1
|
Saxena S, Kabra M, Abdeen A, Sinha D, Zhu M, Xie R, Hanstad G, Zepeda MAF, Gamm DM, Pattnaik BR, Gong S, Saha K. Genome-Wide CRISPR Screening Identifies Cellular Factors Controlling Nonviral Genome Editing Efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642795. [PMID: 40161775 PMCID: PMC11952466 DOI: 10.1101/2025.03.12.642795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
After administering genome editors, their efficiency is limited by a multi-step process involving cellular uptake, trafficking, and nuclear import of the vector and its payload. These processes vary widely across cell types and differ depending on the nature and structure of the vector, whether it is a lipid nanoparticle or a different synthetic material. We developed a novel genome-wide CRISPR screening strategy to better understand these limitations within human cells to identify genes modulating cellular uptake, payload delivery, and gene editing efficiency. Our screen interrogates the cellular processes controlling genome editing by Cas-based nuclease and base editing strategies in human cells. We designed a genome-wide screen targeting 19,114 genes in HEK293 cells, and we identified six genes whose knockout increased nonviral editing efficiency in human cells by up to five-fold. Further validation through arrayed knockouts of the top hits from our screen boosted the editing efficiency from 5% to 50% when Cas9 was delivered via lipid-based nanoparticles. By designing the guides to target the screen library cassette, we could accurately track the library sgRNA identity and the editing outcome on the same amplicon via short-read sequencing, enabling the identification of rare outcomes via 'computationally' sorting edited from unedited cells within a heterogenous pool of >200M cells. In patient-derived human retinal pigment epithelium cells derived from pluripotent stem cells, BET1L, GJB2, and MS4A13 gene knockouts increased targeted genome editing by over five-fold. We anticipate that this high-throughput screening approach will facilitate the systematic engineering of novel nonviral genome editing delivery methods, where the identified novel gene hits can be further used to increase editing efficiency for other therapeutically relevant cell types.
Collapse
|
2
|
Sun L, Liu Z, Wu Z, Wu Z, Qiu B, Liu S, Hu J, Yin X. PSMD11 promotes the proliferation of hepatocellular carcinoma by regulating the ubiquitination degradation of CDK4. Cell Signal 2024; 121:111279. [PMID: 38944255 DOI: 10.1016/j.cellsig.2024.111279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND The 26S proteasome non-ATPase regulatory subunit 11 is a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins, and PSMD11 plays a key role in the regulation of embryonic stem cell proteasome activity. However, the role of PSMD11 in hepatocellular carcinoma has not been studied. In this study, it was found that the expression of PSMD11 in HCC tissues was significantly higher than that in para-cancerous tissues, and was associated with poor prognosis. The results of in vitro experiments showed that PSMD11 knockdown could effectively inhibit the proliferation and apoptosis of hepatoma cell lines, and flow cytometry showed that the G0/G1 phase was significantly prolonged. Through protein spectrometry, immunoprecipitation and in vitro experiments, it was found that PSMD11 can promote the proliferation of hepatocellular carcinoma through regulating the ubiquitination of CDK4 and enhancing its protein stability. This study explores the mechanism of action of PSMD11 in hepatocellular carcinoma and provides new insights for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Liang Sun
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zitao Liu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhengyi Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhipeng Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bingbing Qiu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuiqiu Liu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Junwen Hu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Xiangbao Yin
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Li Y, Liu X, Zhao F, Zhao Z, Li X, Wang J, Huang B, Chen A. Comprehensive analysis of PSMD family members and validation of PSMD9 as a potential therapeutic target in human glioblastoma. CNS Neurosci Ther 2024; 30:e14366. [PMID: 37485655 PMCID: PMC10848081 DOI: 10.1111/cns.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/25/2023] Open
Abstract
AIMS PSMD family members, as important components of the 26S proteasome, are well known to be involved in protein degradation. However, their role in glioblastoma (GBM) has not been rigorously investigated. We aimed to perform systematic analysis of the expression signature, prognostic significance and functions of PSMD family genes in GBM to reveal potential prognostic markers and new therapeutic targets among PSMD family members. METHODS In this study, we systemically analyzed PSMD family members in terms of their expression profiles, prognostic implications, DNA methylation levels, and genetic alterations; the relationships between their expression levels and immune infiltration and drug sensitivity; and their potential functional enrichment in GBM through bioinformatics assessment. Moreover, in vitro and in vivo experiments were used to validate the biological functions of PSMD9 and its targeted therapeutic effect in GBM. RESULTS The mRNA levels of PSMD5/8/9/10/11/13/14 were higher in GBM than in normal brain tissues, and the mRNA levels of PSMD1/4/5/8/9/11/12 were higher in high-grade glioma (WHO grade III & IV) than in low-grade glioma (WHO grade II). High mRNA expression of PSMD2/6/8/9/12/13/14 and low mRNA expression of PSMD7 were associated with poor overall survival (OS). Multivariate Cox regression analysis identified PSMD2/5/6/8/9/10/11/12 as independent prognostic factors for OS prediction. In addition, the protein-protein interaction network and gene set enrichment analysis results suggested that PSMD family members and their interacting molecules were involved in the regulation of the cell cycle, cell invasion and migration, and other biological processes in GBM. In addition, knockdown of PSMD9 inhibited cell proliferation, invasion and migration and induced G2/M cell cycle arrest in LN229 and A172 GBM cells. Moreover, PSMD9 promoted the malignant progression of GBM in vivo. GBM cell lines with high PSMD9 expression were more resistant to panobinostat, a potent deacetylase inhibitor, than those with low PSMD9 expression. In vitro and in vivo experiments further validated that PSMD9 overexpression rescued the GBM inhibitory effect of panobinostat. CONCLUSION This study provides new insights into the value of the PSMD family in human GBM diagnosis and prognosis evaluation, and we further identified PSMD9 as a potential therapeutic target. These findings may lead to the development of effective therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Yaquan Li
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Xuemeng Liu
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Feihu Zhao
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Zhimin Zhao
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Xingang Li
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Jian Wang
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
- Department of BiomedicineUniversity of BergenBergenNorway
| | - Bin Huang
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| | - Anjing Chen
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanChina
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function RemodelingJinanChina
| |
Collapse
|
4
|
Yan HJ, Lin SC, Xu SH, Gao YB, Zhou BJ, Zhou R, Chen FM, Li FR. Proteomic analysis reveals LRPAP1 as a key player in the micropapillary pattern metastasis of lung adenocarcinoma. Heliyon 2024; 10:e23913. [PMID: 38226250 PMCID: PMC10788494 DOI: 10.1016/j.heliyon.2023.e23913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Objectives Lung adenocarcinomas have different prognoses depending on their histological growth patterns. Micropapillary growth within lung adenocarcinoma, particularly metastasis, is related to dismal prognostic outcome. Metastasis accounts for a major factor leading to mortality among lung cancer patients. Understanding the mechanisms underlying early stage metastasis can help develop novel treatments for improving patient survival. Methods Here, quantitative mass spectrometry was conducted for comparing protein expression profiles among various histological subtypes, including adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma (including acinar and micropapillary [MIP] types). To determine the mechanism of MIP-associated metastasis, we identified a protein that was highly expressed in MIP. The expression of the selected highly expressed MIP protein was verified via immunohistochemical (IHC) analysis and its function was validated by an in vitro migration assay. Results Proteomic data revealed that low-density lipoprotein receptor-related protein-associated protein 1 (LRPAP1) was highly expressed in MIP group, which was confirmed by IHC. The co-expressed proteins in this study, PSMD1 and HSP90AB1, have been reported to be highly expressed in different cancers and play an essential role in metastasis. We observed that LRPAP1 promoted lung cancer progression, including metastasis, invasion and proliferation in vitro and in vivo. Conclusion LRPAP1 is necessary for MIP-associated metastasis and is the candidate novel anti-metastasis therapeutic target.
Collapse
Affiliation(s)
- Hao-jie Yan
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Post-doctoral Scientific Research Station of Basic Medicine, Jinan University, 510632, Guangzhou, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Sheng-cheng Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 518172, Shenzhen, China
| | | | - Yu-biao Gao
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Bao-jin Zhou
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ruo Zhou
- Deepxomics Co., Ltd, 518112, Shenzhen, China
| | - Fu-ming Chen
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
| | - Fu-rong Li
- Translational Medicine Collaborative Innovation Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), 518020, Shenzhen, China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell Therapy, Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen Immune Cell Therapy Public Service Platform, 518020, Shenzhen, China
- Institute of Health Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
5
|
Park HC, Kim H, Kim JY, Lee HY, Lee J, Cha W, Ahn SH, Jeong WJ. PSMD1 as a prognostic marker and potential target in oropharyngeal cancer. BMC Cancer 2023; 23:1242. [PMID: 38104103 PMCID: PMC10725586 DOI: 10.1186/s12885-023-11689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Despite the diverse genetic mutations in head and neck cancer, the chemotherapy outcome for this cancer has not improved for decades. It is urgent to select prognostic factors and therapeutic targets for oropharyngeal cancer to establish precision medicine. Recent studies have identified PSMD1 as a potential prognostic marker in several cancers. We aimed to assess the prognostic significance of PSMD1 expression in oropharyngeal squamous cell carcinoma (OPSCC) patients using immunohistochemistry. METHODS We studied 64 individuals with OPSCC tissue from surgery at Seoul National University Bundang Hospital between April 2008 and August 2017. Immunostaining analysis was conducted on the tissue microarray (TMA) sections (4 μm) for p16 and PSMD1. H-score, which scale from 0 to 300, was calculated from each nucleus, cytoplasm, and cellular expression. Clinicopathological data were compared with Chi-squared test, Fisher's exact test, t-test, and logistic regression. Survival data until 2021 were achieved from national statistical office of Korea. Kaplan-Meier method and cox-regression model were used for disease-specific survival (DSS) analysis. RESULTS H-score of 90 in nucleus was appropriate cutoff value for 'High PSMD1 expression' in OPSCC. Tonsil was more frequent location in low PSMD1 group (42/52, 80.8%) than in high PSMD1 group (4/12, 33.3%; P = .002). Early-stage tumor was more frequent in in low PSMD1 group (45/52, 86.5%) than in high PSMD1 group (6/12, 50%; P = .005). HPV was more positive in low PSMD1 group (43/52, 82.7%) than in high PSMD1 group (5/12, 41.7%; P = .016). Patients with PSMD1 high expression showed poorer DSS than in patients with PSMD1 low expression (P = .006 in log rank test). In multivariate analysis, PSMD1 expression, pathologic T staging, and specimen age were found to be associated with DSS (P = .011, P = .025, P = .029, respectively). CONCLUSIONS In our study, we established PSMD1 as a negative prognostic factor in oropharyngeal squamous cell carcinoma, indicating its potential as a target for targeted therapy and paving the way for future in vitro studies on drug repositioning.
Collapse
Affiliation(s)
- Hae Chan Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji-Yeong Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye-Yeon Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jinyi Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - WonJae Cha
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Woo-Jin Jeong
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
6
|
Ye Z, Yang J, Jiang H, Zhan X. The roles of protein ubiquitination in tumorigenesis and targeted drug discovery in lung cancer. Front Endocrinol (Lausanne) 2023; 14:1220108. [PMID: 37795365 PMCID: PMC10546409 DOI: 10.3389/fendo.2023.1220108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
The malignant lung cancer has a high morbidity rate and very poor 5-year survival rate. About 80% - 90% of protein degradation in human cells is occurred through the ubiquitination enzyme pathway. Ubiquitin ligase (E3) with high specificity plays a crucial role in the ubiquitination process of the target protein, which usually occurs at a lysine residue in a substrate protein. Different ubiquitination forms have different effects on the target proteins. Multiple short chains of ubiquitination residues modify substrate proteins, which are favorable signals for protein degradation. The dynamic balance adapted to physiological needs between ubiquitination and deubiquitination of intracellular proteins is beneficial to the health of the organism. Ubiquitination of proteins has an impact on many biological pathways, and imbalances in these pathways lead to diseases including lung cancer. Ubiquitination of tumor suppressor protein factors or deubiquitination of tumor carcinogen protein factors often lead to the progression of lung cancer. Ubiquitin proteasome system (UPS) is a treasure house for research and development of new cancer drugs for lung cancer, especially targeting proteasome and E3s. The ubiquitination and degradation of oncogene proteins with precise targeting may provide a bright prospect for drug development in lung cancer; Especially proteolytic targeted chimerism (PROTAC)-induced protein degradation technology will offer a new strategy in the discovery and development of new drugs for lung cancer.
Collapse
Affiliation(s)
- Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hanming Jiang
- School of Clinical and Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
7
|
Zhang J, Ma Q, Yu Q, Xiao F, Zhang Z, Feng H, Liang C. PSMD3-ILF3 signaling cascade drives lung cancer cell proliferation and migration. Biol Direct 2023; 18:33. [PMID: 37337223 DOI: 10.1186/s13062-023-00389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Proteasome 26S subunit, non-ATPase 3 (PSMD3) has been reported to participate in various human cancers. Nevertheless, the function of PSMD3 in lung cancer (LC) remains unclear. METHODS RT-qPCR and western blot were used to detect the expression of PSMD3 in LC tissues form TCGA database and clinical samples, and LC cell lines. To study the effect of PSMD3 on LC cell proliferation, migration, invasion, and apoptosis, siRNAs targeting PSMD3 were synthesized and overexpressed plasmids were constructed. CCK-8 assay, Transwell assay, and etc. were used to evaluate the results. Tumor xenograft model was used to evaluate the function of PSMD3 on tumor growth. CO-IP and MS were used to scan the proteins that bind with PSMD3. The interaction between PSMD3 and ILF3 in lung cancer cells were studied using IF staining, CHX protein stability, and ubiquitination assay. Additionally, the effect of ILF3 on cell progression and LC tumor growth was demonstrated by conducting a recovery assay using siILF3 and an ILF3 inhibitor YM155. RESULTS We observed that PSMD3 was significantly overexpressed in LC tissues and cells, which indicated a poor prognosis. Meanwhile, we found that PSMD3 promoted cell proliferation, migration, and invasion of LC cells. We also determined that PSMD3 stabilized the protein expression of ILF3 and the deubiquitination of ILF3 in lung cancer cells. Furthermore, animal experiments showed that the ILF3 inhibitor YM155 could suppress tumor growth with the presence of PSMD3. CONCLUSIONS PSMD3 collectively regulated the stability of ILF3 protein and facilitated the ubiquitination of endogenous ILF3 in LC, which ultimately promoted the progression of LC cells. The PSMD3/ ILF3 axis could potentially be used as a novel strategy for both diagnosis and treatment of LC.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Number 2, Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Number 2, Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Qiduo Yu
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Number 2, Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Fei Xiao
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Number 2, Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Zhenrong Zhang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Number 2, Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Hongxiang Feng
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Number 2, Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Chaoyang Liang
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Number 2, Yinghua East Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
8
|
Adler J, Oren R, Shaul Y. Depleting the 19S proteasome regulatory PSMD1 subunit as a cancer therapy strategy. Cancer Med 2023; 12:10781-10790. [PMID: 36934426 DOI: 10.1002/cam4.5775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 03/20/2023] Open
Abstract
BACKGROUND Proteasome inhibitors are in use in treating certain types of cancers. These drugs inhibit the catalytic activity of the 20S proteasome, shared by all the different proteasome complexes. Inhibitors of the 26S-associated deubiquitinating activity explicitly inhibit the 26S proteasomal degradation of ubiquitinylated substrates. We have previously reported an alternative strategy that is based on reducing the 26S/20S ratio by depleting PSMD1, 6, and 11, the subunits of the 19S proteasome regulatory complex. Given the addiction of the many cancer types to a high 26S/20S ratio, the depletion strategy is highly effective in killing many aggressive cancer cell lines but not mouse and human immortalized and normal cells. METHODS We used two aggressive cell lines, MDA-MB-231, a triple-negative breast tumor cell line, and OVCAR8, a high-grade ovary adenocarcinoma. Cell culture, mouse MDA-MB-231, OVCAR8 xenografts, and patient-derived ovarian cancer xenograft (PDX) models were transduced with lentivectors expressing PSMD1 shRNA. Tumor size was measured to follow treatment efficacy. RESULTS Using different experimental strategies of expressing shRNA, we found that PSMD1 depletion, either by expressing PSMD1 shRNA in an inducible manner or in a constitutive manner, robustly inhibited MDA-MB-231, and OVCAR8 xenograft tumor growth. Furthermore, the PSMD1 depletion strategy compromised the growth of the PDX of primary ovarian cancer. CONCLUSION Our results suggest that reducing the 26S/20S ratio might be a valuable strategy for treating drug-resistant aggressive types of cancers.
Collapse
Affiliation(s)
- Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
9
|
Liu L, Liu A, Liu X. PRRX2 predicts poor survival prognosis, and promotes malignant phenotype of lung adenocarcinoma via transcriptional activates PSMD1. Transl Oncol 2022; 27:101586. [PMID: 36379103 PMCID: PMC9661514 DOI: 10.1016/j.tranon.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Paired-related homeobox transcription factor 2 (PRRX2) has been proved involves in the pathogenesis of tumors, but the role of PRRX2 in lung adenocarcinoma (LUAD) is basically not clear. MATERIALS AND METHODS LUAD datasets were obtained from Gene Expression Omnibus datasets. Functional enrichment analyses were performed based on R language. Several online analysis tools were used for PRRX2 expression, survival curves, and immune cell infiltration analyses. CCK-8, flow cytometry assays were used to detect the cell proliferation and apoptosis. Dual luciferase reporter system and chromatin immunoprecipitation were used to explore the interaction of PRRX2 and Proteasome 26S subunit, non-ATPases 1 (PSMD1). Xenograft in nude mice was used to assess the function of PRRX2 regulation in vivo. RESULTS AND DISCUSSION Bioinformatics analyses found that PRRX2 was highly expressed in LUAD tissues and the high PRRX2 expression had a poor prognostic value. PRRX2 was highly expressed in LUAD clinical samples and cell lines. PRRX2 acted as a positive regulator of cell proliferation and a negative regulator of apoptosis. PRRX2 could bind with the PSMD1 promoter and regulate PSMD1 expression, thereby affected LUAD cells' malignant phenotype. Result of xenografts in nude mice confirmed that PRRX2 promotes LUAD tumor growth in vivo. Summary, our study results reveal the crucial roles for PRRX2 in the proliferation and apoptosis of LUAD progression and suggest that PRRX2 may regulate PSMD1 expression by combining with the PSMD1 promoter, thereby participating in the malignant behavior of LUAD.
Collapse
Affiliation(s)
- Lihua Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Aihua Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuezheng Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Corresponding author.
| |
Collapse
|