1
|
Therapeutic potency of curcumin for allergic diseases: A focus on immunomodulatory actions. Biomed Pharmacother 2022; 154:113646. [PMID: 36063645 DOI: 10.1016/j.biopha.2022.113646] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
In light of increasing research evidence on the molecular mechanisms of allergic diseases, the crucial roles of innate and acquired immunity in the disease's pathogenesis have been well highlighted. In this respect, much attention has been paid to the modulation of unregulated and unabated inflammatory responses aiming to suppress pathologic immune responses in treating allergic diseases. One of the most important natural compounds with a high potency of immune modulation is curcumin, an active polyphenol compound derived from turmeric, Curcuma longa L. Curcumin's immunomodulatory action mainly arises from its interactions with an extensive collection of immune cells such as mast cells, eosinophils, epithelial cells, basophils, neutrophils, and lymphocytes. Up to now, there has been no detailed investigation of curcumin's immunomodulatory actions in allergic diseases. So, the present review study aims to prepare an overview of the immunomodulatory effects of curcumin on the pathologic innate immune responses and dysregulated functions of T helper (TH) subtypes, including TH1, TH2, TH17, and regulator T cells (Tregs) by gathering evidence from several studies of In-vitro and In-vivo. As the second aim of the present review, we also discuss some novel strategies to overcome the limitation of curcumin in clinical use. Finally, this review also assesses the therapeutic potential of curcumin regarding its immunomodulatory actions in allergic diseases.
Collapse
|
2
|
Bekhit AA, Nasralla SN, El-Agroudy EJ, Hamouda N, El-Fattah AA, Bekhit SA, Amagase K, Ibrahim TM. Investigation of the anti-inflammatory and analgesic activities of promising pyrazole derivative. Eur J Pharm Sci 2022; 168:106080. [PMID: 34818572 DOI: 10.1016/j.ejps.2021.106080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 02/02/2023]
Abstract
The development of new COX-2 inhibitors with analgesic and anti-inflammatory efficacy as well as minimal gastrointestinal, renal and cardiovascular toxicity, is of vital importance to patients suffering from chronic course pain and inflammatory conditions. This study aims at evaluating the therapeutic activity and adverse drug reactions associated with the use of the newly synthesized pyrazole derivative, compound AD732, E-4-[3-(4-methylphenyl)-5-hydroxyliminomethyl-1H-pyrazol-1-yl]benzenesulfonamide, as compared to indomethacin and celecoxib as standard agents. Anti-inflammatory activity was assessed using carrageenan-induced rat paw edema and cotton pellet granuloma tests; formalin-induced hyperalgesia and hot plate tests were done to study analgesic activity. In vitro tests to determine COX-1/COX-2 selectivity and assessment of renal and gastric toxicity upon acute exposure to AD732 were also conducted. Compound AD732 exhibited promising results; higher anti-inflammatory and analgesic effects compared to standard agents, coupled with the absence of ulcerogenic effects and minimal detrimental effects on renal function. Additionally, compound AD732 was a less potent inhibitor of COX-2 in vitro than celecoxib, which may indicate lower potential cardiovascular toxicity. It may be concluded that compound AD732 appears to be a safer and more effective molecule with promising potential for the management of pain and inflammation.
Collapse
Affiliation(s)
- Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Pharmacy Program, Pharmacology stream, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Kingdom of Bahrain.
| | - Sherry N Nasralla
- Pharmacy Program, Pharmacology stream, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Kingdom of Bahrain
| | - Eman J El-Agroudy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Nahla Hamouda
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt; Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box. 32038, Kingdom of Bahrain
| | - Salma A Bekhit
- High Institute of Public Health, Alexandria University, Alexandria 21568, Egypt
| | - Kikuko Amagase
- Laboratory of Pharmacology & Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
3
|
Rodrigues FC, Kumar NA, Thakur G. The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol Res 2021; 166:105489. [PMID: 33588007 DOI: 10.1016/j.phrs.2021.105489] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Curcumin, a potent phytochemical, has been a significant lead compound and has been extensively investigated for its multiple bioactivities. Owing to its natural origin, non-toxic, safe, and pleiotropic behavior, it has been extensively explored. However, several limitations such as its poor stability, bioavailability, and fast metabolism prove to be a constraint to achieve its full therapeutic potential. Many approaches have been adopted to improve its profile, amongst which, structural modifications have indicated promising results. Its symmetric structure and simple chemistry have prompted organic and medicinal chemists to manipulate its arrangement and study its implications on the corresponding activity. One such recurring and favorable modification is at the diketo moiety with the aim to achieve isoxazole and pyrazole analogues of curcumin. A modification at this site is not only simple to achieve, but also has indicated a superior activity consistently. This review is a comprehensive and wide-ranged report of the different methods adopted to achieve several cyclized curcumin analogues along with the improvement in the efficacy of the corresponding activities observed.
Collapse
Affiliation(s)
- Fiona C Rodrigues
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Nv Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
4
|
Maher P, Currais A, Schubert D. Using the Oxytosis/Ferroptosis Pathway to Understand and Treat Age-Associated Neurodegenerative Diseases. Cell Chem Biol 2020; 27:1456-1471. [PMID: 33176157 PMCID: PMC7749085 DOI: 10.1016/j.chembiol.2020.10.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Oxytosis was first described over 30 years ago in nerve cells as a non-excitotoxic pathway for glutamate-induced cell death. The key steps of oxytosis, including glutathione depletion, lipoxygenase activation, reactive oxygen species accumulation, and calcium influx, were identified using a combination of chemical and genetic tools. A pathway with the same characteristics as oxytosis was identified in transformed fibroblasts in 2012 and named ferroptosis. Importantly, the pathophysiological changes seen in oxytosis and ferroptosis are also observed in multiple neurodegenerative diseases as well as in the aging brain. This led to the hypothesis that this pathway could be used as a screening tool to identify novel drug candidates for the treatment of multiple age-associated neurological disorders, including Alzheimer's disease (AD). Using this approach, we have identified several AD drug candidates, one of which is now in clinical trials, as well as new target pathways for AD.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Antonio Currais
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Schubert
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Mishra S, Patel S, Halpani CG. Recent Updates in Curcumin Pyrazole and Isoxazole Derivatives: Synthesis and Biological Application. Chem Biodivers 2019; 16:e1800366. [PMID: 30460748 DOI: 10.1002/cbdv.201800366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Curcumin is an admired, plant-derived compound that has been extensively investigated for diverse range of biological activities, but the use of this polyphenol is limited due to its instability. Chemical modifications in curcumin are reported to seize this limitation; such efforts are intensively performed to discover molecules with similar but improved stability and better properties. Focal points of these reviews are synthesis of stable pyrazole and isoxazole analogs of curcumin and application in various biological systems. This review aims to emphasize the latest evidence of curcumin pyrazole analogs as a privileged scaffold in medicinal chemistry. Manifold features of curcumin pyrazole analogs will be summarized herein, including the synthesis of novel curcumin pyrazole analogs and the evaluation of their biological properties. This review is expected to be a complete, trustworthy and critical review of the curcumin pyrazole analogs template to the medicinal chemistry community.
Collapse
Affiliation(s)
- Satyendra Mishra
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Sejal Patel
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Chandni G Halpani
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| |
Collapse
|
6
|
Tang L, Chen Q, Sun L, Zhu L, Liu J, Meng Z, Ni Z, Wang X. Curcumin suppresses MUC5AC production via interfering with the EGFR signaling pathway. Int J Mol Med 2018; 42:497-504. [PMID: 29620257 DOI: 10.3892/ijmm.2018.3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Excessive mucin production in the airway may contribute to airway inflammatory diseases. Curcumin has been reported to prevent mucin 5AC (MUC5AC) production in human airway epithelial cells; however, the molecular targets of curcumin involved in regulating MUC5AC expression have remained elusive. The present study aimed to elucidate the molecular mechanisms by which curcumin regulates MUC5AC production, utilizing the NCI‑H292 human airway epithelial cell line featuring MUC5AC hypersecretion. Curcumin was able to counteract the endothelial growth factor (EGF)‑stimulated mRNA and protein expression of MUC5AC. In addition, curcumin treatment prevented EGF‑induced phosphorylation of EGF receptor (EGFR) as well as the downstream AKT and signal transducer and activator of transcription 3 (STAT3), while inhibition of PI3K and STAT3 signaling significantly attenuated the expression of MUC5AC that was induced by EGF. Furthermore, EGF‑induced increases in the levels of phosphorylated STAT3 in the nuclear fraction were inhibited by curcumin and PI3K inhibitors. In addition, treatment with curcumin significantly decreased MUC5AC and EGFR expression in a time‑dependent manner under basal conditions. These results demonstrated that curcumin inhibited MUC5AC protein expression in NCI‑H292 cells under basal conditions as well under EGF stimulation. This inhibition was accompanied by decreased activation of the EGFR/AKT/STAT3 pathway and reduced EGFR expression, which indicated that curcumin may have a dual role in interfering with the EGFR signaling pathway and inhibiting mucin expression in human airway epithelial cells.
Collapse
Affiliation(s)
- Lingling Tang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingge Chen
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Li Sun
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Linyun Zhu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Jinjin Liu
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ziyu Meng
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Zhenhua Ni
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Xiongbiao Wang
- Department of Respiratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
7
|
Uthayashanker RE, Rita MH. Preliminary screening of anti-inflammatory effect of phytochemicals on chemotaxis of human neutrophils. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/jpp2015.0353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Lapchak PA, Lara JA, Boitano PD. 4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl) vinyl)-2-methoxy-phenol) (CNB-001) Does Not Regulate Human Recombinant Protein-Tyrosine Phosphatase1B (PTP1B) Activity in vitro.. JOURNAL OF NEUROLOGY & NEUROPHYSIOLOGY 2014; 5. [PMID: 25364621 PMCID: PMC4213551 DOI: 10.4172/2155-9562.1000232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein-Tyrosine Phosphatase1B (PTP1B) is a negative regulator of the insulin signaling pathway and is a potential therapeutic target for treatment of type 2 diabetes, cardiovascular disease, metabolic syndrome and cancer. It has been postulated that CNB-001 [4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl) vinyl)-2-methoxy-phenol)] may regulate PTP1B activity suggested by a computer-based active site docking recognition model. This possibility was studied using a human recombinant PTP1B assay, and a phospho-peptide fragment of the insulin receptor β subunit domain (IR5). The positive control, suramin, inhibited PTP1B with an IC50 (half minimal (50%) inhibitory concentration) value of 16.34 µM; CNB-001 did not affect enzyme activity across the range of 1nM-0.1mM. This study suggests that PTP1B inhibition is not involved in the beneficial effects of CNB-001 in obese type 2 diabetic mice.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Los Angeles, USA ; Department of Neurosurgery, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Los Angeles, USA
| | - Jacqueline A Lara
- Department of Neurology, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Los Angeles, USA
| | - Paul D Boitano
- Department of Neurology, Cedars-Sinai Medical Center, Advanced Health Sciences Pavilion, Los Angeles, USA
| |
Collapse
|
9
|
Jayaraj RL, Elangovan N, Dhanalakshmi C, Manivasagam T, Essa MM. CNB-001, a novel pyrazole derivative mitigates motor impairments associated with neurodegeneration via suppression of neuroinflammatory and apoptotic response in experimental Parkinson’s disease mice. Chem Biol Interact 2014; 220:149-57. [DOI: 10.1016/j.cbi.2014.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 01/15/2023]
|
10
|
Prior M, Chiruta C, Currais A, Goldberg J, Ramsey J, Dargusch R, Maher PA, Schubert D. Back to the future with phenotypic screening. ACS Chem Neurosci 2014; 5:503-13. [PMID: 24902068 DOI: 10.1021/cn500051h] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
There are no disease-modifying drugs for any old age associated neurodegenerative disease or stroke. This is at least in part due to the failure of drug developers to recognize that the vast majority of neurodegenerative diseases arise from a confluence of multiple toxic insults that accumulate during normal aging and interact with genetic and environmental risk factors. Thus, it is unlikely that the current single target approach based upon rare dominant mutations or even a few preselected targets is going to yield useful drugs for these conditions. Therefore, the identification of drug candidates for neurodegeneration should be based upon their efficacy in phenotypic screening assays that reflect the biology of the aging brain, not a single, preselected target. It is argued here that this approach to drug discovery is the most likely to produce safe and effective drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marguerite Prior
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Chandramouli Chiruta
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Antonio Currais
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Josh Goldberg
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Justin Ramsey
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Richard Dargusch
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - Pamela A. Maher
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| | - David Schubert
- Cellular
Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037-1002, United States
| |
Collapse
|
11
|
CNB-001 a novel curcumin derivative, guards dopamine neurons in MPTP model of Parkinson's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:236182. [PMID: 25025041 PMCID: PMC4083212 DOI: 10.1155/2014/236182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/14/2014] [Indexed: 12/29/2022]
Abstract
Copious experimental and postmortem studies have shown that oxidative stress mediated degeneration of nigrostriatal dopaminergic neurons underlies Parkinson's disease (PD) pathology. CNB-001, a novel pyrazole derivative of curcumin, has recently been reported to possess various neuroprotective properties. This study was designed to investigate the neuroprotective mechanism of CNB-001 in a subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rodent model of PD. Administration of MPTP (30 mg/kg for four consecutive days) exacerbated oxidative stress and motor impairment and reduced tyrosine hydroxylase (TH), dopamine transporter, and vesicular monoamine transporter 2 (VMAT2) expressions. Moreover, MPTP induced ultrastructural changes such as distorted cristae and mitochondrial enlargement in substantia nigra and striatum region. Pretreatment with CNB-001 (24 mg/kg) not only ameliorated behavioral anomalies but also synergistically enhanced monoamine transporter expressions and cosseted mitochondria by virtue of its antioxidant action. These findings support the neuroprotective property of CNB-001 which may have strong therapeutic potential for treatment of PD.
Collapse
|
12
|
Panzhinskiy E, Hua Y, Lapchak PA, Topchiy E, Lehmann TE, Ren J, Nair S. Novel curcumin derivative CNB-001 mitigates obesity-associated insulin resistance. J Pharmacol Exp Ther 2014; 349:248-57. [PMID: 24549372 PMCID: PMC3989800 DOI: 10.1124/jpet.113.208728] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 02/13/2014] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes is growing at epidemic proportions, and pharmacological interventions are being actively sought. This study examined the effect of a novel neuroprotective curcuminoid, CNB-001 [4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl)vinyl)-2-methoxy-phenol], on glucose intolerance and insulin signaling in high-fat diet (HFD)-fed mice. C57BL6 mice (5-6 weeks old) were randomly assigned to receive either a HFD (45% fat) or a low-fat diet (LFD, 10% fat) for 24 weeks, together with CNB-001 (40 mg/kg i.p. per day). Glucose tolerance test revealed that the area under the curve of postchallenge glucose concentration was elevated on HF-feeding, which was attenuated by CNB-001. CNB-001 attenuated body weight gain, serum triglycerides, and IL-6, and augmented insulin signaling [elevated phosphoprotein kinase B (p-Akt), and phosphoinsulin receptor (p-IR)β, lowered endoplasmic reticulum (ER) stress, protein-tyrosine phosphatase 1B (PTP1B)] and glucose uptake in gastrocnemius muscle of HFD-fed mice. Respiratory quotient, measured using a metabolic chamber, was elevated in HFD-fed mice, which was unaltered by CNB-001, although CNB-001 treatment resulted in higher energy expenditure. In cultured myotubes, CNB-001 reversed palmitate-induced impairment of insulin signaling and glucose uptake. Docking studies suggest a potential interaction between CNB-001 and PTP1B. Taken together, CNB-001 alleviates obesity-induced glucose intolerance and represents a potential candidate for further development as an antidiabetic agent.
Collapse
Affiliation(s)
- Evgeniy Panzhinskiy
- Division of Pharmaceutical Sciences and Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, College of Health Sciences, Laramie, Wyoming (E.P., Y.H., J.R., S.N.); Cedars-Sinai Medical Center, Department of Neurology and Neurosurgery, Burns and Allen Research Institute, Los Angeles, California (P.A.L.); and Chemistry Department, University of Wyoming, Laramie, Wyoming (E.T., T.E.L.)
| | | | | | | | | | | | | |
Collapse
|
13
|
In silico identification of potent inhibitors of alpha-synuclein aggregation and its in vivo evaluation using MPTP induced Parkinson mice model. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.biomag.2014.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Bukhari SNA, Jantan IB, Jasamai M, Ahmad W, Amjad MWB. Synthesis and Biological Evaluation of Curcumin Analogues. JOURNAL OF MEDICAL SCIENCES 2013. [DOI: 10.3923/jms.2013.501.513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Neuroprotective Effect of CNB-001, a Novel Pyrazole Derivative of Curcumin on Biochemical and Apoptotic Markers Against Rotenone-Induced SK-N-SH Cellular Model of Parkinson’s Disease. J Mol Neurosci 2013; 51:863-70. [DOI: 10.1007/s12031-013-0075-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/11/2013] [Indexed: 12/26/2022]
|