predictive model generated by potential biomarkers. Saliva samples were collected from 66 patients with COPD and 55 healthy volunteers. Significant differences in the salivary metabolome between COPD patients and healthy controls were identified, with 261 differential metabolites recognized, 16 of which were considered as potential biomarker. The diagnostic model generated by these 16 biomarkers can successfully distinguish COPD patients from healthy people. Salivary metabolomic profiling is likely to emerge as a promising method for screening potential diagnostic biomarkers of COPD. Further prospective studies with large sample size are needed to verify the predictive value of these biomarkers in COPD diagnosis.Trial registrationThe study is registered with the China Clinical Trial Registry (www.chictr.org.cn/searchprojEN.html) on 26 September 2022, registration number: ChiCTR2200064091.
Collapse
Affiliation(s)
- Zhang Zherong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Lv Yan
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China hospital, Sichuan university, Chengdu, People's Republic of China
| | - Gong Meng
- Centre of Metabolomics, West China hospital, Sichuan university, Chengdu, People's Republic of China
| | - Li Juan
- Department of Scientific Research, Affiliated Hospital of Panzhihua University, Panzhihua, People's Republic of China
| | - Zhang Yayun
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wu Songze
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhang Yu
- Department of Pulmonary and Critical Care Medicine, Chengdu First People's Hospital, Chengdu, People's Republic of China
| | - Cheng Deyun
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Fan Tao
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China hospital, Sichuan university, Chengdu, People's Republic of China
| |
Collapse
|
3
|
Yuan F, Xu J, Xuan L, Deng C, Wang W, Yang R. USP14 inhibition by degrasyn induces YAP1 degradation and suppresses the progression of radioresistant esophageal cancer. Neoplasia 2025; 60:101101. [PMID: 39675091 PMCID: PMC11699344 DOI: 10.1016/j.neo.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Radiotherapy is a major modality for esophageal cancer (ESCA) treatment, yet radioresistance severely hampers its therapeutic efficacy. Ubiquitin-specific peptidase 14 (USP14) is a novel deubiquitinase and can mediate cancer cells' response to irradiation, although the underlying mechanism remains unclear, including in ESCA. METHODS To evaluate the expression of USP14 in ESCA tissues or cells, we used RNA-Seq, immunoblotting, co-immunoprecipitation (Co-IP), ubiquitination, quantitative real-time polymerase chain reaction (qRT-PCR), and immunofluorescence assays in this investigation. Additionally, we used CCK8, cloning, and migration tests to examine the proliferation and migration of ESCA cells. We also used transplantation tumor mouse model to investigate the course of the cancer cell growth. Finally, we looked into the biological processes linked to USP14 using gene set enrichment analysis (GSEA), which was later verified. RESULTS We observed a significant upregulation of USP14 in human ESCA tissues and cell lines, especially in those with radioresistance. Moreover, USP14 knockdown significantly restrained the proliferation and inhibited the radiation tolerance of ESCC cells. Here, we identified a potential inhibitor of USP14, Degrasyn (DGS), and investigated its regulatory effects on ESCA radioresistance and progression. We found that DGS had marked antiproliferative effects in radiosensitive ESCA cell lines. Notably, a low dose of DGS significantly enhanced the sensitivity of radioresistant ESCA cells to irradiation, as shown by the significantly reduced cell proliferation, migration, and invasion. Furthermore, the combination of DGS and X-ray irradiation strongly induced DNA damage in radioresistant ESCA cell lines by increasing the phosphorylation levels of H2AX (γ-H2AX) and checkpoint kinase 1/ataxia-telangiectasia-mutated-and-Rad3-related kinase (CHK1/ATR) signaling. Animal experiments confirmed the effective role of the DGS and X-ray combined treatment in reducing tumor growth and irradiation tolerance of ESCA in vivo with undetectable toxicity. Importantly, the promotive and malignant biological behaviors of ESCA cells suppressed by the DGS/X-ray combination treatment were almost eliminated by USP14 overexpression, along with the abolished DNA damage process. Mechanistically, we found that USP14 could interact with Yes-associated protein 1 (YAP1) and induce its deubiquitination in radioresistant ESCA cells. Interestingly, we discovered that DGS/X-ray co-therapy significantly reduced the stability of YAP1 and induced its ubiquitination in radioresistant ESCA cells. More importantly, the proliferation, epithelial-mesenchymal tansition (EMT) process, and DNA damage regulated by DGS/X-ray and USP14 knockdown were significantly eliminated when YAP1 was overexpressed in radioresistant ESCA cells. CONCLUSIONS These data revealed the potential role of DGS/X-ray co-therapy in controlling ESCA resistance to radiotherapy by inhibiting the USP14/YAP1 axis, providing a candidate strategy for ESCA treatment.
Collapse
Affiliation(s)
- Fang Yuan
- Departments of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Juan Xu
- Departments of Head and Neck Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lingmei Xuan
- Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Chan Deng
- Departments of Thoracic Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wei Wang
- Departments of Head and Neck Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rong Yang
- Departments of Gynecological Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
4
|
Wang Y, Shi M, Sheng L, Ke Y, Zheng H, Wang C, Jiang X, Lu Z, Liu J, Ma Y. Shen-Qi-Di-Huang Decoction induces autophagy in podocytes to ameliorate membranous nephropathy by suppressing USP14. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119228. [PMID: 39647591 DOI: 10.1016/j.jep.2024.119228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shen-Qi-Di-Huang decoction (SQDHD) is a renowned decoction in traditional Chinese medicine, dating back to the Qing Dynasty. SQDHD has been widely applied in treating renal diseases, including Membranous nephropathy (MN), with its proven positive clinical outcomes. Nevertheless, the precise mechanism by which SQDHD exerts its therapeutic effects on MN remains uncertain. AIM OF THE STUDY The present research aimed to observe whether SQDHD promotes podocyte autophagy by inhibiting USP14 to increase the K63 ubiquitination of Beclin1, thereby improving MN. MATERIALS AND METHODS An MN model was established in rats using Passive Heyman Nephritis (PHN) to explore the underlying mechanisms in vivo. The kidney function parameters were evaluated, and the histomorphology of glomerular tissues was examined. Autophagy-related protein expression was assessed using immunofluorescence staining and western blotting assays. Co-immunoprecipitation (Co-IP) was used to detect the K63 ubiquitination of Beclin1. MPC5 cells were treated in vitro with serum obtained from several rat groups. Subsequently, the expression of autophagy-related proteins, formation of autophagosomes, expression of USP14, and K63 ubiquitination of Beclin1 were quantified. RESULTS Our results demonstrated that SQDHD intervention reduced urinary protein levels, mitigated podocyte damage in MN model rats, and improved kidney tissue pathology. Furthermore, in vitro and in vivo data revealed that SQDHD therapy significantly increased podocyte autophagy, decreased USP14 expression, and raised Beclin1's K63 ubiquitination. CONCLUSION These results provided a scientific rationale supporting the ability of SQDHD to substantially alleviate MN progression by inducing podocyte autophagy through the inhibition of USP14 expression.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu, China
| | - Manman Shi
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu, China
| | - Li Sheng
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu, China
| | - Yanrong Ke
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu, China
| | - Hong Zheng
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu, China
| | - ChaoJun Wang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu, China
| | - Xiaocheng Jiang
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu, China
| | - Zihan Lu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Yuhua Ma
- Department of Nephrology, Traditional Chinese Medicine Hospital of Kunshan, Jiangsu, China.
| |
Collapse
|
5
|
Zeng X, Chen Y, Wang J, He M, Qiu J, Huang Y. Targeting autophagy to enhance chemotherapy and immunotherapy in oral cancer. Front Immunol 2025; 15:1535649. [PMID: 39840028 PMCID: PMC11747659 DOI: 10.3389/fimmu.2024.1535649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Oral cancer is a highly malignant disease characterized by recurrence, metastasis, and poor prognosis. Autophagy, a catabolic process induced under stress conditions, has been shown to play a dual role in oral cancer development and therapy. Recent studies have identified that autophagy activation in oral epithelial cells suppresses cancer cell survival by inhibiting key pathways such as the mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK), while activating the adenosine monophosphate-activated protein kinase (AMPK) pathway. Inducing autophagy promotes degradation of eukaryotic initiation factor 4E, thus reducing metastasis and enhancing the efficacy of chemotherapy, radiotherapy, and immunotherapy. Furthermore, autophagy induction can modulate the tumor immune microenvironment and enhance antitumor immunity. This review comprehensively summarizes the relationship between autophagy and oral cancer, focusing on its mechanisms and therapeutic potential when combined with conventional treatments. While promising, the precise mechanisms and clinical applications of autophagy inducers in oral cancer therapy remain to be elucidated, offering new directions for future research to improve treatment outcomes and reduce recurrence.
Collapse
Affiliation(s)
- Xiaoli Zeng
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi "Flagship" Oncology Department of Synergy for Chinese and Western Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yue Chen
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jing Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Miao He
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Medical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junyao Qiu
- Department of Gastroenterology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| | - Yun Huang
- Department of Otolaryngology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Li Z, Zhang Y, Lei J, Wu Y. Autophagy in oral cancer: Promises and challenges (Review). Int J Mol Med 2024; 54:116. [PMID: 39422076 PMCID: PMC11518578 DOI: 10.3892/ijmm.2024.5440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Yao Zhang
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Jianhua Lei
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yunxia Wu
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
7
|
Liu C, Zhou S, Tang W. USP14 promotes the cancer stem-like cell properties of OSCC via promoting SOX2 deubiquitination. Oral Dis 2024; 30:4255-4265. [PMID: 38376172 DOI: 10.1111/odi.14896] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVE USP14 (Ubiquitin-specific-processing protease 14) is a deubiquitinating enzyme with oncogenic effects in oral squamous cell carcinoma (OSCC). This study aims to identify new substrates of USP14 and elucidate their role in modulating cancer stem-like cells (CSCs) in OSCC. MATERIALS AND METHODS Bioinformatics prediction and docking were performed using UbiBrowser 2.0 and HDOCK, respectively. OSCC cell lines and patient-derived cells were used for experimental validation, employing co-immunoprecipitation, cycloheximide chase assays, and tumor sphere formation to evaluate the effects of USP14 on SOX2 stability, ubiquitination, and CSC phenotypes. RESULTS USP14 upregulation was associated with worse overall survival and progression-free interval in OSCC. USP14 interacted with SOX2 with its ubiquitin carboxyl-terminal hydrolase domain. USP14 knockdown impaired SOX2 stability by increasing its polyubiquitination. Ectopic overexpression of wild-type USP14, but not the hydrolase-deficient-mutant USP14C114A, enhanced SOX2 stability by reducing polyubiquitination. USP14 knockdown suppressed OSCC cell proliferation, colony formation, and tumor sphere formation in vitro and tumor growth in vivo. However, the reduction of CSC markers following USP14 knockdown was mitigated by overexpressing SOX2. These findings were verified in OSCC patient-derived CSC cells. CONCLUSION This study revealed a USP14-SOX2 axis regulating the CSC properties of OSCC.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Huang J, Li H, Yang Z, Liu R, Li Y, Hu Y, Zhao S, Gao X, Yang X, Wei J. SALL4 promotes cancer stem-like cell phenotype and radioresistance in oral squamous cell carcinomas via methyltransferase-like 3-mediated m6A modification. Cell Death Dis 2024; 15:139. [PMID: 38355684 PMCID: PMC10866932 DOI: 10.1038/s41419-024-06533-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Radioresistance imposes a great challenge in reducing tumor recurrence and improving the clinical prognosis of individuals having oral squamous cell carcinoma (OSCC). OSCC harbors a subpopulation of CD44(+) cells that exhibit cancer stem-like cell (CSC) characteristics are involved in malignant tumor phenotype and radioresistance. Nevertheless, the underlying molecular mechanisms in CD44( + )-OSCC remain unclear. The current investigation demonstrated that methyltransferase-like 3 (METTL3) is highly expressed in CD44(+) cells and promotes CSCs phenotype. Using RNA-sequencing analysis, we further showed that Spalt-like transcription factor 4 (SALL4) is involved in the maintenance of CSCs properties. Furthermore, the overexpression of SALL4 in CD44( + )-OSCC cells caused radioresistance in vitro and in vivo. In contrast, silencing SALL4 sensitized OSCC cells to radiation therapy (RT). Mechanistically, we illustrated that SALL4 is a direct downstream transcriptional regulation target of METTL3, the transcription activation of SALL4 promotes the nuclear transport of β-catenin and the expression of downstream target genes after radiation therapy, there by activates the Wnt/β-catenin pathway, effectively enhancing the CSCs phenotype and causing radioresistance. Herein, this study indicates that the METTL3/SALL4 axis promotes the CSCs phenotype and resistance to radiation in OSCC via the Wnt/β-catenin signaling pathway, and provides a potential therapeutic target to eliminate radioresistant OSCC.
Collapse
Affiliation(s)
- Junhong Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Huan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zihui Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Rong Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yahui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yating Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Shengnan Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiang Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xinjie Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jianhua Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral & Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
9
|
Ma Y, Liu Y, Meng H. Prognostic evaluation of oral squamous cell carcinoma based on pleiotrophin, urokinase plasminogen activator, and glycoprotein nonmetastatic melanoma protein B expression. Medicine (Baltimore) 2023; 102:e35634. [PMID: 37960806 PMCID: PMC10637552 DOI: 10.1097/md.0000000000035634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/22/2023] [Indexed: 11/15/2023] Open
Abstract
This study investigated the expression of pleiotrophin (PTN), urokinase plasminogen activator (uPA), and glycoprotein nonmetastatic melanoma protein B (GPNMB) in oral squamous cell carcinoma (OSCC) tissues and their correlation with prognosis. From February 2017 to January 2020, PTN, uPA, and GPNMB expression in cancer tissues and adjacent tissues of 93 patients with OSCC was determined using immunohistochemistry. The diagnostic value of the combined detection of OSCC and its relationship with clinicopathological characteristics were analyzed, as well as the prognostic potential of PTN, uPA, and GPNMB. Cancer tissues from patients with OSCC exhibited high expression of PTN, uPA, and GPNMB. The AUC for the combined detection of PTN, uPA, and GPNMB for diagnosis and prognosis was greater than that of each index alone. The rates of expression of PTN, uPA, and GPNMB were higher in the death group than in the survival group. Patients with PTN, uPA, and GPNMB expression had lower 3-year survival rates. PTN expression was a risk factor affecting the prognosis of patients with OSCC. The rate of PTN, uPA, and GPNMB expression in OSCC tissues was high, and their expression was related to clinicopathological features such as lymph node metastasis and tumor invasion depth. The combined detection of each index has a predictive value for the prognosis of patients.
Collapse
Affiliation(s)
- Yuxin Ma
- Department of Stomatology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, Hubei Province, China
| | - Yue Liu
- Department of Stomatology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, Hubei Province, China
| | - Han Meng
- Department of Stomatology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning City, Hubei Province, China
| |
Collapse
|
10
|
Morgan EL, Toni T, Viswanathan R, Robbins Y, Yang X, Cheng H, Gunti S, Huynh A, Sowers AL, Mitchell JB, Allen CT, Chen Z, Van Waes C. Inhibition of USP14 promotes TNFα-induced cell death in head and neck squamous cell carcinoma (HNSCC). Cell Death Differ 2023; 30:1382-1396. [PMID: 37055579 PMCID: PMC10154301 DOI: 10.1038/s41418-023-01144-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 04/15/2023] Open
Abstract
TNFα is a key mediator of immune, chemotherapy and radiotherapy-induced cytotoxicity, but several cancers, including head and neck squamous cell carcinomas (HNSCC), display resistance to TNFα due to activation of the canonical NFκB pro-survival pathway. However, direct targeting of this pathway is associated with significant toxicity; thus, it is vital to identify novel mechanism(s) contributing to NFκB activation and TNFα resistance in cancer cells. Here, we demonstrate that the expression of proteasome-associated deubiquitinase USP14 is significantly increased in HNSCC and correlates with worse progression free survival in Human Papillomavirus (HPV)- HNSCC. Inhibition or depletion of USP14 inhibited the proliferation and survival of HNSCC cells. Further, USP14 inhibition reduced both basal and TNFα-inducible NFκB activity, NFκB-dependent gene expression and the nuclear translocation of the NFκB subunit RELA. Mechanistically, USP14 bound to both RELA and IκBα and reduced IκBα K48-ubiquitination leading to the degradation of IκBα, a critical inhibitor of the canonical NFκB pathway. Furthermore, we demonstrated that b-AP15, an inhibitor of USP14 and UCHL5, sensitized HNSCC cells to TNFα-mediated cell death, as well as radiation-induced cell death in vitro. Finally, b-AP15 delayed tumor growth and enhanced survival, both as a monotherapy and in combination with radiation, in HNSCC tumor xenograft models in vivo, which could be significantly attenuated by TNFα depletion. These data offer new insights into the activation of NFκB signaling in HNSCC and demonstrate that small molecule inhibitors targeting the ubiquitin pathway warrant further investigation as a novel therapeutic avenue to sensitize these cancers to TNFα- and radiation-induced cytotoxicity.
Collapse
Affiliation(s)
- Ethan L Morgan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA.
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| | - Tiffany Toni
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- NIH Medical Research Scholars Program, Bethesda, MD, USA
| | - Ramya Viswanathan
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yvette Robbins
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Xinping Yang
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Hui Cheng
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Sreenivasulu Gunti
- Sinonasal and Skull Base Tumor Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Angel Huynh
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Anastasia L Sowers
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
12
|
Li M, Gao F, Li X, Gan Y, Han S, Yu X, Liu H, Li W. Stabilization of MCL-1 by E3 ligase TRAF4 confers radioresistance. Cell Death Dis 2022; 13:1053. [PMID: 36535926 PMCID: PMC9763423 DOI: 10.1038/s41419-022-05500-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The E3 ligase TNF receptor-associated factor 4 (TRAF4) is frequently overexpressed and closely related to poor prognosis in human malignancies. However, its effect on carcinogenesis and radiosensitivity in oral squamous cell carcinoma (OSCC) remains unclear. The present study found that TRAF4 was significantly upregulated in primary and relapsed OSCC tumor tissues. Depletion of TRAF4 markedly improved the sensitivity of OSCC cells to irradiation (IR) treatment, showing that tumor cell proliferation, colony formation and xenograft tumor growth were reduced. Mechanistically, IR promoted the interaction between TRAF4 and Akt to induce Akt K63-mediated ubiquitination and activation. TRAF4 knockout inhibited the phosphorylation of Akt and upregulated GSK3β activity, resulting in increased myeloid cell leukemia-1 (MCL-1) S159 phosphorylation, which disrupted the interaction of MCL-1 with Josephin domain containing 1 (JOSD1), and ultimately induced MCL-1 ubiquitination and degradation. Moreover, TRAF4 was positively correlated with MCL-1 in primary and in radiotherapy-treated, relapsed tumor tissues. An MCL-1 inhibitor overcame radioresistance in vitro and in vivo. Altogether, the present findings suggest that TRAF4 confers radioresistance in OSCC by stabilizing MCL-1 through Akt signaling, and that targeting TRAF4 may be a promising therapeutic strategy to overcome radioresistance in OSCC.
Collapse
Affiliation(s)
- Ming Li
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,Changsha Stomatological Hospital, Changsha, Hunan 410004 People’s Republic of China ,grid.488482.a0000 0004 1765 5169School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208 People’s Republic of China ,grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Feng Gao
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.431010.7Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Xiaoying Li
- grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Yu Gan
- grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| | - Shuangze Han
- grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.33199.310000 0004 0368 7223Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022 People’s Republic of China
| | - Xinfang Yu
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.39382.330000 0001 2160 926XDepartment of Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| | - Haidan Liu
- grid.452708.c0000 0004 1803 0208Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People’s Republic of China ,grid.452708.c0000 0004 1803 0208Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, People’s Republic of China
| | - Wei Li
- grid.431010.7Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China ,grid.431010.7Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013 People’s Republic of China
| |
Collapse
|
13
|
Visintin R, Ray SK. Intersections of Ubiquitin-Proteosome System and Autophagy in Promoting Growth of Glioblastoma Multiforme: Challenges and Opportunities. Cells 2022; 11:cells11244063. [PMID: 36552827 PMCID: PMC9776575 DOI: 10.3390/cells11244063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor notorious for its propensity to recur after the standard treatments of surgical resection, ionizing radiation (IR), and temozolomide (TMZ). Combined with the acquired resistance to standard treatments and recurrence, GBM is an especially deadly malignancy with hardly any worthwhile treatment options. The treatment resistance of GBM is influenced, in large part, by the contributions from two main degradative pathways in eukaryotic cells: ubiquitin-proteasome system (UPS) and autophagy. These two systems influence GBM cell survival by removing and recycling cellular components that have been damaged by treatments, as well as by modulating metabolism and selective degradation of components of cell survival or cell death pathways. There has recently been a large amount of interest in potential cancer therapies involving modulation of UPS or autophagy pathways. There is significant crosstalk between the two systems that pose therapeutic challenges, including utilization of ubiquitin signaling, the degradation of components of one system by the other, and compensatory activation of autophagy in the case of proteasome inhibition for GBM cell survival and proliferation. There are several important regulatory nodes which have functions affecting both systems. There are various molecular components at the intersections of UPS and autophagy pathways that pose challenges but also show some new therapeutic opportunities for GBM. This review article aims to provide an overview of the recent advancements in research regarding the intersections of UPS and autophagy with relevance to finding novel GBM treatment opportunities, especially for combating GBM treatment resistance.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3420; Fax: +1-803-216-3428
| |
Collapse
|
14
|
Kyrodimos E, Chrysovergis A, Mastronikolis N, Tsiambas E, Manaios L, Roukas D, Pantos P, Ragos V, Peschos D, Papanikolaou V. Impact of Ubiquitination Signaling Pathway Modifications on Oral Carcinoma. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:1-6. [PMID: 35399999 DOI: 10.21873/cdp.10069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Among intra-cellular homeostasis mechanisms, ubiquitination plays a critical role in protein metabolism regulation by degrading proteins via activating a broad spectrum of ubiquitin chains. In fact, ubiquitination and sumoylation signaling pathways are characterized by increased complexity regarding the molecules and their interactions. The Ubiquitin-Proteasome System (Ub-PS) recognizes and targets a broad spectrum of protein substrates. Ubiquitin conjugation modifies each substrate protein determining its biochemical fate (degradation). A major functional activity of Ub-PS is autophagy mechanism regulation. Interestingly, Ub-PS promotes all stages of bulk autophagy (initiation, execution, and termination). Autophagy is a crucial catabolic process that provides protein degradation and for this reason the interaction with Ub-PS is crucial. Furthermore, ubiquitination controls and regulates specific types of protein targets. Ub-PS is also involved in oxidative cellular stress and DNA damage response. Additionally, the functional role of Ub-PS in ribosome machinery regulation seems to be crucial. Concerning carcinogenesis, Ub-PS is involved in malignant disease development and progression by negatively affecting the corresponding TGF-B-, MEEK/MAPK/ERK-JNK- dependent signaling pathways. In the current review article, we describe the role of Ub-PS biochemical modifications and alterations in oral squamous cell carcinoma (OSCC).
Collapse
Affiliation(s)
- Efthimios Kyrodimos
- 1st ENT Department, Hippocration Hospital, National and Kapodistrian University, Athens, Greece
| | - Aristeidis Chrysovergis
- 1st ENT Department, Hippocration Hospital, National and Kapodistrian University, Athens, Greece
| | | | - Evangelos Tsiambas
- Department of Cytology, Molecular Unit, 417 Veterans Army Hospital (NIMTS), Athens, Greece.,Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | | | - Dimitrios Roukas
- Department of Psychiatry, 417 Veterans Army Hospital (NIMTS), Athens, Greece
| | - Pavlos Pantos
- 1st ENT Department, Hippocration Hospital, National and Kapodistrian University, Athens, Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Medical School, University of Ioannina, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Vasileios Papanikolaou
- 1st ENT Department, Hippocration Hospital, National and Kapodistrian University, Athens, Greece
| |
Collapse
|
15
|
Huang C, Cao H, Qin J, Xu L, Hu F, Gu Y, Dou C, Zhang S. Ubiquitin-Specific Protease 14 (USP14) Aggravates Inflammatory Response and Apoptosis of Lung Epithelial Cells in Pneumonia by Modulating Poly (ADP-Ribose) Polymerase-1 (PARP-1). Inflammation 2021; 44:2054-2064. [PMID: 34085162 DOI: 10.1007/s10753-021-01482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/01/2022]
Abstract
Pneumonia is one of the common respiratory diseases in pediatrics. Ubiquitin-specific protease 14 (USP14) contributes the progress of inflammation-associated diseases. Poly (ADP-ribose) polymerase-1 (PARP-1) involves in the signal transduction of inflammatory pulmonary disease. This study aims to identify the precise function and elaborate the regulatory mechanism of USP14/PARP-1 in the injury of lung epithelial cells. Human lung epithelial BEAS-2B cells received lipopolysaccharide (LPS) (0, 1, 5, and 10 mg/L) treatment for 16 h, establishing in vitro pneumonia model. USP14 protein and mRNA levels in LPS-injured lung epithelial cells were separately assessed using western blot and RT-qPCR analysis. Lung epithelial cells were transfected with siRNA-USP14 or OV-USP14 to perform gain- or loss-of-function experiments. CCK-8 assay was applied to assess cell viability. TUNEL staining and western blot analysis were adopted to determine cell apoptosis. In addition, release of inflammatory cytokines and nitric oxide (NO) was detected using the commercial kits. Meanwhile, PARP-1 protein levels in LPS-injured lung epithelial cells were detected by performing western blot assay. Moreover, Co-IP assay was utilized for detection of the interaction between USP14 and PARP-1. The regulatory effects of PARP-1 on USP14 function in LPS-injured lung epithelial cells were also investigated. LPS dose-dependently reduced viability of lung epithelial cells and elevated USP14 protein. USP14 combined with PARP-1 and increased PARP-1 expression. USP14 elevation exacerbated inflammatory injury and boosted the apoptosis of LPS-injured lung epithelial cells, which was reversed upon downregulation of PARP-1. To sum up, USP14 promotion exacerbated inflammatory injury and boosted the apoptosis of LPS-injured lung epithelial cells by upregulating PARP-1 expression. These findings may represent a therapeutic target for clinical intervention in pneumonia.
Collapse
Affiliation(s)
- Chengcheng Huang
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China
| | - Hui Cao
- Department of Obstetrics and Gynecology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Jie Qin
- Department of Pediatrics, Yancheng No.1 Peoples' Hospital, Yancheng, Jiangsu, China
| | - Lei Xu
- Department of Pediatrics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Fang Hu
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China
| | - Yong Gu
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China
| | - Changsheng Dou
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China.
| | - Shifa Zhang
- Department of Pediatrics, Yijishan Hospital, Wannan Medical College, No. 2, West Road of Zheshan, Jinghu District, Anhui, 241001, Wuhu, China.
| |
Collapse
|