1
|
Stone J, Robinson SR, Mitrofanis J, Johnstone DM. A Triple Mystery of Insidious Organ Failure: Are the Lung, Kidney and Brain All Damaged by the Ageing Pulse? Biomedicines 2024; 12:1969. [PMID: 39335483 PMCID: PMC11429015 DOI: 10.3390/biomedicines12091969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
This review explores the hypothesis that dementia in several forms, chronic kidney disease and idiopathic pulmonary fibrosis have a common cause in pulse-induced capillary haemorrhage. All three conditions are age-related and characterised by insidious onset, uncertainty about their cause, exacerbation by hypertension, resistance to treatment and the relentlessness of their progression. We argue that the three conditions are the clinical outcomes of damage caused by pulse-induced haemorrhage from capillaries. The damage, first detectable in mid-life, creates first mild and then severe symptoms of cognitive, renal and pulmonary dysfunction. We also review evidence that in all three organs there has developed, by young adulthood, a reserve of tissue that enables them to function well, despite the 'heartbeat by heartbeat' damage that accumulates from early mid-life; and that it is when that reserve is exhausted, typically in late age, that symptoms of organ failure emerge and progress. If this common cause can be established, a step will have been taken towards the understanding, treatment and delay of three conditions that have their beginnings in every individual and that, in those who survive other causes of death, become lethal in late age.
Collapse
Affiliation(s)
- Jonathan Stone
- Discipline of Physiology, and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen R. Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia;
| | - John Mitrofanis
- Fonds de Dotation, Clinatec, Université Grenoble Alpes, 38000 Grenoble, France;
| | - Daniel M. Johnstone
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia;
| |
Collapse
|
2
|
Danila E, Aleksonienė R, Besusparis J, Gruslys V, Jurgauskienė L, Laurinavičienė A, Laurinavičius A, Mainelis A, Zablockis R, Zeleckienė I, Žurauskas E, Malickaitė R. Lymphocyte Subsets and Pulmonary Nodules to Predict the Progression of Sarcoidosis. Biomedicines 2023; 11:biomedicines11051437. [PMID: 37239108 DOI: 10.3390/biomedicines11051437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The search for biological markers, which allow a relatively accurate assessment of the individual course of pulmonary sarcoidosis at the time of diagnosis, remains one of the research priorities in this field of pulmonary medicine. The aim of our study was to investigate possible prognostic factors for pulmonary sarcoidosis with a special focus on cellular immune inflammation markers. A 2-year follow-up of the study population after the initial prospective and simultaneous analysis of lymphocyte activation markers expression in the blood, as well as bronchoalveolar lavage fluid (BALF) and lung biopsy tissue of patients with newly diagnosed pulmonary sarcoidosis, was performed. We found that some blood and BAL fluid immunological markers and lung computed tomography (CT) patterns have been associated with a different course of sarcoidosis. We revealed five markers that had a significant negative association with the course of sarcoidosis (worsening pulmonary function tests and/or the chest CT changes)-blood CD4+CD31+ and CD4+CD44+ T lymphocytes, BALF CD8+CD31+ and CD8+CD103+ T lymphocytes and a number of lung nodules on chest CT at the time of the diagnosis. Cut-off values, sensitivity, specificity and odds ratio for predictors of sarcoidosis progression were calculated. These markers may be reasonable predictors of sarcoidosis progression.
Collapse
Affiliation(s)
- Edvardas Danila
- Clinic of Chest Diseases, Immunology and Allergology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Regina Aleksonienė
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Justinas Besusparis
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Vygantas Gruslys
- Clinic of Chest Diseases, Immunology and Allergology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Laimutė Jurgauskienė
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Laboratory Medicine, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Aida Laurinavičienė
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Arvydas Laurinavičius
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Antanas Mainelis
- Faculty of Mathematics and Informatics, Vilnius University, 03225 Vilnius, Lithuania
| | - Rolandas Zablockis
- Clinic of Chest Diseases, Immunology and Allergology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Ingrida Zeleckienė
- Center of Radiology and Nuclear Medicine, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Edvardas Žurauskas
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Radvilė Malickaitė
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Laboratory Medicine, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| |
Collapse
|
3
|
Aleksonienė R, Besusparis J, Gruslys V, Jurgauskienė L, Laurinavičienė A, Laurinavičius A, Malickaitė R, Norkūnienė J, Zablockis R, Žurauskas E, Danila E. CD31 +, CD38 +, CD44 +, and CD103 + lymphocytes in peripheral blood, bronchoalveolar lavage fluid and lung biopsy tissue in sarcoid patients and controls. J Thorac Dis 2021; 13:2300-2318. [PMID: 34012580 PMCID: PMC8107533 DOI: 10.21037/jtd-20-2396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background The mechanisms driving the transition from inflammation to fibrosis in sarcoidosis patients are poorly understood; prognostic features are lacking. Immune cell profiling may provide insights into pathogenesis and prognostic factors of the disease. This study aimed to establish associations in simultaneous of lymphocyte subset profiles in the blood, bronchoalveolar lavage fluid (BALF), and lung biopsy tissue in the patients with newly diagnosed sarcoidosis. Methods A total of 71 sarcoid patients (SPs) and 20 healthy controls (HCs) were enrolled into the study. CD31, CD38, CD44, CD103 positive T lymphocytes in blood and BALF were analysed. Additionally, the densities of CD4, CD8, CD38, CD44, CD103 positive cells in lung tissue biopsies were estimated by digital image analysis. Results Main findings: (I) increase of percentage of CD3+CD4+CD38+ in BALF and blood, and increase of percentage of CD3+CD4+CD44+ in BALF in Löfgren syndrome patients comparing with patients without Löfgren syndrome, (II) increase of percentage of CD3+CD4+103+ in BALF and in blood in patients without Löfgren syndrome (comparing with Löfgren syndrome patients) and increase of percentage of CD3+CD4+103+ in BALF and in blood in more advanced sarcoidosis stage. (III) Increasing percentage of BALF CD3+CD4+CD31+ in sarcoidosis patients when comparing with controls independently of presence of Löfgren syndrome, smoking status or stage of sarcoidosis. Several significant correlations were found. Conclusions Lymphocyte subpopulations in blood, BALF, and lung tissue were substantially different in SPs at the time of diagnosis compared to HCs. CD3+CD4+CD31+ in BALF might be a potential supporting marker for the diagnosis of sarcoidosis. CD3+CD4+CD38+ in BALF and blood and CD3+CD4+CD44+ in BALF may be markers of the acute immune response in sarcoidosis patients. CD4+CD103+ T-cells in BALF and in blood are markers of the persistent immune response in sarcoidosis patients and are potential prognostic features of the chronic course of this disease.
Collapse
Affiliation(s)
- Regina Aleksonienė
- Clinic of Chest Diseases, Immunology and Allergology of Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Justinas Besusparis
- National Center of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Vygantas Gruslys
- Clinic of Chest Diseases, Immunology and Allergology of Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Aida Laurinavičienė
- National Center of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Arvydas Laurinavičius
- National Center of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Jolita Norkūnienė
- Department of Mathematical Statistics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Rolandas Zablockis
- Clinic of Chest Diseases, Immunology and Allergology of Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Edvardas Žurauskas
- National Center of Pathology, affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Edvardas Danila
- Clinic of Chest Diseases, Immunology and Allergology of Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| |
Collapse
|
4
|
Zhi H, Kanaji T, Fu G, Newman DK, Newman PJ. Generation of PECAM-1 (CD31) conditional knockout mice. Genesis 2019; 58:e23346. [PMID: 31729819 DOI: 10.1002/dvg.23346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022]
Abstract
Platelet endothelial cell adhesion molecule 1 (PECAM-1) is an adhesion and signaling receptor that is expressed on endothelial and hematopoietic cells and plays important roles in angiogenesis, vascular permeability, and regulation of cellular responsiveness. To better understanding the tissue specificity of PECAM-1 functions, we generated mice in which PECAM1, the gene encoding PECAM-1, could be conditionally knocked out. A targeting construct was created that contains loxP sites flanking PECAM1 exons 1 and 2 and a neomycin resistance gene flanked by flippase recognition target (FRT) sites that was positioned upstream of the 3' loxP site. The targeting construct was electroporated into C57BL/6 embryonic stem (ES) cells, and correctly targeted ES cells were injected into C57BL/6 blastocysts, which were implanted into pseudo-pregnant females. Resulting chimeric animals were bred with transgenic mice expressing Flippase 1 (FLP1) to remove the FRT-flanked neomycin resistance gene and mice heterozygous for the floxed PECAM1 allele were bred with each other to obtain homozygous PECAM1 flox/flox offspring, which expressed PECAM-1 at normal levels and had no overt phenotype. PECAM1 flox/flox mice were bred with mice expressing Cre recombinase under the control of the SRY-box containing gene 2 (Sox2Cre) promoter to delete the floxed PECAM1 allele in offspring (Sox2Cre;PECAM1 del/WT ), which were crossbred to generate Sox2Cre; PECAM1 del/del offspring. Sox2Cre; PECAM1 del/del mice recapitulated the phenotype of conventional global PECAM-1 knockout mice. PECAM1 flox/flox mice will be useful for studying distinct roles of PECAM-1 in tissue specific contexts and to gain insights into the roles that PECAM-1 plays in blood and vascular cell function.
Collapse
Affiliation(s)
- Huiying Zhi
- Blood Research Institute, Versiti, Milwaukee, Wisconsin
| | | | - Guoping Fu
- Blood Research Institute, Versiti, Milwaukee, Wisconsin
| | - Debra K Newman
- Blood Research Institute, Versiti, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Peter J Newman
- Blood Research Institute, Versiti, Milwaukee, Wisconsin.,Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Early M, Schroeder WG, Unnithan R, Gilchrist JM, Muller WA, Schenkel A. Differential effect of Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) on leukocyte infiltration during contact hypersensitivity responses. PeerJ 2017; 5:e3555. [PMID: 28713655 PMCID: PMC5507171 DOI: 10.7717/peerj.3555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/18/2017] [Indexed: 11/26/2022] Open
Abstract
Background 2′–4′ Dinitrofluorobenzene (DNFB) induced contact hypersensitivity is an established model of contact sensitivity and leukocyte migration. Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) deficient mice were used to examine the role of PECAM-1 in the migration capacity of several different leukocyte populations after primary and secondary application. Results γδ T lymphocytes, granulocytes, and Natural Killer cells were most affected by PECAM-1 deficiency at the primary site of application. γδ T lymphocytes, granulocytes, DX5+ Natural Killer cells, and, interestingly, effector CD4+ T lymphocytes were most affected by the loss of PECAM-1 at the secondary site of application. Conclusions PECAM-1 is used by many leukocyte populations for migration, but there are clearly differential effects on the usage by each subset. Further, the overall kinetics of each population varied between primary and secondary application, with large relative increases in γδ T lymphocytes during the secondary response.
Collapse
Affiliation(s)
- Merideth Early
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - William G Schroeder
- Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO, United States of America
| | - Ranajana Unnithan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States of America
| | - John M Gilchrist
- Department of Physiology, University of California, San Francisco, United States of America
| | - William A Muller
- Department of Pathology, Northwestern University, Chicago, IL, United States of America
| | - Alan Schenkel
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
6
|
Zhuang H, Han S, Lee PY, Khaybullin R, Shumyak S, Lu L, Chatha A, Afaneh A, Zhang Y, Xie C, Nacionales D, Moldawer L, Qi X, Yang LJ, Reeves WH. Pathogenesis of Diffuse Alveolar Hemorrhage in Murine Lupus. Arthritis Rheumatol 2017; 69:1280-1293. [PMID: 28217966 DOI: 10.1002/art.40077] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Diffuse alveolar hemorrhage (DAH) in lupus patients confers >50% mortality, and the cause is unknown. We undertook this study to examine the pathogenesis of DAH in C57BL/6 mice with pristane-induced lupus, a model of human lupus-associated DAH. METHODS Clinical/pathologic and immunologic manifestations of DAH in pristane-induced lupus were compared with those of DAH in humans. Tissue distribution of pristane was examined by mass spectrometry. Cell types responsible for disease were determined by in vivo depletion using clodronate liposomes and antineutrophil monoclonal antibodies (anti-Ly-6G). The effect of complement depletion with cobra venom factor (CVF) was examined. RESULTS After intraperitoneal injection, pristane migrated to the lung, causing cell death, small vessel vasculitis, and alveolar hemorrhage similar to that seen in DAH in humans. B cell-deficient mice were resistant to induction of DAH, but susceptibility was restored by infusing IgM. C3-/- and CD18-/- mice were also resistant, and DAH was prevented in wild-type mice by CVF. Induction of DAH was independent of Toll-like receptors, inflammasomes, and inducible nitric oxide. Mortality was increased in interleukin-10 (IL-10)-deficient mice, and pristane treatment decreased IL-10 receptor expression in monocytes and STAT-3 phosphorylation in lung macrophages. In vivo neutrophil depletion was not protective, while treatment with clodronate liposomes prevented DAH, which suggests that macrophage activation is central to DAH pathogenesis. CONCLUSION The pathogenesis of DAH involves opsonization of dead cells by natural IgM and complement followed by complement receptor-mediated lung inflammation. The disease is macrophage dependent, and IL-10 is protective. Complement inhibition and/or macrophage-targeted therapies may reduce mortality in lupus-associated DAH.
Collapse
Affiliation(s)
| | | | - Pui Y Lee
- Boston Children's Hospital, Boston, Massachusetts
| | | | | | - Li Lu
- University of Florida, Gainesville
| | | | | | | | - Chao Xie
- University of Florida, Gainesville
| | | | | | - Xin Qi
- University of Florida, Gainesville
| | | | | |
Collapse
|
7
|
Sarelius IH, Glading AJ. Control of vascular permeability by adhesion molecules. Tissue Barriers 2015; 3:e985954. [PMID: 25838987 DOI: 10.4161/21688370.2014.985954] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/05/2014] [Indexed: 12/13/2022] Open
Abstract
Vascular permeability is a vital function of the circulatory system that is regulated in large part by the limited flux of solutes, water, and cells through the endothelial cell layer. One major pathway through this barrier is via the inter-endothelial junction, which is driven by the regulation of cadherin-based adhesions. The endothelium also forms attachments with surrounding proteins and cells via 2 classes of adhesion molecules, the integrins and IgCAMs. Integrins and IgCAMs propagate activation of multiple downstream signals that potentially impact cadherin adhesion. Here we discuss the known contributions of integrin and IgCAM signaling to the regulation of cadherin adhesion stability, endothelial barrier function, and vascular permeability. Emphasis is placed on known and prospective crosstalk signaling mechanisms between integrins, the IgCAMs- ICAM-1 and PECAM-1, and inter-endothelial cadherin adhesions, as potential strategic signaling nodes for multipartite regulation of cadherin adhesion.
Collapse
Key Words
- ICAM-1
- ICAM-1, intercellular adhesion molecule 1
- IgCAM, immunoglobulin superfamily cell adhesion molecule
- JAM, junctional adhesion molecule
- LPS, lipopolysaccharide
- PECAM-1
- PECAM-1, platelet endothelial cell adhesion molecule 1
- PKC, protein kinase C
- RDG, arginine-aspartic acid- glutamine
- S1P, sphingosine 1 phosphate
- SHP-2, Src homology region 2 domain-containing phosphatase
- TGF-β, transforming growth factor-β
- TNF-α, tumor necrosis factor α
- VCAM-1, vascular cell adhesion molecule 1
- VE-PTP, Receptor-type tyrosine-protein phosphatase β
- VE-cadherin
- VEGF, vascular endothelial growth factor
- adhesion
- eNOS, endothelial nitric oxide synthase
- endothelial barrier function
- fMLP, f-Met-Leu-Phe
- iNOS, inducible nitric oxide synthase
- integrins
- permeability
- transendothelial migration
Collapse
Affiliation(s)
- Ingrid H Sarelius
- University of Rochester; Department of Pharmacology and Physiology ; Rochester, NY USA
| | - Angela J Glading
- University of Rochester; Department of Pharmacology and Physiology ; Rochester, NY USA
| |
Collapse
|