1
|
Sun YG, Yu ZK, Chen X, Zhang SY, Wu WJ, Liu K, Cheng L. circHIPK2 promotes malignant progression of laryngeal squamous cell carcinoma through the miR-889-3p/MCTS1/IL-6 axis. Transl Oncol 2025; 56:102390. [PMID: 40222337 PMCID: PMC12018564 DOI: 10.1016/j.tranon.2025.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck with a poor prognosis. The role of circRNAs in LSCC remains largely unknown. In this study, quantitative real-time PCR (qRT-PCR), Sanger sequencing and fluorescence in situ hybridization were undertaken to detect the expression, localization, and clinical significance of circHIPK2 in LSCC tissues and TU686 and TU212 cells. The functions of circHIPK2 in LSCC were explored through proliferation analysis, EdU staining, colony formation assay, wound healing assay, and Transwell assay. The regulatory mechanisms underpinning circHIPK2, miR-889-3p, and MCTS1 were investigated using luciferase assay, Western blotting, and qRT-PCR. We found that LSCC tissues and cells demonstrated high expression of circHIPK2 that was closely associated with the malignant progression and poor prognosis of LSCC. Knockdown of circHIPK2 inhibited the proliferation and migration of LSCC cells in vitro. Mechanistic studies showed that circHIPK2 competitively bound to miR-889-3p, elevated MCTS1 level, promoted IL-6 secretion, and ultimately accelerated the malignant progression of LSCC. In conclusion, an axis involving circHIPK2, miR-889-3p, MCTS1 and IL-6 regulates the malignant progression of LSCC. circHIPK2 expression may serve as a novel diagnostic and prognostic biomarker for LSCC.
Collapse
Affiliation(s)
- Yang-Guang Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Zhen-Kun Yu
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Xi Chen
- Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Si-Yao Zhang
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Wan-Juan Wu
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Kai Liu
- Nanjing Medical Key Laboratory of Laryngopharynx-Head & Neck Oncology, Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Lei Cheng
- Department of Otorhinolaryngology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China; Department of Allergology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
2
|
Li H, Wu F, Han Y, Guo Z, Chen T, Ma Z. CircRNA regulates lung cancer metastasis. Gene 2025; 935:149060. [PMID: 39481770 DOI: 10.1016/j.gene.2024.149060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Lung cancer stands prominently among the foremost contributors to human mortality, distinguished by its elevated fatality rate and the second-highest incidence rate among malignancies. The metastatic dissemination of lung cancer stands as a primary determinant of its elevated mortality and recurrence rates, underscoring the imperative for comprehensive investigation into its metastatic pathways. Circular RNAs (circRNAs), a subclass of non-coding RNA (ncRNA) molecules, have garnered attention for their pivotal involvement in the genesis and advancement of lung cancer. Emerging evidence highlights the indispensable functions of circRNAs in orchestrating the metastatic cascade of lung cancer. This review primarily discusses the mechanisms by which circRNAs act as competitive endogenous RNAs (ceRNAs) and modulate various signaling pathways to regulate lung cancer metastasis. CircRNAs influence critical cellular processes including angiogenesis, autophagy, and glycolysis, thereby exerting influence over the metastatic cascade in lung cancer. These discoveries offer innovative perspectives and therapeutic avenues for the diagnosis and management of lung cancer.
Collapse
Affiliation(s)
- Han Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Fan Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Yaqi Han
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Ziyi Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China
| | - Tangbing Chen
- Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, 381 Nanchen Road, Shanghai 200444, China.
| |
Collapse
|
3
|
Yu W, Chen D, Ma L, Lin Y, Zheng J, Li X. EIF4A3-Induced Circ_0059914 Promoted Angiogenesis and EMT of Glioma via the miR-1249/VEGFA Pathway. Mol Neurobiol 2025; 62:973-987. [PMID: 38951469 DOI: 10.1007/s12035-024-04319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Gliomas are common brain tumors. Despite extensive research, the 5-year survival rate of glioma remains low. Many studies have reported that circular RNAs (circRNAs) play a role in promoting the malignant progression of glioma; however, the role of circ_0059914 in this process remains unclear. In this study, we aimed to investigate the function and underlying mechanism of circ_0059914 in glioma. Western blotting and qRT-PCR were used to determine the levels of circ_0059914, miR-1249, VEGFA, N-cadherin, vimentin, Snail, and EIF4A3. EDU and colony formation assays were conducted to evaluate cell proliferation. Transwell assays were used to explore cell migration and invasion and tube formation assays were used to analyze angiogenesis. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were used to explore the relationship between EIF4A3, circ_0059914, miR-1249, and VEGFA. A xenograft tumor assay was performed to determine the role of circ_0059914 in vivo. Circ_0059914 expression was upregulated in gliomas. Knockdown of gliomal circ_0059914 expression reduced the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, and growth of glioma cells in vivo. Circ_0059914 sponged miR-1249, and miR-1249 inhibition reversed the circ_0059914 knockdown-mediated effects in glioma cells. VEGFA was found to be a target gene of miR1249; overexpression of VEGFA reversed the effect of miR-1249 up-regulation in glioma. Finally, EIF4A3 increased the expression of circ_0059914. EIF4A3-induced circ_0059914 expression plays a role in promoting glioma via the miR-1249/VEGFA axis.
Collapse
Affiliation(s)
- Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Duo Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Li Ma
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Yuancai Lin
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China
| | - Jihui Zheng
- Department of Ultrasound, The Fourth Affiliated Hospital of China Medical University, Huanggu District, No.4, Chongshan East Road, Shenyang, 110032, China.
| | - Xinxing Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
- Liaoning Clinical Medical Research in Nervous Disease, Shenyang, 110004, China.
- Key Laboratory of Neuro-Oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
4
|
Liu W, Sun Y, Huo Y, Zhang L, Zhang N, Yang M. Circular RNAs in lung cancer: implications for preventing therapeutic resistance. EBioMedicine 2024; 107:105309. [PMID: 39191172 PMCID: PMC11445705 DOI: 10.1016/j.ebiom.2024.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
LC is one of the most common malignant tumours that often presents with no distinct symptoms in the early stages, leading to late diagnoses when patients are at an advanced stage and no longer suitable for surgical treatment. Although adjuvant treatments are available, patients frequently develop tolerance to these treatments over time, resulting in poor prognoses for patients with advanced LC. Recently, circular RNAs (circRNAs), a type of non-coding RNA, have gained significant attention in LC research. Owing to their unique circular structure, circRNAs are highly stable within cells. This review systematically summarises the expression, characteristics, biological functions, and molecular regulatory mechanisms of circRNAs involved in therapy resistance as well as the potential applications in early diagnosis and gene targeting therapy in LC.
Collapse
Affiliation(s)
- Wenjuan Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China
| | - Yawen Sun
- Department of Scientific Research and Education, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271021, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Zeng X, Tang J, Zhang Q, Wang C, Qi J, Wei Y, Xu J, Yang K, Zhou Z, Wu H, Luo J, Jiang Y, Song Z, Wu J, Wu J. CircHIPK2 Contributes Cell Growth in Intestinal Epithelial of Colitis and Colorectal Cancer through Promoting TAZ Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401588. [PMID: 38981023 PMCID: PMC11425914 DOI: 10.1002/advs.202401588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer (CRC) and inflammatory bowel disease (IBD) are escalating global health concerns. Despite their distinct clinical presentations, both disorders share intricate genetic and molecular interactions. The Hippo signaling pathway plays a crucial role in regulating cell processes and is implicated in the pathogenesis of IBD and CRC. Circular RNAs (circRNAs) have gained attention for their roles in various diseases, including IBD and CRC. However, a comprehensive understanding of specific circRNAs involved in both IBD and CRC, and their functional roles is lacking. Here, it is found that circHIPK2 (hsa_circRNA_104507) is a bona fide circRNA consistently upregulated in both IBD and CRC suggesting its potential as a biomarker. Furthermore, silencing of circHIPK2 suppressed the growth of CRC cells in vitro and in vivo. Interestingly, decreased circHipk2 potentiated dextran sulfate sodium (DSS)-induced colitis but alleviated colitis-associated tumorigenesis. Most significantly, mechanistic investigations further unveil that circHIPK2, mediated by FUS, interacting with EIF4A3 to promote the translation of TAZ, ultimately increasing the transcription of downstream target genes CCN1 and CCN2. Taken together, circHIPK2 emerges as a key player in the shared mechanisms of IBD and CRC, modulating the Hippo signaling pathway. CircHIPK2-EIF4A3 axis contributes to cell growth in intestinal epithelial of colitis and CRC by enhancing TAZ translation.
Collapse
Affiliation(s)
- Xixi Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- The Joint Innovation Center for Health and Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Zhejiang, 324000, China
| | - Jielin Tang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Qian Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Chenxing Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Ji Qi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yusi Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiali Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Kaiyuan Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Zuolin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Hao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiarong Luo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Zengqiang Song
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jinyu Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315302, China
| |
Collapse
|
6
|
Lun J, Zhang Y, Yu M, Zhai W, Zhu L, Liu H, Guo J, Zhang G, Qiu W, Fang J. Circular RNA circHIPK2 inhibits colon cancer cells through miR-373-3p/RGMA axis. Cancer Lett 2024; 593:216957. [PMID: 38762192 DOI: 10.1016/j.canlet.2024.216957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Circular RNAs (circRNAs) have been implicated in cancer development. However, their regulation, function, and underlying mechanisms of action remain unclear. We found that circHIPK2 was downregulated in colon cancer, and low expression levels of circHIPK2 were associated with high tumor grade and poor patient survival. The expression of circHIPK2 was observed to be regulated by the transcription factor HOXD10, which was downregulated in colon cancer. Consequently, low circHIPK2 expression promoted colon cancer cell proliferation, migration, and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, circHIPK2 sponges miR-373-3p to upregulate the expression of the tumor suppressor RGMA, leading to the activation of BMP/Smad signaling and, ultimately, the inhibition of colon cancer cells, indicating that circHIPK2 inhibits colon cancer cells through the miR-373-3p/RGMA/BMP pathway. These findings revealed a previously unknown regulation, function, and underlying mechanism of circHIPK2 in cancer cells. Hence, circHIPK2 may have a prognostic value and serve as a potential target for colon cancer treatment.
Collapse
Affiliation(s)
- Jie Lun
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China; School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Yuying Zhang
- School of Public Health, Qingdao University, Qingdao, 266071, China
| | - Mengchao Yu
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Wenxin Zhai
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, 64 Hetian Road, Shanghai, 200072, China
| | - Lei Zhu
- Medical College, Qingdao Binhai University, Qingdao, 266071, China
| | - Huizi Liu
- Department of Rehabilitation Medicine, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Jing Guo
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Gang Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China.
| | - Jing Fang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Wang T, He M, Zhang X, Guo Z, Wang P, Long F. Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: a novel perspective. Cell Mol Biol Lett 2024; 29:60. [PMID: 38671354 PMCID: PMC11046940 DOI: 10.1186/s11658-024-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer therapeutic resistance remains a significant challenge in the pursuit of effective treatment strategies. Circular RNAs (circRNAs), a class of non-coding RNAs, have recently emerged as key regulators of various biological processes, including cancer progression and drug resistance. This review highlights the emerging role of circRNAs-mediated autophagy in cancer therapeutic resistance, a cellular process that plays a dual role in cancer by promoting both cell survival and death. Increasing evidence suggests that circRNAs can modulate autophagy pathways, thereby influencing the response of cancer cells to therapeutic agents. In this context, the intricate interplay between circRNAs, autophagy, and therapeutic resistance is explored. Various mechanisms are discussed through which circRNAs can impact autophagy, including direct interactions with autophagy-related genes, modulation of signaling pathways, and cross-talk with other non-coding RNAs. Furthermore, the review delves into specific examples of how circRNA-mediated autophagy regulation can contribute to resistance against chemotherapy and radiotherapy. Understanding these intricate molecular interactions provides valuable insights into potential strategies for overcoming therapeutic resistance in cancer. Exploiting circRNAs as therapeutic targets or utilizing them as diagnostic and predictive biomarkers opens new avenues for developing personalized treatment approaches. In summary, this review underscores the importance of circRNA-mediated autophagy in cancer therapeutic resistance and proposes future directions for research in this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Ting Wang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Mengjie He
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China
| | - Xudong Zhang
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Zhixun Guo
- Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Pinghan Wang
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| | - Fangyi Long
- Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, 610041, China.
| |
Collapse
|
8
|
Huang R, Sun M, Wang W, Yu X, Liu F. YTHDF2 alleviates microglia activation via promoting circHIPK2 degradation. J Neuroimmunol 2024; 387:578265. [PMID: 38147784 DOI: 10.1016/j.jneuroim.2023.578265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Microglial activation is a common cellular dysfunction in central nervous system inflammation, accompanied by abnormal expression of circular RNAs (circRNAs). YTHDF2, a N6-methyladenosine (m6A) reader, is known as a key element in RNA degradation. Here, lipolysaccharide induced microglia activation in mouse cortex and BV2 cells, accompanied by the decreased YTHDF2 and elevated circHIPK2. YTHDF2 overexpression or circHIPK2 knockdown in BV2 microglia inhibited the expressions of iNOS protein, IL-1β mRNA and IL-6 mRNA. Subsequent experiments revealed that YTHDF2 facilitated circHIPK2 degradation, thereby alleviating microglia activation. These findings suggest that YTHDF2 overexpression could serve as a therapeutic approach for inhibiting microglia activation.
Collapse
Affiliation(s)
- Rongrong Huang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ming Sun
- Department of Ultrasound, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Weiwei Wang
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao 266100, China
| | - Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| | - Fan Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| |
Collapse
|
9
|
Su Z, Li W, Lei Z, Hu L, Wang S, Guo L. Regulation of Angiogenesis by Non-Coding RNAs in Cancer. Biomolecules 2024; 14:60. [PMID: 38254660 PMCID: PMC10813527 DOI: 10.3390/biom14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Non-coding RNAs, including microRNAs, long non-coding RNAs, and circular RNAs, have been identified as crucial regulators of various biological processes through epigenetic regulation, transcriptional regulation, and post-transcriptional regulation. Growing evidence suggests that dysregulation and activation of non-coding RNAs are closely associated with tumor angiogenesis, a process essential for tumor growth and metastasis and a major contributor to cancer-related mortality. Therefore, understanding the molecular mechanisms underlying tumor angiogenesis is of utmost importance. Numerous studies have documented the involvement of different types of non-coding RNAs in the regulation of angiogenesis. This review provides an overview of how non-coding RNAs regulate tumor angiogenesis. Additionally, we discuss emerging strategies that exploit non-coding RNAs for anti-angiogenic therapy in cancer treatment. Ultimately, this review underscores the crucial role played by non-coding RNAs in tumor angiogenesis and highlights their potential as therapeutic targets for anti-angiogenic interventions against cancer.
Collapse
Affiliation(s)
- Zhiyue Su
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wenshu Li
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhe Lei
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Department of Basic Medicine, Kangda College, Nanjing Medical University, Lianyungang 222000, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
10
|
Mazziotta C, Iaquinta MR, Tramarin ML, Badiale G, Cervellera CF, Tonnini G, Patergnani S, Pinton P, Lanza G, Gafà R, Tognon M, Martini F, De Mattei M, Rotondo JC. Hsa-microRNA-1249-3p/Homeobox A13 axis modulates the expression of β-catenin gene in human epithelial cells. Sci Rep 2023; 13:22872. [PMID: 38129477 PMCID: PMC10739948 DOI: 10.1038/s41598-023-49837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Intercellular adhesion is a key function for epithelial cells. The fundamental mechanisms relying on epithelial cell adhesion have been partially uncovered. Hsa-microRNA-1249-3p (hsa-miR-1249-3p) plays a role in the epithelial mesenchymal transition in carcinoma cells, but its physiological function in epithelial cells is unknown. We aimed to investigate the role and molecular mechanisms of hsa-miR-1249-3p on epithelial cell functions. Hsa-miR-1249-3p was overexpressed in human epithelial cells and uterine cervical tissues, compared to cervical carcinoma cells and precancerous tissues, respectively. Hsa-miR-1249-3p was analyzed to verify its regulatory function on Homeobox A13 (HOXA13) target gene and its downstream cell adhesion gene β-catenin. Functional experiments indicated that hsa-miR-1249-3p inhibition prompted the mRNA and protein overexpression of HOXA13 which, in turn, led to the β-catenin protein expression. Moreover, hsa-miR-1249-3p inhibition induced a strong colony forming ability in epithelial cells, suggesting the miR involvement in cell adhesion machinery. These data indicate that hsa-miR-1249-3p regulates the expression of HOXA13 and its downstream cell adhesion gene β-catenin, possible resulting in cell adhesion modification in epithelial cells. This study will allow the set-up of further investigations aimed at exploring the relationship between the hsa-miR-1249-3p/HOXA13 axis and downstream cell adhesion genes.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Christian Felice Cervellera
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Giulia Tonnini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121, Ferrara, Italy.
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
11
|
Ghaedrahmati F, Nasrolahi A, Najafi S, Mighani M, Anbiyaee O, Haybar H, Assareh AR, Kempisty B, Dzięgiel P, Azizidoost S, Farzaneh M. Circular RNAs-mediated angiogenesis in human cancers. Clin Transl Oncol 2023; 25:3101-3121. [PMID: 37039938 DOI: 10.1007/s12094-023-03178-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023]
Abstract
Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.
Collapse
Affiliation(s)
- Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mighani
- School of Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Omid Anbiyaee
- Cardiovascular Research Center, Nemazi Hospital, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Reza Assareh
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Department of Veterinary Surgery, Nicolaus Copernicus University, Torun, Poland
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wrocław, Poland
- North Carolina State University College of Agriculture and Life Sciences, Raleigh, NC, 27695, US
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
12
|
Zhang Y, Chao F, Lv L, Li M, Shen Z. Hsa_circ_0041150 serves as a novel biomarker for monitoring chemotherapy resistance in small cell lung cancer patients treated with a first-line chemotherapy regimen. J Cancer Res Clin Oncol 2023; 149:15365-15382. [PMID: 37639013 PMCID: PMC10620281 DOI: 10.1007/s00432-023-05317-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To explore the potential of circRNAs as biomarkers in non-invasive body fluids for monitoring chemotherapy resistance in SCLC patients. METHODS CircRNAs were screened and characterized using transcriptome sequencing, Sanger sequencing, actinomycin D treatment, and Ribonuclease R assay. Our study involved 174 participants, and serum samples were collected from all chemotherapy-resistant patients (n = 54) at two time points: stable disease and progressive disease. We isolated and identified serum extracellular vesicles (EVs) from the patients using ultracentrifugation, transmission electron microscopy, nanoflow cytometry, and western blotting analysis. The expression levels of serum and serum EVs circRNAs were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The impact of circRNA on the function of SCLC cells was assessed through various assays, including proliferation assay, scratch assay, transwell assay, and cisplatin resistance assay. RESULTS Hsa_circ_0041150 was found to be upregulated in chemoresistant SCLC cells and played a role in promoting proliferation, invasion, migration, and cisplatin resistance. Furthermore, the expression levels of hsa_circ_0041150 in serum and serum EVs increased when SCLC patients developed resistance after a first-line chemotherapy regimen. When combined with NSE, the monitoring sensitivity (70.37%) and specificity (81.48%) for chemotherapy resistance significantly improved. Moreover, the expression level of hsa_circ_0041150 showed significant associations with time to progression from SD to PD, and high hsa_circ_0041150 levels after drug resistance were more likely to cause chemotherapy resistance. Additionally, hsa_circ_0041150 demonstrated valuable potential in monitoring the progression from initial diagnosis to chemotherapy resistance in SCLC patients. CONCLUSION Thus, EVs hsa_circ_0041150 holds promise as a biomarker for monitoring chemotherapy resistance in SCLC patients.
Collapse
Affiliation(s)
- Yang Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Fengmei Chao
- Division of Life Sciences and Medicine, Department of Cancer Epigenetics Program, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Lihua Lv
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| | - Zuojun Shen
- Cheeloo College of Medicine, Shandong University, Jinan, China.
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China.
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei, China.
| |
Collapse
|
13
|
Ning J, Luo Y, Chen L, Xiao G, Tanzhu G, Zhou R. CircRNAs and lung cancer: Insight into their roles in metastasis. Biomed Pharmacother 2023; 166:115260. [PMID: 37633056 DOI: 10.1016/j.biopha.2023.115260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/28/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. A major contributing factor to the poor survival rates in lung cancer is the high prevalence of metastasis at the time of diagnosis. To address this critical issue, it is imperative to investigate the mechanisms underlying lung cancer metastasis. Circular RNAs (circRNAs), a distinct type of ribonucleic acid characterized by their unique circular structure, have been implicated in the progression of various diseases. Recent studies have highlighted the close association between circRNAs and the occurrence and development of lung cancer, particularly in relation to metastasis. In this review, we provide a concise overview of the expression patterns and prognostic significance of circRNAs in lung cancer. Additionally, we summarized the current understanding of the clinical relevance of circRNAs in lung cancer metastasis. Furthermore, we systematically focused on the roles of circRNAs in each step of lung cancer metastasis, reflecting the sequential progression of this process. Notably, circRNAs exhibit dual functionality in lung cancer metastasis, acting both as facilitators and inhibitors of metastatic processes. Given their potential, circRNAs hold promise as novel biomarkers and therapeutic targets for lung cancer metastasis, warranting further investigation.
Collapse
Affiliation(s)
- Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yi Luo
- Department of Geriatric Medicine, Center of Coronary Circulation, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China.
| |
Collapse
|
14
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
15
|
Garufi A, D’Orazi V, Pistritto G, Cirone M, D’Orazi G. HIPK2 in Angiogenesis: A Promising Biomarker in Cancer Progression and in Angiogenic Diseases. Cancers (Basel) 2023; 15:1566. [PMID: 36900356 PMCID: PMC10000595 DOI: 10.3390/cancers15051566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Angiogenesis is the formation of new blood capillaries taking place from preexisting functional vessels, a process that allows cells to cope with shortage of nutrients and low oxygen availability. Angiogenesis may be activated in several pathological diseases, from tumor growth and metastases formation to ischemic and inflammatory diseases. New insights into the mechanisms that regulate angiogenesis have been discovered in the last years, leading to the discovery of new therapeutic opportunities. However, in the case of cancer, their success may be limited by the occurrence of drug resistance, meaning that the road to optimize such treatments is still long. Homeodomain-interacting protein kinase 2 (HIPK2), a multifaceted protein that regulates different molecular pathways, is involved in the negative regulation of cancer growth, and may be considered a "bona fide" oncosuppressor molecule. In this review, we will discuss the emerging link between HIPK2 and angiogenesis and how the control of angiogenesis by HIPK2 impinges in the pathogenesis of several diseases, including cancer.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
| |
Collapse
|