1
|
Arora J, Froelich NE, Tang M, Weaver V, Paulson RF, Cantorna MT. Developmental Vitamin D Deficiency and the Vitamin D Receptor Control Hematopoiesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1479-1487. [PMID: 39320233 PMCID: PMC11534569 DOI: 10.4049/jimmunol.2400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Vitamin D status, the vitamin D receptor (VDR), and the ability to produce active vitamin D [1,25(OH)2D, regulated by Cyp27b1] regulate fetal and adult hematopoiesis. Transgenic reporter mice that express the tdTomato RFP as an indication of Vdr expression were used to identify immune cells that express the Vdr. Vdr/tdTomato+ hematopoietic progenitors were identified as early as embryonic day (E)15.5, establishing that these cells have expressed the Vdr and are vitamin D targets. Maternal vitamin D deficiency [D-; serum 25(OH)D < 20 ng/ml] or Vdr knockout or Cyp27b1 knockout resulted in embryos with fewer fetal progenitors. Vdr/tdTomato+ expression was found to increase with age in CD8+ T cells and innate lymphoid cells (ILCs)1 and ILC3, suggesting that initial Vdr expression in these cells is dependent on environmental factors immediately postbirth. In adult tissues, the frequencies of mature T cells and ILCs as well as Vdr/tdTomato expression were reduced by D-. Maternal D- resulted in fewer progenitors that expressed Vdr/tdTomato+ at E15.5 and fewer Vdr/tdTomato+ immune cells in the adult spleen than offspring from D+ mice. We challenged D- mice with H1N1 influenza infection and found that D- mice were more susceptible than D+ mice. Treating D- mice with vitamin D restored Vdr/tdTomato+ expression in splenic T cells and partially restored resistance to H1N1 infection, which shows that developmental D- results in lingering effects on Vdr expression in the adult immune system that compromise the immune response to H1N1 infection. Vitamin D and the Vdr regulate hematopoiesis in both fetal and postnatal phases of immune cell development that impact the immune response to a viral infection.
Collapse
Affiliation(s)
- Juhi Arora
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
- Current address: U.S. Military HIV Research Program. Walter Reed Institute of Army Research, 503 Robert Grant Ave, Silver Spring, Maryland, United States
- Juhi Arora and Nicole E. Froelich are co-first authors on the manuscript
| | - Nicole E. Froelich
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
- Juhi Arora and Nicole E. Froelich are co-first authors on the manuscript
| | - Mengzhu Tang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Veronika Weaver
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Robert F. Paulson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Margherita T. Cantorna
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
2
|
Hussein MM, Mohamed EM, Kamal TM, Deraz TE. Increased susceptibility to complicated pneumonia among egyptian children with FokI (rs2228570), not TaqI (rs731236), vitamin D receptor gene polymorphism in association with vitamin D deficiency: a case-control study. BMC Pediatr 2023; 23:394. [PMID: 37559014 PMCID: PMC10410927 DOI: 10.1186/s12887-023-04192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Determining a genetic contribution to the development of complicated community-acquired pneumonia in children may help understand underlying pathogenesis. We aimed to investigate the association between two vitamin D receptor (VDR) gene polymorphisms, FokI and TaqI, and susceptibility to complicated pneumonia in Egyptian children compared to uncomplicated pneumonia. Associations with 25 hydroxy-vitamin D serum level were studied. METHODS This was a case-control study that included 320 participants divided into 2 groups: patients and controls. The patients' group included 100 children hospitalized with complicated pneumonia and 100 with uncomplicated pneumonia. 120 age and sex-matched apparently healthy children served as controls. The VDR FokI and TaqI polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. 25 hydroxy-vitamin D level was estimated in serum using ELISA. RESULTS Regarding FokI, homozygous CC genotype was more common in complicated (52%) than uncomplicated pneumonia (28%) and controls (10%) (OR = 65; 95%CI (5.13-822.63), p < 0.001) and (OR = 4.3; 95%CI (0.7-27.16), p = 0.003), respectively. Children carrying C allele possessed 3 higher odds for complicated than uncomplicated pneumonia (OR = 3.08; 95%CI (1.33-7.14), p < 0.001). Heterozygous CT genotype increased susceptibility to complicated pneumonia (OR = 13.7; 95%CI (4.6-40.1), p < 0.001), not uncomplicated pneumonia (OR = 1.56; 95%CI (0.86-2.85), p = 0.145). Among complicated pneumonia, vitamin D level was lower in CC (6.92 ± 2.6ng/ml) than CT (9.55 ± 3.2 ng/ml) and TT genotype carriers (13.13 ± 3.6ng/ml) (p < 0.001). There was no significant difference between patients and controls as regards TaqI genotypes and alleles. CONCLUSION In association with vitamin D deficiency, VDR gene FokI polymorphism, not TaqI, is a genetic risk factor for complicated pneumonia in Egyptian children.
Collapse
Affiliation(s)
- Mahitab Morsy Hussein
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, 1156, Egypt.
| | - Enas Maher Mohamed
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, 1156, Egypt
| | - Tarek Mostafa Kamal
- Medical Genetics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tharwat Ezzat Deraz
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, 1156, Egypt
| |
Collapse
|
3
|
Inner mitochondrial membrane protein Prohibitin 1 mediates Nix-induced, Parkin-independent mitophagy. Sci Rep 2023; 13:18. [PMID: 36593241 PMCID: PMC9807637 DOI: 10.1038/s41598-022-26775-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Autophagy of damaged mitochondria, called mitophagy, is an important organelle quality control process involved in the pathogenesis of inflammation, cancer, aging, and age-associated diseases. Many of these disorders are associated with altered expression of the inner mitochondrial membrane (IMM) protein Prohibitin 1. The mechanisms whereby dysfunction occurring internally at the IMM and matrix activate events at the outer mitochondrial membrane (OMM) to induce mitophagy are not fully elucidated. Using the gastrointestinal epithelium as a model system highly susceptible to autophagy inhibition, we reveal a specific role of Prohibitin-induced mitophagy in maintaining intestinal homeostasis. We demonstrate that Prohibitin 1 induces mitophagy in response to increased mitochondrial reactive oxygen species (ROS) through binding to mitophagy receptor Nix/Bnip3L and independently of Parkin. Prohibitin 1 is required for ROS-induced Nix localization to mitochondria and maintaining homeostasis of epithelial cells highly susceptible to mitochondrial dysfunction.
Collapse
|
4
|
Alcalá-Santiago Á, Rodríguez-Barranco M, Rava M, Jiménez-Sousa MÁ, Gil Á, Sánchez MJ, Molina-Montes E. Vitamin D Deficiency and COVID-19: A Biological Database Study on Pathways and Gene-Disease Associations. Int J Mol Sci 2022; 23:ijms232214256. [PMID: 36430729 PMCID: PMC9699081 DOI: 10.3390/ijms232214256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Vitamin D (VD) is a fat-soluble vitamin, and pivotal for maintaining health. Several genetic markers have been related to a deficient VD status; these markers could confer an increased risk to develop osteoporosis and other chronic diseases. A VD deficiency could also be a determinant of a severe COVID-19 disease. This study aimed to interrogate genetic/biological databases on the biological implications of a VD deficiency and its association with diseases, to further explore its link with COVID-19. The genetic variants of both a VD deficiency and COVID-19 were identified in the genome-wide association studies (GWAS) catalog and other sources. We conducted enrichment analyses (considering corrected p-values < 0.05 as statistically significant) of the pathways, and gene-disease associations using tools, such as FUMA, REVIGO, DAVID and DisGeNET, and databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). There were 26 and 46 genes associated with a VD deficiency and COVID-19, respectively. However, there were no genes shared between the two. Genes related to a VD deficiency were involved in the metabolism of carbohydrates, retinol, drugs and xenobiotics, and were associated with the metabolic syndrome and related factors (obesity, hypertension and diabetes mellitus), as well as with neoplasms. There were few enriched pathways and disease connections for the COVID-19-related genes, among which some of the aforementioned comorbidities were also present. In conclusion, genetic factors that influence the VD levels in the body are most prominently associated with nutritional and metabolic diseases. A VD deficiency in high-risk populations could be therefore relevant in a severe COVID-19, underlining the need to examine whether a VD supplementation could reduce the severity of this disease.
Collapse
Affiliation(s)
- Ángela Alcalá-Santiago
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, 18071 Granada, Spain
| | - Miguel Rodríguez-Barranco
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Andalusian School of Public Health, Cuesta del Observatorio 4, 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Correspondence: (M.R.-B.); (M.J.S.)
| | - Marta Rava
- National Center of Epidemiology (CNE), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - María Ángeles Jiménez-Sousa
- CIBER de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ángel Gil
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, 18071 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- CIBER de Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - María José Sánchez
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Andalusian School of Public Health, Cuesta del Observatorio 4, 18012 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Granada, 18011 Granada, Spain
- Correspondence: (M.R.-B.); (M.J.S.)
| | - Esther Molina-Montes
- Department of Nutrition and Food Science, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Institute of Nutrition and Food Technology (INYTA) ‘José Mataix’, Biomedical Research Centre, University of Granada, Avenida del Conocimiento s/n, 18071 Granada, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| |
Collapse
|
5
|
Warren MF, Livingston KA. Implications of Vitamin D Research in Chickens can Advance Human Nutrition and Perspectives for the Future. Curr Dev Nutr 2021; 5:nzab018. [PMID: 33977215 PMCID: PMC7929256 DOI: 10.1093/cdn/nzab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The risk of vitamin D insufficiency in humans is a global problem that requires improving ways to increase vitamin D intake. Supplements are a primary means for increasing vitamin D intake, but without a clear consensus on what constitutes vitamin D sufficiency, there is toxicity risk with taking supplements. Chickens have been used in many vitamin-D-related research studies, especially studies involving vitamin D supplementation. Our state-of-the-art review evaluates vitamin D metabolism and how the different hydroxylated forms are synthesized. We provide an overview of how vitamin D is absorbed, transported, excreted, and what tissues in the body store vitamin D metabolites. We also discuss a number of studies involving vitamin D supplementation with broilers and laying hens. Vitamin D deficiency and toxicity are also described and how they can be caused. The vitamin D receptor (VDR) is important for vitamin D metabolism; however, there is much more to understand about VDR in chickens. Potential research aims involving vitamin D and chickens should explore VDR mechanisms that could lead to newer insights into VDR. Utilizing chickens in future research to help elucidate vitamin D mechanisms has great potential to advance human nutrition. Finding ways to increase vitamin D intake will be necessary because the coronavirus disease 2019 (COVID-19) pandemic is leading to increased risk of vitamin D deficiency in many populations. Chickens can provide a dual purpose with addressing pandemic-caused vitamin D deficiency: 1) vitamin D supplementation gives chickens added-value with the possibility of leading to vitamin-D-enriched meat and egg products; and 2) using chickens in research provides data for translational research. We believe expanding vitamin-D-related research in chickens to include more nutritional aims in vitamin D status has great implications for developing better strategies to improve human health.
Collapse
Affiliation(s)
- Matthew F Warren
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kimberly A Livingston
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Elanco Animal Health, Greenfield, IN, USA
| |
Collapse
|
6
|
Favero C, Carriazo S, Cuarental L, Fernandez-Prado R, Gomá-Garcés E, Perez-Gomez MV, Ortiz A, Fernandez-Fernandez B, Sanchez-Niño MD. Phosphate, Microbiota and CKD. Nutrients 2021; 13:1273. [PMID: 33924419 PMCID: PMC8070653 DOI: 10.3390/nu13041273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
Phosphate is a key uremic toxin associated with adverse outcomes. As chronic kidney disease (CKD) progresses, the kidney capacity to excrete excess dietary phosphate decreases, triggering compensatory endocrine responses that drive CKD-mineral and bone disorder (CKD-MBD). Eventually, hyperphosphatemia develops, and low phosphate diet and phosphate binders are prescribed. Recent data have identified a potential role of the gut microbiota in mineral bone disorders. Thus, parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched in the Th17 cell-inducing taxa segmented filamentous bacteria. Furthermore, the microbiota was required for PTH to stimulate bone formation and increase bone mass, and this was dependent on bacterial production of the short-chain fatty acid butyrate. We review current knowledge on the relationship between phosphate, microbiota and CKD-MBD. Topics include microbial bioactive compounds of special interest in CKD, the impact of dietary phosphate and phosphate binders on the gut microbiota, the modulation of CKD-MBD by the microbiota and the potential therapeutic use of microbiota to treat CKD-MBD through the clinical translation of concepts from other fields of science such as the optimization of phosphorus utilization and the use of phosphate-accumulating organisms.
Collapse
Affiliation(s)
- Chiara Favero
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Leticia Cuarental
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Raul Fernandez-Prado
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Elena Gomá-Garcés
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
- School of Medicine, Department of Pharmacology and Therapeutics, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Garvin MR, T Prates E, Pavicic M, Jones P, Amos BK, Geiger A, Shah MB, Streich J, Felipe Machado Gazolla JG, Kainer D, Cliff A, Romero J, Keith N, Brown JB, Jacobson D. Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models. Genome Biol 2020; 21:304. [PMID: 33357233 PMCID: PMC7756312 DOI: 10.1186/s13059-020-02191-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A mechanistic understanding of the spread of SARS-CoV-2 and diligent tracking of ongoing mutagenesis are of key importance to plan robust strategies for confining its transmission. Large numbers of available sequences and their dates of transmission provide an unprecedented opportunity to analyze evolutionary adaptation in novel ways. Addition of high-resolution structural information can reveal the functional basis of these processes at the molecular level. Integrated systems biology-directed analyses of these data layers afford valuable insights to build a global understanding of the COVID-19 pandemic. RESULTS Here we identify globally distributed haplotypes from 15,789 SARS-CoV-2 genomes and model their success based on their duration, dispersal, and frequency in the host population. Our models identify mutations that are likely compensatory adaptive changes that allowed for rapid expansion of the virus. Functional predictions from structural analyses indicate that, contrary to previous reports, the Asp614Gly mutation in the spike glycoprotein (S) likely reduced transmission and the subsequent Pro323Leu mutation in the RNA-dependent RNA polymerase led to the precipitous spread of the virus. Our model also suggests that two mutations in the nsp13 helicase allowed for the adaptation of the virus to the Pacific Northwest of the USA. Finally, our explainable artificial intelligence algorithm identified a mutational hotspot in the sequence of S that also displays a signature of positive selection and may have implications for tissue or cell-specific expression of the virus. CONCLUSIONS These results provide valuable insights for the development of drugs and surveillance strategies to combat the current and future pandemics.
Collapse
Affiliation(s)
- Michael R Garvin
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Erica T Prates
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Mirko Pavicic
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Piet Jones
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - B Kirtley Amos
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- Department of Horticulture, N-318 Ag Sciences Center, University of Kentucky, Lexington, KY, USA
| | - Armin Geiger
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Manesh B Shah
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Jared Streich
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | | | - David Kainer
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
| | - Ashley Cliff
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Jonathon Romero
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA
| | - Nathan Keith
- Lawrence Berkeley National Laboratory, Environmental Genomics & Systems Biology, Berkeley, CA, USA
| | - James B Brown
- Lawrence Berkeley National Laboratory, Environmental Genomics & Systems Biology, Berkeley, CA, USA
| | - Daniel Jacobson
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, USA.
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, USA.
- Department of Psychology, University of Tennessee Knoxville, Knoxville, TN, USA.
| |
Collapse
|
8
|
Mandell EW, Ryan S, Seedorf GJ, Gonzalez T, Smith BJ, Fleet JC, Abman SH. Maternal Vitamin D Deficiency Causes Sustained Impairment of Lung Structure and Function and Increases Susceptibility to Hyperoxia-induced Lung Injury in Infant Rats. Am J Respir Cell Mol Biol 2020; 63:79-91. [PMID: 32135073 DOI: 10.1165/rcmb.2019-0295oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vitamin D deficiency (VDD) during pregnancy is associated with increased respiratory morbidities and risk for chronic lung disease after preterm birth. However, the direct effects of maternal VDD on perinatal lung structure and function and whether maternal VDD increases the susceptibility of lung injury due to hyperoxia are uncertain. In the present study, we sought to determine whether maternal VDD is sufficient to impair lung structure and function and whether VDD increases the impact of hyperoxia on the developing rat lung. Four-week-old rats were fed VDD chow and housed in a room shielded from ultraviolet A/B light to achieve 25-hydroxyvitamin D concentrations <10 ng/ml at mating and throughout lactation. Lung structure was assessed at 2 weeks for radial alveolar count, mean linear intercept, pulmonary vessel density, and lung function (lung compliance and resistance). The effects of hyperoxia for 2 weeks after birth were assessed after exposure to fraction of inspired oxygen of 0.95. At 2 weeks, VDD offspring had decreased alveolar and vascular growth and abnormal airway reactivity and lung function. Impaired lung structure and function in VDD offspring were similar to those observed in control rats exposed to postnatal hyperoxia alone. Maternal VDD causes sustained abnormalities of distal lung growth, increases in airway hyperreactivity, and abnormal lung mechanics during infancy. These changes in VDD pups were as severe as those measured after exposure to postnatal hyperoxia alone. We speculate that antenatal disruption of vitamin D signaling increases the risk for late-childhood respiratory disease.
Collapse
Affiliation(s)
| | - Sharon Ryan
- Pediatric Heart Lung Center.,Section of Neonatology, and
| | - Gregory J Seedorf
- Pediatric Heart Lung Center.,Section of Pulmonary Medicine, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Tania Gonzalez
- Pediatric Heart Lung Center.,Section of Neonatology, and
| | - Bradford J Smith
- Department of Bioengineering, College of Engineering and Applied Sciences, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado; and
| | - James C Fleet
- Department of Foods and Nutrition, and.,Interdepartmental Nutrition Program, Purdue University, West Lafayette, Indiana
| | - Steven H Abman
- Pediatric Heart Lung Center.,Section of Pulmonary Medicine, Department of Pediatrics, Children's Hospital Colorado and University of Colorado Anschutz Medical Center, Aurora, Colorado
| |
Collapse
|
9
|
Mathyssen C, Aelbrecht C, Serré J, Everaerts S, Maes K, Gayan-Ramirez G, Vanaudenaerde B, Janssens W. Local expression profiles of vitamin D-related genes in airways of COPD patients. Respir Res 2020; 21:137. [PMID: 32493333 PMCID: PMC7268690 DOI: 10.1186/s12931-020-01405-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/24/2020] [Indexed: 12/30/2022] Open
Abstract
Treatment of Chronic Obstructive Pulmonary Disease (COPD) is based on bronchodilation, with inhaled corticosteroids or azithromycin associated when frequent exacerbations occur. Despite the proven benefits of current treatment regimens, the need for new interventions in delineated subgroups remains. There is convincing evidence for oral vitamin D supplementation in reducing exacerbations in COPD patients severely deficient for circulating vitamin D. However, little is known about local vitamin D metabolism in the airways and studies examining expression of the vitamin D receptor (VDR), the activating enzyme (CYP27B1) and inactivating enzyme (CYP24A1) of vitamin D in lung tissue of COPD patients are lacking. Therefore, the expression and localization of key enzymes and the receptor of the vitamin D pathway were examined in tissue of 10 unused donor lungs and 10 COPD explant lungs. No differences in the expression of CYP27B1 and CYP24A1 were found. Although protein expression of VDR was significantly lower in COPD explant tissue, there was no difference in downstream expression of the antimicrobial peptide cathelicidin. Whereas CYP27B1 and CYP24A1 were present in all layers of the bronchial epithelium, VDR was only expressed at the apical layer of a fully differentiated bronchial epithelium with no expression in vascular endothelial cells. By contrast, CYP24A1 expression was highly present in lung endothelial cells suggesting that systemic vitamin D can be inactivated before reaching the epithelial compartment and the tissue immune cells. These data support the idea of exploring the role of vitamin D inhalation in patients with COPD.
Collapse
Affiliation(s)
- Carolien Mathyssen
- Department CHROMETA, Laboratory of Respiratory diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Celine Aelbrecht
- Department CHROMETA, Laboratory of Respiratory diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Jef Serré
- Department CHROMETA, Laboratory of Respiratory diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Stephanie Everaerts
- Clinical department of Respiratory Diseases, UZ Leuven, Campus Gasthuisberg, ON I Herestraat 49 - bus, 706 3000, Leuven, Belgium
| | - Karen Maes
- Department CHROMETA, Laboratory of Respiratory diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Department CHROMETA, Laboratory of Respiratory diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Department CHROMETA, Laboratory of Respiratory diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Wim Janssens
- Department CHROMETA, Laboratory of Respiratory diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium. .,Clinical department of Respiratory Diseases, UZ Leuven, Campus Gasthuisberg, ON I Herestraat 49 - bus, 706 3000, Leuven, Belgium.
| |
Collapse
|
10
|
Postolache TT, Akram F, Lee EE, Lowry CA, Stiller JW, Brenner LA, Streeten EA, Turecki G, Dwivedi Y. Increased brain vitamin D receptor expression and decreased expression of cathelicidin antimicrobial peptide in individuals who died by suicide. J Psychiatr Res 2020; 125:75-84. [PMID: 32213352 DOI: 10.1016/j.jpsychires.2020.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/01/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Vitamin D deficiency is associated with immune dysregulation, increased vulnerability to infections, depression, and suicidal behavior. One mediator of vitamin D-dependent immune regulation and antimicrobial defense is the cathelicidin antimicrobial peptide (LL-37), encoded by the cathelicidin-related antimicrobial peptide (CRAMP) gene. We compared the mRNA expression of the CRAMP gene, the vitamin D receptor (VDR) gene, as well as the CYP27B1 and CYP24A1 genes (involved in vitamin D metabolism) in the dorsolateral prefrontal cortex (dlPFC) and anterior cingulate cortex (ACC) between depressed individuals who died by suicide (n = 15) and matched (age, gender, and post-mortem interval) non-psychiatric controls (n = 15). Gene expression was measured through qRT-PCR with TaqMan® primers and probes, with GAPDH and β-actin genes as endogenous controls. Statistical analyses included t-tests and Pearson correlations. CRAMP mRNA expression was downregulated and VDR mRNA expression was upregulated in both dlPFC and ACC in suicides relative to controls, with no significant differences in expression of CYP24A1 and CYP27B1. To our knowledge, this is the first study on brain cathelicidin expression in the human brain in relationship to suicide. Increased VDR and decreased CRAMP expression are consistent with previously reported associations between vitamin D deficiency, immune dysregulation, and suicidal behavior, and should lead to future studies uncovering novel interactive targets for suicide prevention.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA; Veterans Health Administration, Capitol MIRECC, Baltimore VA Medical Center, Baltimore MD, USA.
| | - Faisal Akram
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA; Saint Elizabeths Hospital, DC Department of Behavioral Health, Washington, DC, USA
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Christopher A Lowry
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA; Department of Integrative Physiology, Center for Neuroscience, And Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA; Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John W Stiller
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, USA; Saint Elizabeths Hospital, DC Department of Behavioral Health, Washington, DC, USA; Maryland State Athletic Commission, Baltimore, MD, USA
| | - Lisa A Brenner
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA; Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth A Streeten
- Program for Personalized and Genomic Medicine, Department of Medicine, Endocrinology, Diabetes & Metabolism, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Yang K, Zhu J, Wu J, Zhong Y, Shen X, Petrov B, Cai W. Maternal Vitamin D Deficiency Increases Intestinal Permeability and Programs Wnt/β-Catenin Pathway in BALB/C Mice. JPEN J Parenter Enteral Nutr 2020; 45:102-114. [PMID: 32270535 DOI: 10.1002/jpen.1820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent studies suggest that vitamin D deficiency is associated with intestinal dysfunctions, but the underlying mechanism remains unclear. This study aimed to investigate whether maternal vitamin D deficiency increases intestinal permeability in offspring and its related mechanism. METHODS Timed-pregnant mice were fed with either a standard chow diet (SC) or a vitamin D-deprived chow diet (VD-) 6 weeks prior to breeding and kept on the same diet until the end of gestation. All offspring were fed an SC for 3 weeks after weaning and then observed for effects associated with maternal vitamin D deficiency. RESULTS Maternal vitamin D deficiency increased intestinal permeability in offspring, which corresponded with the decreased expression of the tight junction protein claudin-1. Maternal vitamin D deficiency also repressed the messenger RNA expression of wingless/integrated family member 3a (Wnt3a) and the protein expression of nuclear β-catenin. The decreased Wnt3a gene expression in male was concurrent with the changes in histone H4 acetylation at either promoter or coding regions. The activation of the Wnt/β-catenin pathway protected against the impairment of intestinal permeability induced by maternal vitamin D deficiency. CONCLUSIONS Maternal vitamin D deficiency increased intestinal permeability and decreased tight junction protein expression in offspring. The suppression of the Wnt/β-catenin signaling pathway through histone modification might be involved in the underlying mechanism.
Collapse
Affiliation(s)
- Kefeng Yang
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, Texas, USA
| | - Jiang Wu
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhong
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Brawnie Petrov
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
12
|
Verma G, Dixit A, Nunemaker CS. A Putative Prohibitin-Calcium Nexus in β-Cell Mitochondria and Diabetes. J Diabetes Res 2020; 2020:7814628. [PMID: 33354575 PMCID: PMC7737164 DOI: 10.1155/2020/7814628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
The role of mitochondria in apoptosis is well known; however, the mechanisms linking mitochondria to the proapoptotic effects of proinflammatory cytokines, hyperglycemia, and glucolipotoxicity are not completely understood. Complex Ca2+ signaling has emerged as a critical contributor to these proapoptotic effects and has gained significant attention in regulating the signaling processes of mitochondria. In pancreatic β-cells, Ca2+ plays an active role in β-cell function and survival. Prohibitin (PHB), a mitochondrial chaperone, is actively involved in maintaining the architecture of mitochondria. However, its possible interaction with Ca2+-activated signaling pathways has not been explored. The present review aims to examine potential crosstalk between Ca2+ signaling and PHB function in pancreatic β-cells. Moreover, this review will focus on the effects of cytokines and glucolipotoxicity on Ca2+ signaling and its possible interaction with PHB. Improved understanding of this important mitochondrial protein may aid in the design of more targeted drugs to identify specific pathways involved with stress-induced dysfunction in the β-cell.
Collapse
Affiliation(s)
- Gaurav Verma
- Molecular Metabolism, Lund University Diabetes Centre, Malmö -21428, Sweden
- School of Biotechnology, Jawaharlal Nehru University, -110067, New Delhi, India
| | - Aparna Dixit
- School of Biotechnology, Jawaharlal Nehru University, -110067, New Delhi, India
| | - Craig S. Nunemaker
- HCOM-Biomedical Sciences, Ohio University, Athens Camp, US-45701 Ohio, USA
| |
Collapse
|
13
|
Szymczak-Pajor I, Kleniewska P, Wieczfinska J, Pawliczak R. Wide-Range Effects of 1,25(OH)2D3 on Group 4A Phospholipases Is Related to Nuclear Factor κ-B and Phospholipase-A2 Activating Protein Activity in Mast Cells. Int Arch Allergy Immunol 2019; 181:56-70. [PMID: 31707382 DOI: 10.1159/000503628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Phospholipases are enzymes that occur in many types of human cells, including mast cells, and play an important role in the molecular background of asthma pathogenesis, and the development of inflammation NF-κB activities that affect numerous biological processes has been reported in many inflammatory diseases including asthma. Vitamin D is a widely studied factor that affects many diseases, including asthma. The aim of this study is to assess the influence of 1,25-(OH)2D3 on regulation of chosen phospholipase-A2 (PLA2) expression-selected inflammation mediators. METHODS LUVA mast cells were stimulated with 1,25(OH)2D3, and inhibitors of NF-κB p65 and ubiquitination. Expression analysis of phospholipases (PLA2G5, PLA2G10, PLA2G12, PLA2G15, PLA2G4A, PLA2G4B, PLA2G4C, PLAA, NF-κB p65, and UBC) was done utilizing real-time PCR and Western blot. Eicosanoid (LTC4, LXA4, 15[S]-HETE, and PGE2) levels and sPLA2 were also measured. RESULTS We found that 1,25(OH)2D3 decreased the expression of PLA2G5, PLA2G15, PLA2G5,UBC, and NF-κB p65 but increased expression of PLAA and PLA2G4C (p < 0.05). Moreover, the expression of PLA2G5 and PLA2G15 decreased after inhibition of NF-κB p65 and UBC. Increased levels of released LXA4 and 15(S)-HETE, decreased levels of LTC4, and sPLA2s enzymatic activity in response to 1,25(OH)2D3 were also observed. Additionally, NF-κB p65 inhibition led to an increase in the LXA4 concentration. CONCLUSION Future investigations will be needed to further clarify the role of 1,25(OH)2D3 in the context of asthma and the inflammatory process; however, these results confirm a variety of effects which can be caused by this vitamin. 1,25(OH)2D3-mediated action may result in the development of new therapeutic strategies for asthma treatment.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland,
| |
Collapse
|
14
|
Specjalski K, Jassem E. MicroRNAs: Potential Biomarkers and Targets of Therapy in Allergic Diseases? Arch Immunol Ther Exp (Warsz) 2019; 67:213-223. [PMID: 31139837 PMCID: PMC6597590 DOI: 10.1007/s00005-019-00547-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that are 18-22 nucleotides long and highly conserved throughout evolution. Currently, they are considered one of the fundamental regulatory mechanisms of genes expression. It has been demonstrated that miRNAs are involved in many biologic processes, such as signal transduction, cell proliferation and differentiation, apoptosis and stress responses. More recently, the role of miRNA has also been revealed in numerous immunological and inflammatory disorders, including allergic inflammation. Specific miRNA profiles were demonstrated in asthma, allergic rhinitis and atopic dermatitis. A core set of miRNAs involved in atopic diseases include upregulated miR-21, miR-223, miR-146a, miR-142-5p, miR-142-3p, miR-146b, miR-155 and downregulated let-7 family, miR-193b and miR-375. Most of the involved miRNAs increase secretion of Th2 cytokines (miR-1248, miR-146b), decrease secretion of Th1 cytokines (miR-513-5p, miR-625-5p) or promote differentiation of T cells towards Th2 (miR-21, miR-19a). In asthma miR-140-3p, miR-708 and miR-142-3p play a role in hyperplasia and hypertrophy of bronchial smooth muscle cells. Some single miRNAs or, more probably, their sets hold the promise for their use as biomarkers of atopic diseases. They are also promising target of future therapies.
Collapse
Affiliation(s)
- Krzysztof Specjalski
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland.
| | - Ewa Jassem
- Department of Allergology, Medical University of Gdańsk, Dębinki 7, 80-210, Gdańsk, Poland
| |
Collapse
|
15
|
Singh P, Kumar M, Al Khodor S. Vitamin D Deficiency in the Gulf Cooperation Council: Exploring the Triad of Genetic Predisposition, the Gut Microbiome and the Immune System. Front Immunol 2019; 10:1042. [PMID: 31134092 PMCID: PMC6524467 DOI: 10.3389/fimmu.2019.01042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is a fat soluble secosteroid that is primarily synthesized in the skin upon exposure to Ultraviolet B (UVB) sun rays. Vitamin D is essential for the growth and development of bones and helps in reducing inflammation by strengthening muscles and the immune system. Despite the endless supply of sunlight in the Gulf Cooperation Council (GCC) countries which includes United Arab Emirates, Qatar, Kuwait, Bahrain, Saudi Arabia, and Oman, Vitamin D deficiency in the (GCC) general population at various age groups remains alarmingly high. In parallel runs the increasing prevalence of acute and chronic illnesses including, autoimmune diseases, cancer, type 1 diabetes mellitus, cardiovascular disease and Inflammatory bowel disease in the adult as well as the pediatric population of these countries. The exact association between Vitamin D deficiency and chronic disease conditions remains unclear; however, studies have focused on the mechanism of Vitamin D regulation by assessing the role of the Vitamin D associated genes/proteins such as VDR (Vitamin D receptor), VDBP (Vitamin D Binding protein), CYP27B1 as these are integral parts of the Vitamin D signaling pathway. VDR is known to regulate the expression of more than 200 genes across a wide array of tissues in the human body and may play a role in controlling the Vitamin D levels. Moreover, reduced Vitamin D level and downregulation of VDR have been linked to gut dysbiosis, highlighting an intriguing role for the gut microbiome in the Vitamin D metabolism. However, this role is not fully described yet. In this review, we aim to expand our understanding of the causes of Vitamin D deficiency in the GCC countries and explore the potential relationship between the genetic predisposition, Vitamin D levels, immune system and the gut microbiome composition. Trying to unravel this complex interaction may aid in understanding the mechanism by which Vitamin D contributes to various disease conditions and will pave the way toward new therapeutics treatments for Vitamin D deficiency and its associated outcomes.
Collapse
Affiliation(s)
- Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | - Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
16
|
Huang H, Hong JY, Wu YJ, Wang EY, Liu ZQ, Cheng BH, Mei L, Liu ZG, Yang PC, Zheng PY. Vitamin D receptor interacts with NLRP3 to restrict the allergic response. Clin Exp Immunol 2018; 194:17-26. [PMID: 30260469 DOI: 10.1111/cei.13164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 01/20/2023] Open
Abstract
Vitamin D receptor (VDR) mediates various biochemical activities between the cytoplasm and the nucleus in the cell. The nucleotide-binding, oligomerization domain (NOD)-like receptor family, pyrin domain containing 3 (NLRP3) protein is involved in the T helper type 2 (Th2) response. This study tests a hypothesis that VDR interacts with NLRP3 to restrict the Th2-biased response. In this study, VDR-/- mice and WT (WT) mice were used. Th2 cell differentiation between VDR-/- mice and WT mice was observed. We observed that CD4+ T cell activation was higher in VDR-/- mice. The VDR-/-CD4+ T cells were prone to Th2 polarization. VDR-/- mice produced more immunoglobulin (Ig)E. VDR bound NLRP3 to prevent Th2 differentiation by restricting IL4 gene transcription. Th2 biased inflammation spontaneously developed in the intestine of VDR-/- mice. In conclusion, VDR binds NLRP3 to restrict IL4 gene transcription and prevent biased Th2 polarization.
Collapse
Affiliation(s)
- H Huang
- Department of Gastroenterology, the Fifth Hospital, Zhengzhou University, Zhengzhou, China
| | - J-Y Hong
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China
| | - Y-J Wu
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China.,Longgang ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - E-Y Wang
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China
| | - Z-Q Liu
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China.,Longgang ENT Hospital, Shenzhen ENT Institute, Shenzhen, China.,Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - B-H Cheng
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China.,Longgang ENT Hospital, Shenzhen ENT Institute, Shenzhen, China
| | - L Mei
- Department of Gastroenterology, the Fifth Hospital, Zhengzhou University, Zhengzhou, China
| | - Z-G Liu
- The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China
| | - P-C Yang
- Department of Gastroenterology, the Fifth Hospital, Zhengzhou University, Zhengzhou, China.,The Research Center of Allergy and Immunology, Shenzhen University Faculty of Medicine, Shenzhen, China
| | - P-Y Zheng
- Department of Gastroenterology, the Fifth Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Wu J, Zhong Y, Shen X, Yang K, Cai W. Maternal and early-life vitamin D deficiency enhances allergic reaction in an ovalbumin-sensitized BALB/c mouse model. Food Nutr Res 2018; 62:1401. [PMID: 29881333 PMCID: PMC5985744 DOI: 10.29219/fnr.v62.1401] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022] Open
Abstract
Background Recent studies have shown that vitamin D deficiency may contribute to the high prevalence of food allergy but the underlying mechanisms are far from clear. Objective The present study was designed to investigate the effect of maternal and early-life vitamin D deficiency in the development of food allergy. Design BALB/c mice were treated with ovalbumin (OVA) to trigger allergic reactions, under vitamin D-deficient (by maternal and early-life feeding of vitamin D deprived chow diet) or vitamin D-sufficient conditions. Results Increased occurrence and severity of allergic diarrhea as well as decreased rectal temperature were observed after OVA sensitization. For vitamin D deficiency groups, OVA-specific IgE and IL-4 levels were significantly increased, while IFN-γ levels were unchanged. Vitamin D deficiency also attenuated the structure of small intestinal villi and decreased the expression of the tight junction protein between adjacent epithelial cells and the percentages of CD4+CD25+Foxp3+Treg cell in spleen and mesenteric lymph nodes. Conclusions Maternal and early-life vitamin D deficiency have notable influence on the susceptibility to food allergy, which may relate with the reduced population of Treg cell and the dysfunction of intestinal epithelial barrier.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China, 200092
| | - Yan Zhong
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kefeng Yang
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China, 200092
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China, 200092
| |
Collapse
|
18
|
Gorman S, Buckley AG, Ling KM, Berry LJ, Fear VS, Stick SM, Larcombe AN, Kicic A, Hart PH. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity. Physiol Rep 2018; 5:5/15/e13371. [PMID: 28774952 PMCID: PMC5555896 DOI: 10.14814/phy2.13371] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D3‐supplemented (2280 IU/kg, VitD+) or nonsupplemented (0 IU/kg, VitD−) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD− diet were switched to a VitD+ diet from 8 weeks of age (VitD−/+). At 12 weeks of age, signs of low‐level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD− mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D3. There was no difference in the level of expression of the tight junction proteins occludin or claudin‐1 in lung epithelial cells of VitD+ mice compared to VitD− mice; however, claudin‐1 levels were reduced when initially vitamin D‐deficient mice were fed the vitamin D3‐containing diet (VitD−/+). Reduced total IgM levels were detected in BALF and serum of VitD−/+ mice compared to VitD+ mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD−/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D3‐containing diet, which may be explained by increased activation of B cells in airway‐draining lymph nodes. These findings suggest that supplementation of initially vitamin D‐deficient mice with vitamin D3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Alysia G Buckley
- Centre of Microscopy, Characterisation and Analysis The University of Western Australia, Nedlands, Western Australia, Australia
| | - Kak-Ming Ling
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Luke J Berry
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Vanessa S Fear
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| | - Stephen M Stick
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,School of Paediatrics and Child Health The University of Western Australia, Nedlands, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Occupation and Environment School of Public Health Curtin University, Perth, Western Australia, Australia
| | - Prue H Hart
- Telethon Kids Institute University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
19
|
Zhang F, Fan D, Mo XN. Prohibitin and the extracellular matrix are upregulated in murine alveolar epithelial cells with LPS‑induced acute injury. Mol Med Rep 2018; 17:7769-7773. [PMID: 29620269 DOI: 10.3892/mmr.2018.8808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/23/2017] [Indexed: 11/05/2022] Open
Abstract
Inflammation of epithelial and endothelial cells accelerates the progress of acute lung injury (ALI), and pulmonary fibrosis is the leading cause of mortality in patients with acute respiratory distress syndrome. Interleukin‑6 (IL‑6) is a pleiotropic cytokine implicated in the pathogenesis of a number of immune‑mediated disorders, and is involved in pulmonary fibrosis. Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions, including proliferation, apoptosis, tumor suppression, transcription and mitochondrial protein folding. PHB was identified to be associated with a variety of pulmonary diseases, including pulmonary fibrosis. Based on the lipopolysaccharide (LPS)‑induced cell model of ALI, the present study examined the expression of PHB and the extracellular matrix (ECM) in the process of pulmonary inflammation. MLE‑12 cells were divided into 2 groups: The control group was administered sterile PBS; the treatment group was administered 500 ng/ml LPS for 12 h. The mRNA expression of IL‑6 in the treatment group was significantly upregulated compared with the control group (P<0.05). The protein expression of IL‑6 in the treatment group was markedly increased compared with the control group (P<0.05). ECM components, including collagen‑IV and fibronectin, in the treatment group were markedly increased when compared with the control group (P<0.05). The mRNA and protein expression levels of PHB1 and PHB2 were significantly upregulated following treatment with LPS (both P<0.05). The present study identified that PHB and ECM component levels increased in the LPS‑induced ALI cell model, and further investigations may be performed to verify the detailed mechanism.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Respiratory Medicine, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Dejun Fan
- Department of Gastrointestinal Endoscopy, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiao-Neng Mo
- Department of Respiratory Medicine, The Sixth Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
20
|
[Relationship between serum 25(OH)D levels at birth and respiratory distress syndrome in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017. [PMID: 29132457 PMCID: PMC7389319 DOI: 10.7499/j.issn.1008-8830.2017.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To investigate the relationship between serum 25-hydroxyvitamin D [25(OH)D] levels at birth and respiratory distress syndrome (RDS) in preterm infants. METHODS This retrospective study recruited preterm infants with gestational age of below 34 weeks who were born between January 2014 and December 2016. These preterm infants were divided into two groups: RDS (n=72) and control (n=40). Clinical data of the two groups were collected, including gestational age, birth weight, gender, delivery mode, Apgar scores at 1 minute and 5 minutes, incidence of maternal gestational diabetes mellitus, and use of prenatal steroid hormone. Peripheral blood samples were collected and 25(OH)D levels were measured by chemiluminescence immunoassay. The association between serum 25(OH)D levels at birth and RDS was analyzed by multivariate logistic regression. RESULTS Apgar scores at 1 minute and 5 minutes and serum 25(OH)D levels in the RDS group were significantly lower than those in the control group (P<0.05), while the rates of neonatal asphyxia and vitamin D deficiency were significantly higher than those in the control group (P<0.05). Multivariate logistic regression analysis showed that neonatal asphyxia (OR=2.633, 95%CI: 1.139-6.085) and vitamin D deficiency (OR=4.064, 95%CI: 1.625-10.165) were risk factors for RDS in preterm infants. CONCLUSIONS Vitamin D deficiency might be associated with increased risk of RDS in preterm infants. Reasonable vitamin D supplementation during pregnancy might reduce the incidence of RDS in preterm infants.
Collapse
|
21
|
Vitamin D Axis in Inflammatory Bowel Diseases: Role, Current Uses and Future Perspectives. Int J Mol Sci 2017; 18:ijms18112360. [PMID: 29112157 PMCID: PMC5713329 DOI: 10.3390/ijms18112360] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence supports the concept that the vitamin D axis possesses immunoregulatory functions, with vitamin D receptor (VDR) status representing the major determinant of vitamin D’s pleiotropic effects. Vitamin D promotes the production of anti-microbial peptides, including β-defensins and cathelicidins, the shift towards Th2 immune responses, and regulates autophagy and epithelial barrier integrity. Impairment of vitamin D-mediated pathways are associated with chronic inflammatory conditions, including inflammatory bowel diseases (IBD). Interestingly, inhibition of vitamin D pathways results in dysbiosis of the gut microbiome, which has mechanistically been implicated in the development of IBD. Herein, we explore the role of the vitamin D axis in immune-mediated diseases, with particular emphasis on its interplay with the gut microbiome in the pathogenesis of IBD. The potential clinical implications and therapeutic relevance of this interaction will also be discussed, including optimizing VDR function, both with vitamin D analogues and probiotics, which may represent a complementary approach to current IBD treatments.
Collapse
|
22
|
Dietary vitamin D3 deficiency exacerbates sinonasal inflammation and alters local 25(OH)D3 metabolism. PLoS One 2017; 12:e0186374. [PMID: 29045457 PMCID: PMC5646812 DOI: 10.1371/journal.pone.0186374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/30/2017] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Patients with chronic rhinosinusitis with nasal polyps (CRSwNP) have been shown to be vitamin D3 (VD3) deficient, which is associated with more severe disease and increased polyp size. To gain mechanistic insights into these observational studies, we examined the impact of VD3 deficiency on inflammation and VD3 metabolism in an Aspergillus fumigatus (Af) mouse model of chronic rhinosinusitis (Af-CRS). METHODS Balb/c mice were fed control or VD3 deficient diet for 4 weeks. Mice were then sensitized with intraperitoneal Af, and one week later given Af intranasally every three days for four weeks while being maintained on control or VD3 deficient diet. Airway function, sinonasal immune cell infiltrate and sinonasal VD3 metabolism profiles were then examined. RESULTS Mice with VD3 deficiency had increased Penh and sRaw values as compared to controls as well as exacerbated changes in sRaw when coupled with Af-CRS. As compared to controls, VD3 deficient and Af-CRS mice had reduced sinonasal 1α-hydroxylase and the active VD3 metabolite, 1,25(OH)2D3. Differential analysis of nasal lavage samples showed that VD3 deficiency alone and in combination with Af-CRS profoundly upregulated eosinophil, neutrophil and lymphocyte numbers. VD3 deficiency exacerbated increases in monocyte-derived dendritic cell (DC) associated with Af-CRS. Conversely, T-regulatory cells were decreased in both Af-CRS mice and VD3 deficient mice, though coupling VD3 deficiency with Af-CRS did not exacerbate CD4 or T-regulatory cells numbers. Lastly, VD3 deficiency had a modifying or exacerbating impact on nasal lavage levels of IFN-γ, IL-6, IL-10 and TNF-α, but had no impact on IL-17A. CONCLUSIONS VD3 deficiency causes changes in sinonasal immunity, which in many ways mirrors the changes observed in Af-CRS mice, while selectively exacerbating inflammation. Furthermore, both VD3 deficiency and Af-CRS were associated with altered sinonasal VD3 metabolism causing reductions in local levels of the active VD3 metabolite, 1,25(OH)2D3, even with adequate circulating levels.
Collapse
|
23
|
Vitamin D inhibits the Staphylococcal enterotoxin B-induced expression of tumor necrosis factor in microglial cells. Immunol Res 2017; 65:913-919. [DOI: 10.1007/s12026-017-8930-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Vitamin D and Bronchial Asthma: An Overview of Data From the Past 5 Years. Clin Ther 2017; 39:917-929. [PMID: 28449868 DOI: 10.1016/j.clinthera.2017.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/23/2022]
Abstract
PURPOSE Vitamin D is a potent immunomodulator capable of dampening inflammatory signals in several cell types involved in the asthmatic response. Its deficiency has been associated with increased inflammation, exacerbations, and overall poor outcomes in patients with asthma. Given the increase in the prevalence of asthma over the past few decades, there has been enormous interest in the use of vitamin D supplementation as a potential therapeutic option. Here, we critically reviewed the most recent findings from in vitro studies, animal models, and clinical trials regarding the role of vitamin D in treating bronchial asthma. METHODS Using the key terms [Vitamin D, asthma, clinical trials, in vivo and in vitro studies], the [PubMed, Google Scholar] databases were searched for [clinical trials, original research articles, meta-analyses, and reviews], English-language articles published from [2012] to the present. Articles that were [Articles that did not meet these criteria were excluded] excluded from the analysis. FINDINGS Several studies have found that low serum levels of vitamin D (< 20 ng/mL) are associated with increased exacerbations, increased airway inflammation, decreased lung function, and poor prognosis in asthmatic patients. Results from in vitro and in vivo studies in animals and humans have suggested that supplementation with vitamin D may ameliorate several hallmark features of asthma. However, the findings obtained from clinical trials are controversial and do not unequivocally support a beneficial role of vitamin D in asthma. Largely, interventional studies in children, pregnant women, and adults have primarily found little to no effect of vitamin D supplementation on improved asthma symptoms, onset, or progression of the disease. This could be related to the severity of the disease process and other confounding factors. IMPLICATIONS Despite the conflicting data obtained from clinical trials, vitamin D deficiency may influence the inflammatory response in the airways. Further studies are needed to determine the exact mechanisms by which vitamin D supplementation may induce antiinflammatory effects.
Collapse
|
25
|
Rai V, Dietz NE, Dilisio MF, Radwan MM, Agrawal DK. Vitamin D attenuates inflammation, fatty infiltration, and cartilage loss in the knee of hyperlipidemic microswine. Arthritis Res Ther 2016; 18:203. [PMID: 27624724 PMCID: PMC5022245 DOI: 10.1186/s13075-016-1099-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022] Open
Abstract
Background Osteoarthritis (OA) of the knee joint is a degenerative process resulting in cartilage loss. Recent evidence suggests that OA is not merely a disease of cartilage but a disease of the entire knee joint and that inflammation may play an important role. OA has been associated with vitamin D deficiency. Vitamin D as an immunomodulator and anti-inflammatory agent may attenuate inflammation in the knee. The aim of this study was to assess the anti-inflammatory effect of vitamin D on inflammation in the knee. Methods This study was conducted with 13 microswine on a high cholesterol diet categorized into three groups of vitamin D-deficient, vitamin D-sufficient, and vitamin D supplementation. After 1 year, microswine were killed, and their knee joint tissues were harvested. Histological and immunofluorescence studies were carried out on the tissue specimens to evaluate the effect of vitamin D status. Results Histological and immunofluorescence studies of the knee joint tissues showed (1) increased inflammation in the knee joint tissues, (2) fatty infiltration in quadriceps muscle, patellar tendon, and collateral ligaments, and (3) chondrocyte clustering in the vitamin D-deficient and vitamin D-sufficient groups compared with the vitamin D supplementation group. Architectural distortion of the quadriceps muscle, patellar tendon, and collateral ligaments was also seen in the areas of inflammatory foci and fatty infiltration in the vitamin D-deficient group. Conclusions Decreased inflammation and fatty infiltration in the vitamin D supplementation group suggest the potential role of vitamin D in attenuating inflammation and fatty infiltration as well as in protecting the architecture of the tissue in the knee joint. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1099-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Nicholas E Dietz
- Department of Pathology, Creighton University School of Medicine, 601 North 30th Street, Omaha, NE, 68131, USA
| | - Matthew F Dilisio
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, NE, 68178, USA.,CHI Health Alegent Creighton Clinic, 601 North 30th Street, Suite 2300, Omaha, NE, 68131, USA
| | - Mohamed M Radwan
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
26
|
Christensen JM, Cheng J, Earls P, Gunton J, Sewell W, Sacks R, Harvey RJ. Vitamin D pathway regulatory genes encoding 1α-hydroxylase and 24-hydroxylase are dysregulated in sinonasal tissue during chronic rhinosinusitis. Int Forum Allergy Rhinol 2016; 7:169-176. [PMID: 27618536 DOI: 10.1002/alr.21852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/24/2016] [Accepted: 08/09/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Vitamin D deficiency is associated with many inflammatory respiratory disease states. However, serum vitamin D concentrations may not reflect tissue-specific availability. In this study we sought to assess the local expression of genes essential in vitamin D regulation in chronic rhinosinusitis (CRS). METHODS A cross-sectional study of adult patients undergoing endoscopic sinus surgery was performed. Patients were defined as having CRS with polyps (CRSwNP) or without polyps (CRSsNP), or normal sinus mucosa. Sinus mucosal biopsies were assessed using quantitative polymerase chain reaction to determine expression of genes encoding the vitamin D receptor (VDR), 25-hydroxylase (CYP2R1), 1α-hydroxylase (CYP27B1), and 24-hydroxylase (CYP24A1). Expression levels correlated with serum 25(OH)D [sum 25(OH)D2 and 25(OH)D3 ], the 22-item Sinonasal Outcome Test (SNOT-22), and Nasal Symptom Score (NSS). Separate analyses were performed for patients grouped by tissue eosinophilia. RESULTS Thirty-one patients were assessed (age 49.47 ± 18.14 years, 48.4% female), including 8 CRSsNP, 10 CRSwNP, and 13 controls. CRSsNP and CRSwNP mucosa exhibited decreased CYP27B1 compared with controls (0.0437 [Interquartile range (IQR) 0.0999] vs 0.3260 [IQR 2.9384] vs 0.6557 [IQR 1.1005], p = 0.039), whereas CYP24A1 was upregulated (0.8522 [IQR 1.3170] vs 1.2239 [IQR 4.4197] vs 0.1076 [IQR 0.1791], p = 0.025). CYP24A1 was upregulated in both non-eosinophilic CRS and eosinophilic CRS (1.1337 [IQR 2.3790] vs 0.9555 [IQR 3.2811] vs 0.1076 [IQR 0.1791], p = 0.033). Significant correlations were observed between NSS and CYP2R1 (r = -0.432, p = 0.022), CYP24A1 (r = 0.420, P = 0.026), and VDR (r = 0.425, p = 0.024), although no correlations with serum 25(OH)D were observed. CONCLUSIONS The local regulation of vitamin D in sinonasal tissue during CRS may be independent of serum 25(OH)D levels. Vitamin D may be dysregulated at multiple levels, with decreased transcription of the metabolic gene CYP27B1 and increased transcription of the catabolic gene CYP24A1 observed.
Collapse
Affiliation(s)
- Jenna M Christensen
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW, Australia
| | - Jasmine Cheng
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW, Australia
| | - Peter Earls
- Department of Anatomical Pathology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Jenny Gunton
- Immunopathology Department, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - William Sewell
- Immunopathology Department, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Raymond Sacks
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Richard J Harvey
- Rhinology and Skull Base Research Group, St Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, NSW, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
27
|
Chen S, Swier VJ, Boosani CS, Radwan MM, Agrawal DK. Vitamin D Deficiency Accelerates Coronary Artery Disease Progression in Swine. Arterioscler Thromb Vasc Biol 2016; 36:1651-9. [PMID: 27255724 DOI: 10.1161/atvbaha.116.307586] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/25/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The role of vitamin D deficiency in coronary artery disease (CAD) progression is uncertain. Chronic inflammation in epicardial adipose tissue (EAT) has been implicated in the pathogenesis of CAD. However, the molecular mechanism underlying vitamin D deficiency-enhanced inflammation in the EAT of diseased coronary arteries remains unknown. We examined a mechanistic link between 1,25-dihydroxyvitamin D-mediated suppression of nuclear factor-κB (NF-κB) transporter, karyopherin α4 (KPNA4) expression and NF-κB activation in preadipocytes. Furthermore, we determined whether vitamin D deficiency accelerates CAD progression by increasing KPNA4 and nuclear NF-κB levels in EAT. APPROACH AND RESULTS Nuclear protein levels were detected by immunofluorescence and Western blot. Exogenous KPNA4 was transported into cells by a transfection approach and constituted lentiviral vector. Swine were administered vitamin D-deficient or vitamin D-sufficient hypercholesterolemic diet. After 1 year, the histopathology of coronary arteries and nuclear protein expression of EAT were assessed. 1,25-dihydroxyvitamin D inhibited NF-κB activation and reduced KPNA4 levels through increased vitamin D receptor expression. Exogenous KPNA4 rescued 1,25-dihydroxyvitamin D-dependent suppression of NF-κB nuclear translocation and activation. Vitamin D deficiency caused extensive CAD progression and advanced atherosclerotic plaques, which are linked to increased KPNA4 and nuclear NF-κB levels in the EAT. CONCLUSIONS 1,25-dihydroxyvitamin D attenuates NF-κB activation by targeting KPNA4. Vitamin D deficiency accelerates CAD progression at least, in part, through enhanced chronic inflammation of EAT by upregulation of KPNA4, which enhances NF-κB activation. These novel findings provide mechanistic evidence that vitamin D supplementation could be beneficial for the prevention and treatment of CAD.
Collapse
Affiliation(s)
- Songcang Chen
- From the Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Vicki J Swier
- From the Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Chandra S Boosani
- From the Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Mohamed M Radwan
- From the Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE
| | - Devendra K Agrawal
- From the Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE.
| |
Collapse
|
28
|
Ziv E, Koren R, Zahalka MA, Ravid A. TNF-α increases the expression and activity of vitamin D receptor in keratinocytes: role of c-Jun N-terminal kinase. DERMATO-ENDOCRINOLOGY 2016; 8:e1137399. [PMID: 27195054 PMCID: PMC4862379 DOI: 10.1080/19381980.2015.1137399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
Abstract
Several inflammatory mediators increase calcitriol production by epidermal keratinocytes. In turn calcitriol attenuates the keratinocyte inflammatory response. Since the effect of the in-situ generated calcitriol depends also on the sensitivity to the hormone we studied the effect of inflammatory cytokines on the response of HaCaT human keratinocytes to calcitriol by examining the expression and transcriptional activity of VDR. Treatment with TNF, but not with IL-1β or interferon γ, increased VDR protein level, while decreasing the level of its heterodimerization partner RXRα. This was associated with increased VDR mRNA levels. c-Jun N-terminal kinase, but not P38 MAPK or NFκB, was found to participate in the upregulation of VDR by TNF. The functional significance of the modulation of VDR and RXRα levels by TNF is manifested by increased induction of VDR target gene CYP24A1 by calcitriol. Calcitriol, in turn, inhibited the enhanced expression of VDR by TNF. In conclusion, the inflammatory cytokine TNF increases the response of keratinocytes to calcitriol through upregulation of its receptor VDR, which in turn is subject to negative feedback by the hormone accelerating the return of the keratinocyte vitamin D system to its basal activity. We surmise that the increased generation and sensitivity to calcitriol in keratinocytes play a role in the resolution of epidermal inflammation.
Collapse
Affiliation(s)
- Ester Ziv
- Basil and Gerald Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruth Koren
- Basil and Gerald Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Muayad A Zahalka
- Basil and Gerald Felsenstein Medical Research Center, Beilinson Campus , Petah Tikva, Israel
| | - Amiram Ravid
- Basil and Gerald Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Alexandrova E, Miglino N, Hashim A, Nassa G, Stellato C, Tamm M, Baty F, Brutsche M, Weisz A, Borger P. Small RNA profiling reveals deregulated phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/Akt pathway in bronchial smooth muscle cells from asthmatic patients. J Allergy Clin Immunol 2015; 137:58-67. [PMID: 26148798 DOI: 10.1016/j.jaci.2015.05.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/20/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aberrant expression of small noncoding RNAs (sncRNAs), microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) in particular, define several pathologic processes. Asthma is characterized by airway hyperreactivity, chronic inflammation, and airway wall remodeling. Asthma-specific miRNA profiles were reported for bronchial epithelial cells, whereas sncRNA expression in asthmatic bronchial smooth muscle (BSM) cells is almost completely unexplored. OBJECTIVE We sought to determine whether the primary BSM sncRNA expression profile is altered in asthmatic patients and identify targets of differentially expressed sncRNAs. METHODS Small RNA sequencing was used for sncRNA profiling in BSM cells (from 8 asthmatic and 6 nonasthmatic subjects). sncRNA identification and differential expression analysis was performed with iMir software. Experimentally validated miRNA targets were identified by using Ingenuity Pathway Analysis, and putative piRNA targets were identified by using miRanda software. RESULTS BSM cells from asthmatic patients showed abnormal expression of 32 sncRNAs (26 miRNAs, 5 piRNAs, and 1 small nucleolar RNA). Target prediction for deregulated miRNAs and piRNAs revealed experimentally validated and predicted mRNA targets expressed in the BSM cells. Thirty-eight of these mRNAs represent major targets for deregulated miRNAs and might play important roles in the pathophysiology of asthma. Interestingly, 6 of these mRNAs were previously associated with asthma, considered as novel therapeutic targets for treatment of this disease, or both. Signaling pathway analysis revealed involvement of 38 miRNA-targeted mRNAs in increased cell proliferation through phosphatase and tensin homolog and phosphoinositide 3-kinase/Akt signaling pathways. CONCLUSIONS BSM cells of asthmatic patients are characterized by aberrant sncRNA expression that recapitulates multiple pathologic phenotypes of these cells.
Collapse
Affiliation(s)
- Elena Alexandrova
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy; Genomix4Life Srl, Campus of Medicine, University of Salerno, Baronissi, Italy
| | - Nicola Miglino
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adnan Hashim
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Claudia Stellato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Michael Tamm
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Florent Baty
- Division of Molecular Pathology and Medical Genomics, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Martin Brutsche
- Division of Molecular Pathology and Medical Genomics, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy; Molecular Pathology and Medical Genomics Unit, "SS. Giovanni di Dio e Ruggi d'Aragona-Schuola Medica Salernitana" University Hospital, Salerno, Italy.
| | - Pieter Borger
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Fischer KD, Agrawal DK. Vitamin D regulating TGF-β induced epithelial-mesenchymal transition. Respir Res 2014; 15:146. [PMID: 25413472 PMCID: PMC4245846 DOI: 10.1186/s12931-014-0146-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023] Open
Abstract
Background Subepithelial fibrosis is a characteristic hallmark of airway remodeling in asthma. A critical regulator of fibrosis, transforming growth factor β (TGF-β), can induce airway remodeling in epithelial cells through induction of epithelial-mesenchymal transition (EMT). Vitamin D has immunomodulatory functions, however, its effect on controlling subepithelial fibrosis is not known. Methods Human bronchial epithelial cells (BEAS-2B) were exposed to calcitriol followed by stimulation with TGF-β1 or TGF-β2. The protein expression and mRNA transcripts for E-cadherin, Snail, vimentin, and N-cadherin were analyzed by Western blot and qPCR. An invasion assay and scratch wound assay were performed to identify the migratory properties of the cells following treatments. Results TGF-β1 decreased E-cadherin expression and increased protein expression and mRNA transcripts of Snail, vimentin, and N-cadherin together with increased cell invasion and migration. TGF-β2 elicited migratory response similar to TGF-β1 but induced the expression of EMT markers differently from that by TGF-β1. Calcitriol attenuated TGF-β1- and TGF-β2-induced cell motility. Also, calcitriol inhibited the expression of EMT markers in TGF-β1-treated epithelial cells with less effect on TGF-β2. Conclusions These data suggest that calcitriol inhibits both migration and invasion induced by TGF-β1 and TGF-β2 in human airway epithelial cells. However, the regulatory effect of vitamin D in epithelial-mesenchymal transition was more effective to TGF-β1-induced changes. Thus, calcitriol could be a potential therapeutic agent in the prevention and management of subepithelial fibrosis and airway remodeling.
Collapse
Affiliation(s)
- Kimberly D Fischer
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA.
| | - Devendra K Agrawal
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, USA. .,Center for Clinical and Translational Science Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
31
|
Liu SG, Li YY, Sun RX, Wang JL, Li XD, Han L, Chu N, Li CG. Polymorphisms in the vitamin D receptor and risk of gout in Chinese Han male population. Rheumatol Int 2014; 35:963-71. [DOI: 10.1007/s00296-014-3167-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
|
32
|
Mulligan JK, Nagel W, O'Connell BP, Wentzel J, Atkinson C, Schlosser RJ. Cigarette smoke exposure is associated with vitamin D3 deficiencies in patients with chronic rhinosinusitis. J Allergy Clin Immunol 2014; 134:342-9. [PMID: 24698317 DOI: 10.1016/j.jaci.2014.01.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cigarette smoke (CS) plays a role in the exacerbation of chronic rhinosinusitis (CRS); however, the mechanism for this is unknown. We hypothesize that CS impairs human sinonasal epithelial cell (HSNEC) conversion of 25(OH)D3 (25VD3) to 1,25-dihydroxyvitamin D3 (1,25VD3) and, furthermore, that supplementation with 1,25VD3 will reverse smoke-induced inflammatory responses by HSNECs. OBJECTIVE We sought to determine the effect of CS on vitamin D3 (VD3) levels, conversion, and regulation of CS-induced inflammation in control subjects and patients with CRS. METHODS Blood and sinus tissue explants were collected at the time of surgery from control subjects, patients with chronic rhinosinusitis without nasal polyps, and patients with chronic sinusitis with nasal polyps (CRSwNP). Expression of VD3 metabolizing enzymes were measured by using RT-PCR. Primary HSNECs were cultured from tissue explants. 25VD3 with and without cigarette smoke extract (CSE) was used to examine conversion of 25VD3 to 1,25VD3, as well as HSNEC production of proinflammatory cytokines. RESULTS CS exposure was associated with reduced circulating and sinonasal 25VD3 levels in all groups compared with those seen in CS-naive, disease-matched counterparts. CS exposure decreased expression of CYP27B1 and was especially pronounced in patients with CRSwNP. CSE impairs control HSNEC conversion of 25VD3. HSNECs from patients with CRSwNP also demonstrate an intrinsic reduction in conversion of 25VD3 to 1,25VD3. Exogenous 1,25VD3 reduces CSE-induced cytokine production by HSNECs. CONCLUSIONS Exposure to CS is associated with reduced 25VD3 levels and an impaired ability of HSNECs to convert 25VD3 to 1,25VD3. Addition of 1,25VD3 reduces the proinflammatory effects of CS on HSNECs. Impaired VD3 conversion by CS exposure represents a novel mechanism through which CS induces its proinflammatory effects.
Collapse
Affiliation(s)
- Jennifer K Mulligan
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC; Department of Pediatrics, Medical University of South Carolina, Charleston, SC; Ralph H. Johnson VA Medical Center, Charleston, SC.
| | - Whitney Nagel
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Brendan P O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Jennifer Wentzel
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | - Rodney J Schlosser
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC; Ralph H. Johnson VA Medical Center, Charleston, SC
| |
Collapse
|
33
|
Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol 2014; 9:899-919. [PMID: 24128155 DOI: 10.1586/1744666x.2013.837260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic asthma is characterized by airway hyperresponsiveness and inflammation and may lead to airway remodeling in uncontrolled cases. Genetic predisposition to an atopic phenotype plays a major component in the pathophysiology of asthma. However, with tremendous role of epigenetic factors and environmental stimuli in precipitating an immune response, the underlying pathophysiological mechanisms are complicated. Dendritic cells are principal antigen-presenting cells and initiators of the immune response in allergic asthma. Their phenotype, guided by multiple factors may dictate the immune reaction to an allergic or tolerogenic response. Involvement of the local cytokine milieu, microbiome and interplay between immune cells add dimension to the fate of immune response. In addition to allergen exposure, these factors modulate DC phenotype and function. In this article, integration of many factors and pathways associated with the recruitment and activation of DCs in the pathophysiology of allergic asthma is presented in a clinical and translational manner.
Collapse
Affiliation(s)
- Rohit Gaurav
- Department of Biomedical Sciences and Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza Omaha, NE 68178, USA
| | | |
Collapse
|
34
|
Abstract
Beyond its critical function in calcium homeostasis, vitamin D has recently been found to play an important role in the modulation of the immune/inflammation system via regulating the production of inflammatory cytokines and inhibiting the proliferation of proinflammatory cells, both of which are crucial for the pathogenesis of inflammatory diseases. Several studies have associated lower vitamin D status with increased risk and unfavorable outcome of acute infections. Vitamin D supplementation bolsters clinical responses to acute infection. Moreover, chronic inflammatory diseases, such as atherosclerosis-related cardiovascular disease, asthma, inflammatory bowel disease, chronic kidney disease, nonalcoholic fatty liver disease, and others, tend to have lower vitamin D status, which may play a pleiotropic role in the pathogenesis of the diseases. In this article, we review recent epidemiological and interventional studies of vitamin D in various inflammatory diseases. The potential mechanisms of vitamin D in regulating immune/inflammatory responses in inflammatory diseases are also discussed.
Collapse
Affiliation(s)
- Kai Yin
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
35
|
Importins and exportins regulating allergic immune responses. Mediators Inflamm 2014; 2014:476357. [PMID: 24733961 PMCID: PMC3964845 DOI: 10.1155/2014/476357] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS) present on cargo molecules to be imported while nuclear export signals (NES) on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.
Collapse
|
36
|
Agrawal T, Gupta GK, Agrawal DK. Vitamin D supplementation reduces airway hyperresponsiveness and allergic airway inflammation in a murine model. Clin Exp Allergy 2014; 43:672-83. [PMID: 23711130 DOI: 10.1111/cea.12102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 01/29/2013] [Accepted: 02/04/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND Asthma is a chronic disease associated with airway hyperresponsiveness (AHR), airway obstruction and airway remodelling. NF-κB is a transcriptional factor that regulates and co-ordinates the expression of various inflammatory genes. The NF-κB subunits, p50 and Rel-A, are translocated to the nucleus by importin α3 and importin α4. There is growing evidence that vitamin D is a potent immunomodulator. However, the evidence for beneficial or adverse effects of vitamin D in asthma is still unclear. OBJECTIVE In this study, we examined the effect of vitamin D status on AHR, airway inflammation and cytokines in the bronchoalveolar lavage fluid (BALF) in a murine model of allergic asthma. METHODS Female BALB/c mice were fed with special vitamin D-deficient or vitamin D-sufficient (2000 IU/kg) or vitamin D-supplemented (10,000 IU/kg) diet for 13 weeks. Mice were sensitized and challenged with ovalbumin (OVA). The effect of vitamin D on lung histology, AHR, T regulatory cells (Tregs) and BALF cytokines was examined. The expression of importin-α3 and Rel-A in the lung of OVA-sensitized mice was analysed using immunofluorescence. RESULTS Vitamin D deficiency was associated with higher AHR in OVA-sensitized and challenged mice than those in vitamin D-sufficient mice. This was accompanied with marked signs of airway remodelling, high BALF eosinophilia, increased BALF pro-inflammatory cytokines, reduced BALF IL-10 levels, reduced blood Tregs, increased expression of importin-α3 and Rel-A in the lung tissue. Vitamin D supplementation attenuated the pro-inflammatory effects, but did not completely reverse the features of allergic airway inflammation. CONCLUSION AND CLINICAL RELEVANCE Vitamin D could be beneficial as an adjunct therapy in the treatment of allergic asthma.
Collapse
Affiliation(s)
- T Agrawal
- Department of Biomedical Sciences and Center for Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | |
Collapse
|
37
|
Trowbridge R, Kizer RT, Mittal SK, Agrawal DK. 1,25-dihydroxyvitamin D in the pathogenesis of Barrett's esophagus and esophageal adenocarcinoma. Expert Rev Clin Immunol 2014; 9:517-33. [PMID: 23730883 DOI: 10.1586/eci.13.38] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The incidence of reflux-related esophageal disease - Barrett's esophagus and esophageal adenocarcinoma - is rising, and the prognosis remains poor. Evidence exists that 1,25-dihydroxyvitamin D may augment the course of colon, breast and prostate cancer but little knowledge exists regarding its impact on disease of the esophagus. Important immune cells involved in reflux-related esophageal disease include CD4(+) T cells, macrophages and dendritic cells, and key signaling pathways include Wnt, Hedgehog, NFκ-B and IL-6-JAK-STAT. There is an inter-relationship between these entities and 1,25-dihydroxyvitamin D, which has been described in animal models and some human tissue. Despite this, there is an incomplete understanding of how the immune cell population and signaling pathways contribute to the course and prognosis of Barrett's esophagus and esophageal adenocarcinoma. More investigation with a focus on the clinical outcomes of patients with Barrett's esophagus and esophageal adenocarcinoma and the immune cell population and cell signaling activity in the diseased esophagus is necessary to determine the immunomodulatory role of 1,25-dihydroxyvitamin D in the pathogenesis of esophageal diseases.
Collapse
Affiliation(s)
- Ryan Trowbridge
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, USA
| | | | | | | |
Collapse
|
38
|
Britt RD, Faksh A, Vogel E, Martin RJ, Pabelick CM, Prakash YS. Perinatal factors in neonatal and pediatric lung diseases. Expert Rev Respir Med 2013; 7:515-31. [PMID: 24090092 DOI: 10.1586/17476348.2013.838020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wheezing and asthma are significant clinical problems for infants and young children, particularly following premature birth. Recurrent wheezing in infants can progress to persistent asthma. As in adults, altered airway structure (remodeling) and function (increased bronchoconstriction) are also important in neonatal and pediatric airway diseases. Accumulating evidence suggests that airway disease in children is influenced by perinatal factors including perturbations in normal fetal lung development, postnatal interventions in the intensive care unit (ICU) and environmental and other insults in the neonatal period. Here, in addition to genetics, maternal health, environmental processes, innate immunity and impaired lung development/function can all influence pathogenesis of airway disease in children. We summarize current understanding of how prenatal and postnatal factors can contribute to development of airway diseases in neonates and children. Understanding these mechanisms will help identify and develop novel therapies for childhood airway diseases.
Collapse
Affiliation(s)
- Rodney D Britt
- Department of Physiology and Biomedical Engineering, 4-184 W Jos SMH, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Vitamin D (vitD3) deficiency occurs frequently and has profound effects on health, especially asthma. This article examines how current knowledge of vitD3 actions and the worldwide distribution of vitD3 deficiency influences everyday clinical allergy practice. Within the limits of current knowledge, the article concisely explains the molecular nature of vitD3 actions, reviews key vitD3 research as it applies to clinical care, answers questions about the potential clinical impact of low vitD3 levels, and discusses use and safety of vitD3 supplements.
Collapse
Affiliation(s)
- Bruce R Gordon
- Cape Cod Hospital, 27 Park Street, Hyannis, MA 02601, USA; Laryngology & Otology, Harvard University, 25 Shattuck Street, Boston, MA 02115, USA; Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
| |
Collapse
|
40
|
Luong KVQ, Nguyen LTH. Beneficial role of vitamin D3 in the prevention of certain respiratory diseases. Ther Adv Respir Dis 2013; 7:327-50. [PMID: 24056290 DOI: 10.1177/1753465813503029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is evidence of aberrations in the vitamin D-endocrine system in subjects with respiratory diseases. Vitamin D deficiency is highly prevalent in patients with respiratory diseases, and patients who receive vitamin D have significantly larger improvements in inspiratory muscle strength and maximal oxygen uptake. Studies have provided an opportunity to determine which proteins link vitamin D to respiratory pathology, including the major histocompatibility complex class II molecules, vitamin D receptor, vitamin D-binding protein, chromosome P450, Toll-like receptors, poly(ADP-ribose) polymerase-1, and the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on respiratory diseases through cell signaling mechanisms, including matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D plays a significant role in respiratory diseases. The best form of vitamin D for use in the treatment of respiratory diseases is calcitriol because it is the active metabolite of vitamin D3 and modulates inflammatory cytokine expression. Further investigation of calcitriol in respiratory diseases is needed.
Collapse
Affiliation(s)
- Khanh Vinh Quoc Luong
- Vietnamese American Medical Research Foundation, 14971 Brookhurst Street, Westminster, CA 92683, USA
| | | |
Collapse
|
41
|
Reversible control by vitamin D of granulocytes and bacteria in the lungs of mice: an ovalbumin-induced model of allergic airway disease. PLoS One 2013; 8:e67823. [PMID: 23826346 PMCID: PMC3691156 DOI: 10.1371/journal.pone.0067823] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/21/2013] [Indexed: 12/26/2022] Open
Abstract
Vitamin D may be essential for restricting the development and severity of allergic diseases and asthma, but a direct causal link between vitamin D deficiency and asthma has yet to be established. We have developed a 'low dose' model of allergic airway disease induced by intraperitoneal injection with ovalbumin (1 µg) and aluminium hydroxide (0.2 mg) in which characteristics of atopic asthma are recapitulated, including airway hyperresponsiveness, antigen-specific immunoglobulin type-E and lung inflammation. We assessed the effects of vitamin D deficiency throughout life (from conception until adulthood) on the severity of ovalbumin-induced allergic airway disease in vitamin D-replete and -deficient BALB/c mice using this model. Vitamin D had protective effects such that deficiency significantly enhanced eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male but not female mice. Vitamin D also suppressed the proliferation and T helper cell type-2 cytokine-secreting capacity of airway-draining lymph node cells from both male and female mice. Supplementation of initially vitamin D-deficient mice with vitamin D for four weeks returned serum 25-hydroxyvitamin D to levels observed in initially vitamin D-replete mice, and also suppressed eosinophil and neutrophil numbers in the bronchoalveolar lavage fluid of male mice. Using generic 16 S rRNA primers, increased bacterial levels were detected in the lungs of initially vitamin D-deficient male mice, which were also reduced by vitamin D supplementation. These results indicate that vitamin D controls granulocyte levels in the bronchoalveolar lavage fluid in an allergen-sensitive manner, and may contribute towards the severity of asthma in a gender-specific fashion through regulation of respiratory bacteria.
Collapse
|
42
|
Abstract
Prohibitin (PHB), appearing to be a negative regulator of cell proliferation and to be a tumor suppressor, has been connected to diverse cellular functions including cell cycle control, senescence, apoptosis and the regulation of mitochondrial activities. It is a growth regulatory gene that has pleiotropic functions in the nucleus, mitochondria and cytoplasmic compartments. However, in different tissues/cells, the expression of PHB was different, such as that it was increased in most of the cancers, but its expression was reduced in kidney diseases. Signaling pathways might be very important in the pathogenesis of diseases. This review was performed to provide a relatively complete signaling pathways flowchart for PHB to the investigators who were interested in the roles of PHB in the pathogenesis of diseases. Here, we review the signal transduction pathways of PHB and its role in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Tian-Biao Zhou
- Department of Pediatric Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | |
Collapse
|
43
|
Abstract
Tissue barriers are critical in the pathogenesis of human diseases, such as atopic dermatitis, inflammatory bowel diseases and various cancers. Preserving or restoring barrier functions of the epithelia cells is a therapeutic strategy to prevent and treat the illness. Mounting evidence indicates that vitamin D and the vitamin D receptor (VDR) play key roles in the pathogenesis of human diseases. In particular, we note an interesting link between vitamin D/VDR signaling and tissue barriers. In the current review, we summarize the recent progress on vitamin D and cell junction complexes. We focus on the functions of VDR and VDR-associated intracellular junction proteins, such as β-catenin and claudins. We also discuss the potential therapeutic functions of vitamin D in treating defective tissue barriers that involve skin, intestine, lung, kidney and other organs. However, the mechanisms for the vitamin D/VDR signaling in tissue barriers remain largely unknown. Further studies on vitamin D/VDR’s multiple functions in physiological models will suggest new therapeutic targets for prevention and treatment diseases with defective barrier functions.
Collapse
Affiliation(s)
- Yong-Guo Zhang
- Department of Biochemistry, Rush University, 1735 W. Harrison Street, Chicago, IL, 60612, USA
| | - Shaoping Wu
- Department of Biochemistry, Rush University, 1735 W. Harrison Street, Chicago, IL, 60612, USA
| | - Jun Sun
- Department of Biochemistry, Rush University, 1735 W. Harrison Street, Chicago, IL, 60612, USA
| |
Collapse
|