1
|
Arakawa H, Matsushita K, Ishiguro N. Advanced in vitro evaluation of drug-induced kidney injury using microphysiological systems in drug discovery and development. Drug Metab Pharmacokinet 2025; 61:101056. [PMID: 40088574 DOI: 10.1016/j.dmpk.2025.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/17/2025]
Abstract
Drug-induced kidney injury (DIKI) is a major cause of acute kidney injury (AKI). Given concerns about animal welfare and the need for more accurate prediction of human events, there is an urgent need to develop an in vitro evaluation method for DIKI using human cells. Renal proximal tubular epithelial cells (RPTECs) are the main targets of DIKI in drug discovery and development because of their abundant expression of drug transporters that contribute to renal-specific drug distribution. In general, physiological kidney function is significantly reduced in primary cell monolayer culture systems. However, with recent advances in cell engineering and regenerative medicine, human kidney-derived cell culture systems, with higher kidney function compared to conventional systems, have been established. For example, three-dimensional cultured RPTECs show enhanced expression of drug transporters and higher predictive performance than monolayer culture systems. The use of organs-on-a-chip with liver and kidney co-cultures also allows the detection of drug metabolite-induced nephrotoxicity. Kidney organoids differentiated from induced pluripotent stem cells (iPS) have also been established. In this review, we introduce a recently established renal cell culture system that includes a microphysiological system, and review the in vitro methods used to evaluate DIKI in RPTECs.
Collapse
Affiliation(s)
- Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| | - Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., Kobe, Japan
| |
Collapse
|
2
|
Naraoka H, Iguchi T, Harada K, Usui T, Suwa Y, Ando M, Sakura T, Ohkubo T. Opportunities for microphysiological systems from the view of Japanese industries. Drug Metab Pharmacokinet 2025; 60:101034. [PMID: 39847981 DOI: 10.1016/j.dmpk.2024.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 01/25/2025]
Abstract
Regulatory authorities and pharmaceutical companies in Europe and the United States have paid attention to microphysiological systems (MPS), and various consortia and academic societies have been established. They are actively working toward their implementation under individual company or regulatory acceptance. In Japan, some AMED projects, academic societies, and consortia have also been established and activities have begun. This article focuses on domestic and international trends regarding MPS, especially on Japanese industries related to MPS, and describes the current status, challenges, and prospects of Japanese pharmaceutical companies, CROs, Food company, and MPS-related product development companies including the results of a survey conducted by CSAHi-MPS, an industrial MPS consortium in Japan.
Collapse
Affiliation(s)
- Hitoshi Naraoka
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| | - Takuma Iguchi
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, 134-8630, Japan
| | - Kosuke Harada
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Takeda Pharmaceutical Company Limited, 26-1, Muraoka Higashi 2-chome, Fujisawa, Kanagawa, 251 8555, Japan
| | - Toru Usui
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka, 554-0022, Japan
| | - Yoshiaki Suwa
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shin Nippon Biomedical Laboratories, Ltd., 2438, Miyanoura, Kagoshima, 891-1394, Japan
| | - Masamitsu Ando
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Nikon Corporation, 1-5-20, Nishioi, Shinagawa-ku, Tokyo, 140-8601, Japan
| | - Takeshi Sakura
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shimadzu Corporation, [3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Tomoki Ohkubo
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), MPS team, Japan; Shimadzu Corporation, [3-9-4, Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| |
Collapse
|
3
|
Somova M, Simm S, Ehrhardt J, Schoon J, Burchardt M, Pinto PC. SARS-CoV-2 Spike Protein Amplifies the Immunogenicity of Healthy Renal Epithelium in the Presence of Renal Cell Carcinoma. Cells 2024; 13:2038. [PMID: 39768130 PMCID: PMC11674446 DOI: 10.3390/cells13242038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer, known for its immune evasion and resistance to chemotherapy. Evidence indicates that the SARS-CoV-2 virus may worsen outcomes for RCC patients, as well as patients with diminished renal function. Evidence suggests that the SARS-CoV-2 virus may exacerbate outcomes in RCC patients and those with impaired renal function. This study explored the unidirectional effects of RCC cells and the SARS-CoV-2 spike protein (S protein) on human renal proximal tubule epithelial cells (RPTECs) using a microphysiological approach. We co-cultured RCC cells (Caki-1) with RPTEC and exposed them to the SARS-CoV-2 S protein under dynamic 3D conditions. The impact on metabolic activity, gene expression, immune secretions, and S protein internalization was evaluated. The SARS-CoV-2 S protein was internalized by RPTEC but poorly interacted with RCC cells. RPTECs exposed to RCC cells and the S protein exhibited upregulated expression of genes involved in immunogenic pathways, particularly those related to antigen processing and presentation via the major histocompatibility complex I (MHCI). Additionally, increased TNF-α secretion suggested a pro-inflammatory response. Metabolic shifts toward glycolysis were observed in RCC co-culture, while the presence of the S protein led to minor changes. The presence of RCC cells amplified the immune-modulatory effects of the SARS-CoV-2 S protein on the renal epithelium, potentially exacerbating renal inflammation and fostering tumor-supportive conditions. These findings suggest that COVID-19 infections can impact renal function in the presence of kidney cancer.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/virology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Kidney Neoplasms/immunology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Kidney Neoplasms/virology
- SARS-CoV-2/immunology
- COVID-19/immunology
- COVID-19/virology
- COVID-19/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/virology
- Epithelial Cells/immunology
- Kidney Tubules, Proximal/immunology
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Cell Line, Tumor
- Epithelium/metabolism
- Epithelium/virology
- Epithelium/pathology
- Coculture Techniques
- Kidney/pathology
- Kidney/virology
- Kidney/immunology
- Kidney/metabolism
Collapse
Affiliation(s)
- Maryna Somova
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475 Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Fleischmannstraße 8, 17475 Greifswald, Germany
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Friedrich-Streib-Str. 2, 96450 Coburg, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Fleischmannstraße 8, 17475 Greifswald, Germany
| | - Janosch Schoon
- Center for Orthopedics, Trauma Surgery and Rehabilitation Medicine, University Medicine Greifswald, Fleischmannstraße 8, 17475 Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475 Greifswald, Germany
| | - Pedro Caetano Pinto
- Department of Urology, University Medicine Greifswald, DZ7 J05.15, Fleischmannstraße 8, 17475 Greifswald, Germany
| |
Collapse
|
4
|
Zhang H, Wang Y, Wang R, Zhang X, Chen H. TRPML1 agonist ML-SA5 mitigates uranium-induced nephrotoxicity via promoting lysosomal exocytosis. Biomed Pharmacother 2024; 181:117728. [PMID: 39647321 DOI: 10.1016/j.biopha.2024.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Uranium (U) released from U mining and spent nuclear fuel reprocessing in the nuclear industry, nuclear accidents and military activities as a primary environmental pollutant (e.g., drinking water pollution) is a threat to human health. Kidney is one of the main target organs for U accumulation, leading to nephrotoxicity mainly associated with the injuries in proximal tubular epithelial cells (PTECs). Transient receptor potential mucolipin 1 (TRPML1) is a novel therapeutic target for nephrotoxicity caused by acute or chronic U poisoning. We herein investigate the therapeutic efficacy of ML-SA5, a small molecule agonist of TRPML1, in U-induced nephrotoxicity in acute U intoxicated mice. We demonstrate that delayed treatment with ML-SA5 enhances U clearance from the kidneys via urine excretion by activating lysosomal exocytosis, and thereby attenuates U-induced kidney dysfunction and cell death/apoptosis of renal PTECs in acute U intoxicated mice. In addition, ML-SA5 promotes the nuclear translocation of transcription factor EB (TFEB) in renal PTECs in acute U intoxicated mice. Mechanistically, ML-SA5 triggers the TRPML1-mediated lysosomal calcium release and consequently induces TFEB activation in U-loaded renal PTECs-derived HK-2 cells. Moreover, knockdown of TRPML1 or TFEB abolishes the effects of ML-SA5 on the removal of intracellular U and reduction of the cellular injury/death in U-loaded HK-2 cells. Our findings indicate that pharmacological activation of TRPML1 is a promising therapeutic approach for the delayed treatment of U-induced nephrotoxicity via the activation of the positive feedback loop of TRPML1 and TFEB and consequent the induction of lysosomal exocytosis.
Collapse
Affiliation(s)
- Hongjing Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Yifei Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Ruiyun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Xuxia Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Honghong Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China.
| |
Collapse
|
5
|
Zhai Y, Chavez JA, D'Aquino KE, Meng R, Nawrocki AR, Pocai A, Wang L, Ma LJ. Kynurenine 3-monooxygenase limits de novo NAD + synthesis through dietary tryptophan in renal proximal tubule epithelial cell models. Am J Physiol Cell Physiol 2024; 326:C1423-C1436. [PMID: 38497113 DOI: 10.1152/ajpcell.00445.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a pivotal coenzyme, essential for cellular reactions, metabolism, and mitochondrial function. Depletion of kidney NAD+ levels and reduced de novo NAD+ synthesis through the tryptophan-kynurenine pathway are linked to acute kidney injury (AKI), whereas augmenting NAD+ shows promise in reducing AKI. We investigated de novo NAD+ biosynthesis using in vitro, ex vivo, and in vivo models to understand its role in AKI. Two-dimensional (2-D) cultures of human primary renal proximal tubule epithelial cells (RPTECs) and HK-2 cells showed limited de novo NAD+ synthesis, likely due to low pathway enzyme gene expression. Using three-dimensional (3-D) spheroid culture model improved the expression of tubular-specific markers and enzymes involved in de novo NAD+ synthesis. However, de novo NAD+ synthesis remained elusive in the 3-D spheroid culture, regardless of injury conditions. Further investigation revealed that 3-D cultured cells could not metabolize tryptophan (Trp) beyond kynurenine (KYN). Intriguingly, supplementation of 3-hydroxyanthranilic acid into RPTEC spheroids was readily incorporated into NAD+. In a human precision-cut kidney slice (PCKS) ex vivo model, de novo NAD+ synthesis was limited due to substantially downregulated kynurenine 3-monooxygenase (KMO), which is responsible for KYN to 3-hydroxykynurenine conversion. KMO overexpression in RPTEC 3-D spheroids successfully reinstated de novo NAD+ synthesis from Trp. In addition, in vivo study demonstrated that de novo NAD+ synthesis is intact in the kidney of the healthy adult mice. Our findings highlight disrupted tryptophan-kynurenine NAD+ synthesis in in vitro cellular models and an ex vivo kidney model, primarily attributed to KMO downregulation.NEW & NOTEWORTHY Nicotinamide adenine dinucleotide (NAD+) is essential in regulating mitochondrial function. Reduced NAD+ synthesis through the de novo pathway is associated with acute kidney injury (AKI). Our study reveals a disruption in de novo NAD+ synthesis in proximal tubular models, but not in vivo, attributed to downregulation of enzyme kynurenine 3-monooxygenase (KMO). These findings highlight a crucial role of KMO in governing de novo NAD+ biosynthesis within the kidney, shedding light on potential AKI interventions.
Collapse
Affiliation(s)
- Yougang Zhai
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Jose A Chavez
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Katharine E D'Aquino
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Rong Meng
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Andrea R Nawrocki
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Alessandro Pocai
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Lifeng Wang
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| | - Li-Jun Ma
- CVMR-PH Discovery, Johnson & Johnson Innovative Medicine Research & Development, Spring House, Pennsylvania, United States
| |
Collapse
|
6
|
Balkrishna A, Sharma S, Gohel V, Kumari A, Rawat M, Maity M, Sinha S, Dev R, Varshney A. Renogrit attenuates Vancomycin-induced nephrotoxicity in human renal spheroids and in Sprague-Dawley rats by regulating kidney injury biomarkers and creatinine/urea clearance. PLoS One 2023; 18:e0293605. [PMID: 37939153 PMCID: PMC10631690 DOI: 10.1371/journal.pone.0293605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Vancomycin, is widely used against methicillin-resistant bacterial infections. However, Vancomycin accumulation causes nephrotoxicity which leads to an impairment in the filtration mechanisms of kidney. Traditional herbal medicines hold potential for treatment of drug-induced nephrotoxicity. Herein, we investigated protective properties of plant-based medicine Renogrit against Vancomycin-induced kidney injury. Phytometabolite analysis of Renogrit was performed by UHPLC. Spheroids formed from human proximal tubular cell (HK-2) were used for in vitro evaluation of Vancomycin-induced alterations in cell viability, P-gp functionality, NAG, KIM-1 levels, and mRNA expression of NGAL and MMP-7. The in vivo efficacy of Renogrit against Vancomycin-induced nephrotoxicity was further evaluated in Sprague-Dawley (SD) rats by measurement of BUN, serum creatinine, and their respective clearances. Moreover, eGFR, kidney-to-body weight ratio, GSH/GSSG ratio, KIM-1, NAG levels and mRNA expression of KIM-1 and osteopontin were also analyzed. Changes in histopathology of kidney and hematological parameters were also observed. Renogrit treatment led to an increase in cell viability, normalization of P-gp functionality, decrease in levels of NAG, KIM-1, and reduction in mRNA expression of NGAL and MMP-7. In Vancomycin-challenged SD rats, Renogrit treatment normalized altered kidney functions, histological, and hematological parameters. Our findings revealed that Renogrit holds a clinico-therapeutic potential for alleviating Vancomycin-associated nephrotoxicity.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Patanjali Yog Peeth (UK) Trust, Glasgow, United Kingdom
| | - Sonam Sharma
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Vivek Gohel
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Ankita Kumari
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Malini Rawat
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Madhulina Maity
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Sandeep Sinha
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Rishabh Dev
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
| | - Anurag Varshney
- Drug Discovery and Development Division, Patanjali Research Foundation, Haridwar, Uttarakhand, India
- Department of Allied and Applied Sciences, University of Patanjali, Haridwar, Uttarakhand, India
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
7
|
Ahmad M, Abramovich I, Agranovich B, Nemirovski A, Gottlieb E, Hinden L, Tam J. Kidney Proximal Tubule GLUT2-More than Meets the Eye. Cells 2022; 12:cells12010094. [PMID: 36611887 PMCID: PMC9818791 DOI: 10.3390/cells12010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Tubulopathy plays a central role in the pathophysiology of diabetic kidney disease (DKD). Under diabetic conditions, the kidney proximal tubule cells (KPTCs) are exposed to an extensive amount of nutrients, most notably glucose; these nutrients deteriorate KPTCs function and promote the development and progression of DKD. Recently, the facilitative glucose transporter 2 (GLUT2) in KPTCs has emerged as a central regulator in the pathogenesis of DKD. This has been demonstrated by identifying its specific role in enhancing glucose reabsorption and glucotoxicity, and by deciphering its effect in regulating the expression of the sodium-glucose transporter 2 (SGLT2) in KPTCs. Moreover, reduction/deletion of KPTC-GLUT2 has been recently found to ameliorate DKD, raising the plausible idea of considering it as a therapeutic target against DKD. However, the underlying molecular mechanisms by which GLUT2 exerts its deleterious effects in KPTCs remain vague. Herein, we review the current findings on the proximal tubule GLUT2 biology and function under physiologic conditions, and its involvement in the pathophysiology of DKD. Furthermore, we shed new light on its cellular regulation during diabetic conditions.
Collapse
Affiliation(s)
- Majdoleen Ahmad
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Bella Agranovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| |
Collapse
|
8
|
Hotait ZS, Lo Cascio JN, Choos END, Shepard BD. The sugar daddy: the role of the renal proximal tubule in glucose homeostasis. Am J Physiol Cell Physiol 2022; 323:C791-C803. [PMID: 35912988 PMCID: PMC9448277 DOI: 10.1152/ajpcell.00225.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
Abstract
Renal blood flow represents >20% of total cardiac output and with this comes the great responsibility of maintaining homeostasis through the intricate regulation of solute handling. Through the processes of filtration, reabsorption, and secretion, the kidneys ensure that solutes and other small molecules are either returned to circulation, catabolized within renal epithelial cells, or excreted through the process of urination. Although this occurs throughout the renal nephron, one segment is tasked with the bulk of solute reabsorption-the proximal tubule. Among others, the renal proximal tubule is entirely responsible for the reabsorption of glucose, a critical source of energy that fuels the body. In addition, it is the only other site of gluconeogenesis outside of the liver. When these processes go awry, pathophysiological conditions such as diabetes and acidosis result. In this review, we highlight the recent advances made in understanding these processes that occur within the renal proximal tubule. We focus on the physiological mechanisms at play regarding glucose reabsorption and glucose metabolism, emphasize the conditions that occur under diseased states, and explore the emerging class of therapeutics that are responsible for restoring homeostasis.
Collapse
Affiliation(s)
- Zahraa S Hotait
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Julia N Lo Cascio
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Elijah N D Choos
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
9
|
Bejoy J, Qian ES, Woodard LE. Tissue Culture Models of AKI: From Tubule Cells to Human Kidney Organoids. J Am Soc Nephrol 2022; 33:487-501. [PMID: 35031569 PMCID: PMC8975068 DOI: 10.1681/asn.2021050693] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
AKI affects approximately 13.3 million people around the world each year, causing CKD and/or mortality. The mammalian kidney cannot generate new nephrons after postnatal renal damage and regenerative therapies for AKI are not available. Human kidney tissue culture systems can complement animal models of AKI and/or address some of their limitations. Donor-derived somatic cells, such as renal tubule epithelial cells or cell lines (RPTEC/hTERT, ciPTEC, HK-2, Nki-2, and CIHP-1), have been used for decades to permit drug toxicity screening and studies into potential AKI mechanisms. However, tubule cell lines do not fully recapitulate tubular epithelial cell properties in situ when grown under classic tissue culture conditions. Improving tissue culture models of AKI would increase our understanding of the mechanisms, leading to new therapeutics. Human pluripotent stem cells (hPSCs) can be differentiated into kidney organoids and various renal cell types. Injury to human kidney organoids results in renal cell-type crosstalk and upregulation of kidney injury biomarkers that are difficult to induce in primary tubule cell cultures. However, current protocols produce kidney organoids that are not mature and contain off-target cell types. Promising bioengineering techniques, such as bioprinting and "kidney-on-a-chip" methods, as applied to kidney nephrotoxicity modeling advantages and limitations are discussed. This review explores the mechanisms and detection of AKI in tissue culture, with an emphasis on bioengineered approaches such as human kidney organoid models.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eddie S. Qian
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren E. Woodard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
10
|
Luo X, She J, Xu T, Zhou Y, Xu C, Jiang J, Li T, Liu H, Shen H, Yin B, Dai B. Establishment and characterization of organoids from a patient with adenomyoepithelioma of the breast. Bioengineered 2021; 12:11578-11585. [PMID: 34874791 PMCID: PMC8810105 DOI: 10.1080/21655979.2021.1974809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Adenomyoepithelioma (AME) of the breast is a rare tumor that is composed of proliferating epithelial and myoepithelial cells. The pathogenesis of AME remains unclear, and no breast cancer cells have been identified in such tumor tissues. In this study, we established patient-derived breast cancer organoids from the surgical tumor samples of an elderly Chinese woman with an AME of the breast. Our findings confirmed the successful establishment of organoids from an AME of the breast of this patient. A short tandem repeat analysis revealed that the DNA signature of the AME of the breast organoids matched the DNA signature of the original tumor specimen. Moreover, diameter assay confirmed that the organoids from the breast AME showed sensitivity to paclitaxel and doxorubicin treatments, which was similar to, but lesser than that of primary culture cells. In conclusion, we established an efficient 3-dimensional breast cancer organoid culture platform from an AME of the breast. This platform can be effectively used for exploring clinicopathological and genomic characteristics of AME of the breast to identify possible treatments and increase awareness about this disease entity.
Collapse
Affiliation(s)
- XiangRong Luo
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - JianTao She
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - Tao Xu
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - Yuan Zhou
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - ChuanBo Xu
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - JianPing Jiang
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - TianGang Li
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - Huajiang Liu
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - Hui Shen
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - Bolong Yin
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| | - Bin Dai
- Department of Breast and Thoracic Surgery, The Central Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|