1
|
Singh V, Ubaid S, Kashif M, Singh T, Singh G, Pahwa R, Singh A. Role of inflammasomes in cancer immunity: mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:109. [PMID: 40155968 PMCID: PMC11954315 DOI: 10.1186/s13046-025-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025] Open
Abstract
Inflammasomes are multi-protein complexes that detect pathogenic and damage-associated molecular patterns, activating caspase-1, pyroptosis, and the maturation of pro-inflammatory cytokines such as IL-1β and IL-18Within the tumor microenvironment, inflammasomes like NLRP3 play critical roles in cancer initiation, promotion, and progression. Their activation influences the crosstalk between innate and adaptive immunity by modulating immune cell recruitment, cytokine secretion, and T-cell differentiation. While inflammasomes can contribute to tumor growth and metastasis through chronic inflammation, their components also present novel therapeutic targets. Several inhibitors targeting inflammasome components- such as sensor proteins (e.g., NLRP3, AIM2), adaptor proteins (e.g., ASC), caspase-1, and downstream cytokines- are being explored to modulate inflammasome activity. These therapeutic strategies aim to modulate inflammasome activity to enhance anti-tumor immune responses and improve clinical outcomes. Understanding the role of inflammasomes in cancer immunity is crucial for developing interventions that effectively bridge innate and adaptive immune responses for better therapeutic outcomes.
Collapse
Affiliation(s)
- Vivek Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saba Ubaid
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Mohammad Kashif
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tanvi Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Gaurav Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Roma Pahwa
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Li Q, Wang R, Han S, Shi N, Yang J, Ping C, Chai L, Wang R, Zheng B, Ren G, Zhang S. Design and Antimalarial Evaluation of Polydopamine-Modified Methyl Artelinate Nanoparticles. Mol Pharm 2024; 21:5551-5564. [PMID: 39378411 DOI: 10.1021/acs.molpharmaceut.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Targeted nanodrug delivery systems are highly anticipated for the treatment of malaria. It is known that Plasmodium can induce new permeability pathways (NPPs) on the membrane of infected red blood cells (iRBCs) for their nutrient uptake. The NPPs also enable the uptake of nanoparticles (NPs) smaller than 80 nm. Additionally, Plasmodium maintains a stable, slightly acidic, and reductive internal environment with higher glutathione (GSH) levels. Based on this knowledge, methyl artelinate (MA, a prodrug-like derivative of dihydroartemisinin) nanoparticles (MA-PCL-NPs) were developed using poly(ethylene glycol)-b-poly(ε-caprolactone) (mPEG-PCL) by a thin-film dispersion method and were further coated with polydopamine (PDA) to obtain MA-PCL@PDA-NPs with a particle size of ∼30 nm. The biomaterial PDA can be degraded in slightly acidic and reductive environments, thereby serving as triggers for drug release. MA could generate reactive oxygen species and decrease GSH levels, consequently causing parasite damage. The in vitro release experiment results indicated that the cumulative release percentage of MA from MA-PCL@PDA-NPs was considerably higher in phosphate buffer with 10 mM GSH at pH 5.5 (88.10%) than in phosphate buffer without GSH at pH 7.4 (16.98%). The green fluorescence within iRBCs of coumarin 6, the probe of NPs (C6-PCL@PDA-NPs), could be reduced significantly after adding the NPP inhibitor furosemide (p < 0.001), which demonstrated that MA-PCL@PDA-NPs could be ingested into iRBCs through NPPs. In vivo antimalarial pharmacodynamics in Plasmodium berghei K173-bearing mice showed that the inhibition ratio of MA-PCL@PDA-NPs (93.96%) was significantly higher than that of commercial artesunate injection (AS-Inj, 63.33%). The above results showed that the developed MA-PCL@PDA-NPs possessed pH-GSH dual-responsive drug release characteristics and targeting efficacy for iRBCs, leading to higher antimalarial efficacy against Plasmodium.
Collapse
Affiliation(s)
- Qingxia Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqi Han
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Nan Shi
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Jiaqi Yang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Canqi Ping
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Liqing Chai
- Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Zheng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan 030001, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
3
|
Schwarzer E, Skorokhod O. Post-Translational Modifications of Proteins of Malaria Parasites during the Life Cycle. Int J Mol Sci 2024; 25:6145. [PMID: 38892332 PMCID: PMC11173270 DOI: 10.3390/ijms25116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Post-translational modifications (PTMs) are essential for regulating protein functions, influencing various fundamental processes in eukaryotes. These include, but are not limited to, cell signaling, protein trafficking, the epigenetic control of gene expression, and control of the cell cycle, as well as cell proliferation, differentiation, and interactions between cells. In this review, we discuss protein PTMs that play a key role in the malaria parasite biology and its pathogenesis. Phosphorylation, acetylation, methylation, lipidation and lipoxidation, glycosylation, ubiquitination and sumoylation, nitrosylation and glutathionylation, all of which occur in malarial parasites, are reviewed. We provide information regarding the biological significance of these modifications along all phases of the complex life cycle of Plasmodium spp. Importantly, not only the parasite, but also the host and vector protein PTMs are often crucial for parasite growth and development. In addition to metabolic regulations, protein PTMs can result in epitopes that are able to elicit both innate and adaptive immune responses of the host or vector. We discuss some existing and prospective results from antimalarial drug discovery trials that target various PTM-related processes in the parasite or host.
Collapse
Affiliation(s)
- Evelin Schwarzer
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126 Turin, Italy;
| | - Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Turin, Italy
| |
Collapse
|
4
|
Glennon EKK, Tongogara T, Primavera VI, Reeder SM, Wei L, Kaushansky A. Elucidating Spatially-Resolved Changes in Host Signaling During Plasmodium Liver-Stage Infection. Front Cell Infect Microbiol 2022; 11:804186. [PMID: 35111697 PMCID: PMC8801743 DOI: 10.3389/fcimb.2021.804186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022] Open
Abstract
Upon transmission to the human host, Plasmodium sporozoites exit the skin, are taken up by the blood stream, and then travel to the liver where they infect and significantly modify a single hepatocyte. Low infection rates within the liver have made proteomic studies of infected hepatocytes challenging, particularly in vivo, and existing studies have been largely unable to consider how protein and phosphoprotein differences are altered at different spatial locations within the heterogeneous liver. Using digital spatial profiling, we characterized changes in host signaling during Plasmodium yoelii infection in vivo without disrupting the liver tissue. Moreover, we measured alterations in protein expression around infected hepatocytes and identified a subset of CD163+ Kupffer cells that migrate towards infected cells during infection. These data offer the first insight into the heterogeneous microenvironment that surrounds the infected hepatocyte and provide insights into how the parasite may alter its milieu to influence its survival and modulate immunity.
Collapse
Affiliation(s)
- Elizabeth K. K. Glennon
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Tinotenda Tongogara
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Grinnell College, Grinnell, IA, United States
| | - Veronica I. Primavera
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Sophia M. Reeder
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Ling Wei
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
| | - Alexis Kaushansky
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Brotman Baty Institute for Precision Medicine, Seattle, WA, United States
- *Correspondence: Alexis Kaushansky,
| |
Collapse
|