1
|
Li L, Bu X, Wang S, Liu Y, Chen C, Zhang W, Zhao P. Response Gene to Complement 32 is associated with poor patient survival and an inflamed tumor-immune microenvironment in clear cell renal cell carcinoma. Transl Oncol 2025; 52:102248. [PMID: 39709718 PMCID: PMC11832949 DOI: 10.1016/j.tranon.2024.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
It has been well established that tumor-infiltrating lymphocytes (TILs) play a critical role in the pathogenesis and progression of clear cell renal cell carcinoma (ccRCC). However, the mechanism on the interactions between TILs and tumor cells in the tumor-immune microenvironment remains unclear. In the present study, the expression of Response Gene to Complement 32 (RGC-32) was evaluated using immunohistochemistry. We analyzed the associations of RGC-32 expression with patient characteristics and survival. We also assessed TILs and their subsets (CD3+, CD4+, CD8+ and PD-1+) in the tumor nest. The level of RGC-32 expression was positively correlated with ISUP grade and Ki67 expression and was an independent poor prognosis factor of patients with ccRCC. RGC-32 expression was negatively correlated with the infiltration of TIL and CD3+T cells, but positively correlated with infiltration of PD-1+cells. In vitro studies showed that RGC-32 expression in renal cancer cells was downregulated by activated immune cells. Further investigation revealed that RGC-32 expression in renal cancer cells was inhibited by TNF-α and IL-1β secreted by activated immune cells. Collectively, these data indicate that RGC-32 could be a novel prognostic and druggable target related to the tumor-immune microenvironment in renal cancer.
Collapse
Affiliation(s)
- Lingling Li
- School of Basic Medicine, Shandong Second Medical University, Weifang, China
| | - Xiaocui Bu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Shuhui Wang
- Clinical laboratory, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yan Liu
- Department of Pathology, The 971 Hospital of People's Liberation Army Navy, Qingdao, China
| | - Chongdao Chen
- Department of Pathology, The 971 Hospital of People's Liberation Army Navy, Qingdao, China
| | - Wei Zhang
- Department of Pathology, The 971 Hospital of People's Liberation Army Navy, Qingdao, China.
| | - Peng Zhao
- Biotherapy Center, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
2
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
3
|
Vlaicu SI, Tatomir A, Cuevas J, Rus V, Rus H. COVID, complement, and the brain. Front Immunol 2023; 14:1216457. [PMID: 37533859 PMCID: PMC10391634 DOI: 10.3389/fimmu.2023.1216457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
The brains of COVID-19 patients are affected by the SARS-CoV-2 virus, and these effects may contribute to several COVID-19 sequelae, including cognitive dysfunction (termed "long COVID" by some researchers). Recent advances concerning the role of neuroinflammation and the consequences for brain function are reviewed in this manuscript. Studies have shown that respiratory SARS-CoV-2 infection in mice and humans is associated with selective microglial reactivity in the white matter, persistently impaired hippocampal neurogenesis, a decrease in the number of oligodendrocytes, and myelin loss. Brain MRI studies have revealed a greater reduction in grey matter thickness in the orbitofrontal cortex and parahippocampal gyrus, associated with a greater reduction in global brain size, in those with SARS-CoV-2 and a greater cognitive decline. COVID-19 can directly infect endothelial cells of the brain, potentially promoting clot formation and stroke; complement C3 seems to play a major role in this process. As compared to controls, the brain tissue of patients who died from COVID-19 have shown a significant increase in the extravasation of fibrinogen, indicating leakage in the blood-brain barrier; furthermore, recent studies have documented the presence of IgG, IgM, C1q, C4d, and C5b-9 deposits in the brain tissue of COVID-19 patients. These data suggest an activation of the classical complement pathway and an immune-mediated injury to the endothelial cells. These findings implicate both the classical and alternative complement pathways, and they indicate that C3b and the C5b-9 terminal complement complex (membrane attack complex, MAC) are acting in concert with neuroinflammatory and immune factors to contribute to the neurological sequelae seen in patients with COVID.
Collapse
Affiliation(s)
- Sonia I. Vlaicu
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Medicine, Medical Clinic Nr. 1, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Jacob Cuevas
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Neurology Service, Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| |
Collapse
|
4
|
Wu Z, Wang X, Liang H, Liu F, Li Y, Zhang H, Wang C, Wang Q. Identification of Signature Genes of Dilated Cardiomyopathy Using Integrated Bioinformatics Analysis. Int J Mol Sci 2023; 24:ijms24087339. [PMID: 37108502 PMCID: PMC10139023 DOI: 10.3390/ijms24087339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by left ventricular or biventricular enlargement with systolic dysfunction. To date, the underlying molecular mechanisms of dilated cardiomyopathy pathogenesis have not been fully elucidated, although some insights have been presented. In this study, we combined public database resources and a doxorubicin-induced DCM mouse model to explore the significant genes of DCM in full depth. We first retrieved six DCM-related microarray datasets from the GEO database using several keywords. Then we used the "LIMMA" (linear model for microarray data) R package to filter each microarray for differentially expressed genes (DEGs). Robust rank aggregation (RRA), an extremely robust rank aggregation method based on sequential statistics, was then used to integrate the results of the six microarray datasets to filter out the reliable differential genes. To further improve the reliability of our results, we established a doxorubicin-induced DCM model in C57BL/6N mice, using the "DESeq2" software package to identify DEGs in the sequencing data. We cross-validated the results of RRA analysis with those of animal experiments by taking intersections and identified three key differential genes (including BEX1, RGCC and VSIG4) associated with DCM as well as many important biological processes (extracellular matrix organisation, extracellular structural organisation, sulphur compound binding, and extracellular matrix structural components) and a signalling pathway (HIF-1 signalling pathway). In addition, we confirmed the significant effect of these three genes in DCM using binary logistic regression analysis. These findings will help us to better understand the pathogenesis of DCM and may be key targets for future clinical management.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Liang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Fangfang Liu
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yingxuan Li
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Huaxing Zhang
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunying Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Qiao Wang
- Department of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
5
|
Tatomir A, Cuevas J, Badea TC, Muresanu DF, Rus V, Rus H. Role of RGC-32 in multiple sclerosis and neuroinflammation – few answers and many questions. Front Immunol 2022; 13:979414. [PMID: 36172382 PMCID: PMC9510783 DOI: 10.3389/fimmu.2022.979414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances in understanding the pathogenesis of multiple sclerosis (MS) have brought into the spotlight the major role played by reactive astrocytes in this condition. Response Gene to Complement (RGC)-32 is a gene induced by complement activation, growth factors, and cytokines, notably transforming growth factor β, that is involved in the modulation of processes such as angiogenesis, fibrosis, cell migration, and cell differentiation. Studies have uncovered the crucial role that RGC-32 plays in promoting the differentiation of Th17 cells, a subtype of CD4+ T lymphocytes with an important role in MS and its murine model, experimental autoimmune encephalomyelitis. The latest data have also shown that RGC-32 is involved in regulating major transcriptomic changes in astrocytes and in favoring the synthesis and secretion of extracellular matrix components, growth factors, axonal growth molecules, and pro-astrogliogenic molecules. These results suggest that RGC-32 plays a major role in driving reactive astrocytosis and the generation of astrocytes from radial glia precursors. In this review, we summarize recent advances in understanding how RGC-32 regulates the behavior of Th17 cells and astrocytes in neuroinflammation, providing insight into its role as a potential new biomarker and therapeutic target.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Jacob Cuevas
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Tudor C. Badea
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - Dafin F. Muresanu
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Neurology Service, Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
- *Correspondence: Horea Rus,
| |
Collapse
|
6
|
Vlaicu SI, Tatomir A, Fosbrink M, Nguyen V, Boodhoo D, Cudrici C, Badea TC, Rus V, Rus H. RGC-32′ dual role in smooth muscle cells and atherogenesis. Clin Immunol 2022; 238:109020. [DOI: 10.1016/j.clim.2022.109020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
|
7
|
Guo Z, Chen M, Chao Y, Cai C, Liu L, Zhao L, Li L, Bai QR, Xu Y, Niu W, Shi L, Bi Y, Ren D, Yuan F, Shi S, Zeng Q, Han K, Shi Y, Bian S, He G. RGCC balances self-renewal and neuronal differentiation of neural stem cells in the developing mammalian neocortex. EMBO Rep 2021; 22:e51781. [PMID: 34323349 DOI: 10.15252/embr.202051781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022] Open
Abstract
During neocortical development, neural stem cells (NSCs) divide symmetrically to self-renew at the early stage and then divide asymmetrically to generate post-mitotic neurons. The molecular mechanisms regulating the balance between NSC self-renewal and neurogenesis are not fully understood. Using mouse in utero electroporation (IUE) technique and in vitro human NSC differentiation models including cerebral organoids (hCOs), we show here that regulator of cell cycle (RGCC) modulates NSC self-renewal and neuronal differentiation by affecting cell cycle regulation and spindle orientation. RGCC deficiency hampers normal cell cycle process and dysregulates the mitotic spindle, thus driving more cells to divide asymmetrically. These modulations diminish the NSC population and cause NSC pre-differentiation that eventually leads to brain developmental malformation in hCOs. We further show that RGCC might regulate NSC spindle orientation by affecting the organization of centrosome and microtubules. Our results demonstrate that RGCC is essential to maintain the NSC pool during cortical development and suggest that RGCC defects could have etiological roles in human brain malformations.
Collapse
Affiliation(s)
- Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mengxia Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yiming Chao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chunhai Cai
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Zhao
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linbo Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qing-Ran Bai
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yanxin Xu
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weibo Niu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyue Shi
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Zeng
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Tatomir A, Beltrand A, Nguyen V, Courneya JP, Boodhoo D, Cudrici C, Muresanu DF, Rus V, Badea TC, Rus H. RGC-32 Acts as a Hub to Regulate the Transcriptomic Changes Associated With Astrocyte Development and Reactive Astrocytosis. Front Immunol 2021; 12:705308. [PMID: 34394104 PMCID: PMC8358671 DOI: 10.3389/fimmu.2021.705308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 01/14/2023] Open
Abstract
Response Gene to Complement 32 (RGC-32) is an important mediator of the TGF-β signaling pathway, and an increasing amount of evidence implicates this protein in regulating astrocyte biology. We showed recently that spinal cord astrocytes in mice lacking RGC-32 display an immature phenotype reminiscent of progenitors and radial glia, with an overall elongated morphology, increased proliferative capacity, and increased expression of progenitor markers when compared to their wild-type (WT) counterparts that make them incapable of undergoing reactive changes during the acute phase of experimental autoimmune encephalomyelitis (EAE). Here, in order to decipher the molecular networks underlying RGC-32's ability to regulate astrocytic maturation and reactivity, we performed next-generation sequencing of RNA from WT and RGC-32 knockout (KO) neonatal mouse brain astrocytes, either unstimulated or stimulated with the pleiotropic cytokine TGF-β. Pathway enrichment analysis showed that RGC-32 is critical for the TGF-β-induced up-regulation of transcripts encoding proteins involved in brain development and tissue remodeling, such as axonal guidance molecules, transcription factors, extracellular matrix (ECM)-related proteins, and proteoglycans. Our next-generation sequencing of RNA analysis also demonstrated that a lack of RGC-32 results in a significant induction of WD repeat and FYVE domain-containing protein 1 (Wdfy1) and stanniocalcin-1 (Stc1). Immunohistochemical analysis of spinal cords isolated from normal adult mice and mice with EAE at the peak of disease showed that RGC-32 is necessary for the in vivo expression of ephrin receptor type A7 in reactive astrocytes, and that the lack of RGC-32 results in a higher number of homeodomain-only protein homeobox (HOPX)+ and CD133+ radial glia cells. Collectively, these findings suggest that RGC-32 plays a major role in modulating the transcriptomic changes in astrocytes that ultimately lead to molecular programs involved in astrocytic differentiation and reactive changes during neuroinflammation.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Austin Beltrand
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Jean-Paul Courneya
- Health Sciences and Human Services Library, University of Maryland, Baltimore, MD, United States
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Cornelia Cudrici
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dafin F. Muresanu
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Violeta Rus
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland, School of Medicine, Baltimore, MD, United States
| | - Tudor C. Badea
- Retinal Circuit Development and Genetics Unit, N-NRL, National Eye Institute, Bethesda, MD, United States
- Research and Development Institute, Faculty of Medicine, Transylvania University of Brasov, Brasov, Romania
| | - Horea Rus
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, MD, United States
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, United States
| |
Collapse
|
9
|
Yang ZH, Li J, Chen WZ, Kong FS. Oncogenic gene RGC-32 is a direct target of miR-26b and facilitates tongue squamous cell carcinoma aggressiveness through EMT and PI3K/AKT signalling. Cell Biochem Funct 2020; 38:943-954. [PMID: 32325539 DOI: 10.1002/cbf.3520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/12/2022]
Abstract
Growing data have recognized the significance of Response Gene to Complement (RGC)-32 in numerous tumour developments. Notwithstanding, the functional role and underlying mechanism of it in tongue squamous cell carcinoma (TSCC) remain enigmatic. Here, to identify the impact of RGC-32 in TSCC, its expression in multiple TSCC cells was measured and loss-of-function experiments in cell lines were performed to illuminate the function of it induced TSCC progression, via si-RNA knockdown, CCK-8, colony formation, wound-healing, transwell, flow cytometry and western blot assays. To clarify potential mechanism, expressions of hallmarks in epithelial-mesenchymal transition (EMT) process and PI3K/AKT signalling were assessed, and the upstream miR regulator of RGC-32 was predicted and verified by applying bioinformatic approaches and dual-luciferase reporter assay, respectively. Finally, the rescue experiments were applied to better elucidate the effect of miR-26b/RGC-32 axis in TSCC behaviours. As a result, RGC-32 was upregulated in TSCC cells and knocking down of it abrogated cell proliferation, trans-migration and invasion, whilst promoted apoptosis in TSCC, which was regulated through repressing EMT and inactivation of PI3K/AKT signalling. Subsequently, miR-26b was predicted and identified as an upstream regulator of RGC-32, and the pro-tumorigenic effect of RGC-32 was reversed by miR-26b overexpression. Collectively, our results demonstrated that RGC-32 facilitated TSCC progression, which was modulated by activations of PI3K/AKT pathway and EMT process, and reduction of its negative regulator of miR-26b. These findings highlight a novel role of miR-26b/RGC-32 axis in TSCC and underlying mechanism, encouraging a potent usage in TSCC treatment. SIGNIFICANCE OF THE STUDY: We first uncovered that Response Gene to Complement-32 played a significantly pro-tumorigenic role in tongue squamous cell carcinoma (TSCC), which was closely regulated by downregulation of miR-26b and activations of epithelial-mesenchymal transition process and PI3K/AKT signalling. These findings contribute to better understand the molecular mechanism in carcinogenesis of TSCC, and shed some light on promising strategy for TSCC therapeutics.
Collapse
Affiliation(s)
- Zhong-Heng Yang
- Department of Stomatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Juan Li
- Department of Pathology, The Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Wei-Zhi Chen
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan-Shuang Kong
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
10
|
Response gene to complement 32 expression in macrophages augments paracrine stimulation-mediated colon cancer progression. Cell Death Dis 2019; 10:776. [PMID: 31601783 PMCID: PMC6786990 DOI: 10.1038/s41419-019-2006-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 01/26/2023]
Abstract
M2-polarized tumor associated macrophages (TAMs) play an important role in tumor progression. It has been reported that response gene to complement 32 (RGC-32) promotes M2 macrophage polarization. However, whether RGC-32 expression in macrophages could play a potential role in tumor progression remain unclear. Here we identified that increasing RGC-32 expression in colon cancer and tumor associated macrophages was positively correlated with cancer progression. In vitro studies confirmed that colon cancer cells upregulated RGC-32 expression of macrophages via secreting TGF-β1. RGC-32 expression promoted macrophage migration. In addition, stimulation of HCT-116 cells with the condition mediums of RGC-32-silienced or over-expressed macrophages affected tumor cell colony formation and migration via altered COX-2 expression. In an animal model, macrophages with RGC-32 knockdown significantly decreased the expression of COX-2 and Ki67 in the xenografts, and partly inhibited tumor growth. Together, our results provide the evidences for a critical role of TGF-β1/RGC-32 pathway in TAMs and colon cancer cells during tumor progression.
Collapse
|
11
|
Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, Chen SY. Response by Cui et al to Letter Regarding Article, "RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis". Arterioscler Thromb Vasc Biol 2019; 38:e97-e98. [PMID: 29793994 DOI: 10.1161/atvbaha.118.311146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Jun-Na Luan
- Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Kun Dong
- Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Sisi Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens
| | - Yongyi Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Wendy T Watford
- Department of Infectious Diseases, University of Georgia, Athens
| | - Shi-You Chen
- Department of Physiology and Pharmacology, University of Georgia, Athens
| |
Collapse
|
12
|
Vlaicu SI, Tatomir A, Anselmo F, Boodhoo D, Chira R, Rus V, Rus H. RGC-32 and diseases: the first 20 years. Immunol Res 2019; 67:267-279. [DOI: 10.1007/s12026-019-09080-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Tatomir A, Tegla CA, Martin A, Boodhoo D, Nguyen V, Sugarman AJ, Mekala A, Anselmo F, Talpos-Caia A, Cudrici C, Badea TC, Rus V, Rus H. RGC-32 regulates reactive astrocytosis and extracellular matrix deposition in experimental autoimmune encephalomyelitis. Immunol Res 2019; 66:445-461. [PMID: 30006805 DOI: 10.1007/s12026-018-9011-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular matrix (ECM) deposition in active demyelinating multiple sclerosis (MS) lesions may impede axonal regeneration and can modify immune reactions. Response gene to complement (RGC)-32 plays an important role in the mediation of TGF-β downstream effects, but its role in gliosis has not been investigated. To gain more insight into the role played by RGC-32 in gliosis, we investigated its involvement in TGF-β-induced ECM expression and the upregulation of the reactive astrocyte markers α-smooth muscle actin (α-SMA) and nestin. In cultured neonatal rat astrocytes, collagens I, IV, and V, fibronectin, α-SMA, and nestin were significantly induced by TGF-β stimulation, and RGC-32 silencing resulted in a significant reduction in their expression. Using astrocytes isolated from RGC-32 knock-out (KO) mice, we found that the expression of TGF-β-induced collagens I, IV, and V, fibronectin, and α-SMA was significantly reduced in RGC-32 KO mice when compared with wild-type (WT) mice. SIS3 inhibition of Smad3 phosphorylation was also associated with a significant reduction in RGC-32 nuclear translocation and TGF-β-induced collagen I expression. In addition, during experimental autoimmune encephalomyelitis (EAE), RGC-32 KO mouse astrocytes displayed an elongated, bipolar phenotype, resembling immature astrocytes and glial progenitors whereas those from WT mice had a reactive, hypertrophied phenotype. Taken together, our data demonstrate that RGC-32 plays an important role in mediating TGF-β-induced reactive astrogliosis in EAE. Therefore, RGC-32 may represent a new target for therapeutic intervention in MS.
Collapse
Affiliation(s)
- Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Cosmin A Tegla
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
| | - Alvaro Martin
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Dallas Boodhoo
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Vinh Nguyen
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Adam J Sugarman
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Armugam Mekala
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Freidrich Anselmo
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
| | - Anamaria Talpos-Caia
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA
- Department of Rheumatology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Cudrici
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, N-NRL, National Eye Institute, Bethesda, MD, USA
| | - Violeta Rus
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Horea Rus
- Department of Neurology, University of Maryland School of Medicine, 655 W Baltimore St, BRB 12-033, Baltimore, MD, 21201, USA.
- Research Service, Veterans Administration Maryland Health Care System, Baltimore, MD, USA.
- Veterans Administration Multiple Sclerosis Center of Excellence-East, Baltimore, MD, USA.
| |
Collapse
|
14
|
Yu T, Wang L, Zhao C, Qian B, Yao C, He F, Zhu Y, Cai M, Li M, Zhao D, Zhang J, Wang Y, Qiu W. Sublytic C5b-9 induces proliferation of glomerular mesangial cells via ERK5/MZF1/RGC-32 axis activated by FBXO28-TRAF6 complex. J Cell Mol Med 2019; 23:5654-5671. [PMID: 31184423 PMCID: PMC6653533 DOI: 10.1111/jcmm.14473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Mesangioproliferative glomerulonephritis (MsPGN) is characterized by the proliferation of glomerular mesangial cells (GMCs) and accumulation of extracellular matrix (ECM), followed by glomerulosclerosis and renal failure of patients. Although our previous studies have demonstrated that sublytic C5b‐9 complex formed on the GMC membrane could trigger GMC proliferation and ECM expansion of rat Thy‐1 nephritis (Thy‐1N) as an animal model of MsPGN, their mechanisms are still not fully elucidated. In the present studies, we found that the levels of response gene to complement 32 (RGC‐32), myeloid zinc finger 1 (MZF1), phosphorylated extracellular signal‐regulated kinase 5 (phosphorylated ERK5, p‐ERK5), F‐box only protein 28 (FBXO28) and TNF receptor‐associated factor 6 (TRAF6) were all markedly up‐regulated both in the renal tissues of rats with Thy‐1N (in vivo) and in the GMCs upon sublytic C5b‐9 stimulation (in vitro). Further in vitro experiments revealed that up‐regulated FBXO28 and TRAF6 could form protein complex binding to ERK5 and enhance ERK5 K63‐ubiquitination and subsequent phosphorylation. Subsequently, ERK5 activation contributed to MZF1 expression and MZF1‐dependent RGC‐32 up‐regulation, finally resulting in GMC proliferative response. Furthermore, the MZF1‐binding element within RGC‐32 promoter and the functions of FBXO28 domains were identified. Additionally, knockdown of renal FBXO28, TRAF6, ERK5, MZF1 and RGC‐32 genes respectively markedly reduced GMC proliferation and ECM production in Thy‐1N rats. Together, these findings indicate that sublytic C5b‐9 induces GMC proliferative changes in rat Thy‐1N through ERK5/MZF1/RGC‐32 axis activated by the FBXO28‐TRAF6 complex, which might provide a new insight into MsPGN pathogenesis.
Collapse
Affiliation(s)
- Tianyi Yu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lulu Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Baomei Qian
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunlei Yao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Fengxia He
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yufeng Zhu
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mengyuan Cai
- Clinical Medical Science of the First Clinical Medical College, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing medical University, Nanjing, People's Republic of China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing medical University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Cui XB, Chen SY. Response Gene to Complement 32 in Vascular Diseases. Front Cardiovasc Med 2018; 5:128. [PMID: 30280101 PMCID: PMC6153333 DOI: 10.3389/fcvm.2018.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/28/2018] [Indexed: 11/16/2022] Open
Abstract
Response gene to complement 32 (RGC32) is a protein that was identified in rat oligodendrocytes after complement activation. It is expressed in most of the organs and tissues, such as brain, placenta, heart, and the liver. Functionally, RGC32 is involved in various physiological and pathological processes, including cell proliferation, differentiation, fibrosis, metabolic disease, and cancer. Emerging evidences support the roles of RGC32 in vascular diseases. RGC32 promotes injury-induced vascular neointima formation by mediating smooth muscle cell (SMC) proliferation and migration. Moreover, RGC32 mediates endothelial cell activation and facilitates atherosclerosis development. Its involvement in macrophage phagocytosis and activation as well as T-lymphocyte cell cycle activation also suggests that RGC32 is important for the development and progression of inflammatory vascular diseases. In this mini-review, we provide an overview on the roles of RGC32 in regulating functions of SMCs, endothelial cells, and immune cells, and discuss their contributions to vascular diseases.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA, United States
| |
Collapse
|
16
|
Rus H, Talpos-Caia A, Tatomir A, Vlaicu SI. Letter by Rus et al Regarding Article, "RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis". Arterioscler Thromb Vasc Biol 2018; 38:e96. [PMID: 29793993 DOI: 10.1161/atvbaha.118.311140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Horea Rus
- Department of Neurology, University of Maryland School of Medicine, Baltimore
| | | | - Alexandru Tatomir
- Department of Neurology, University of Maryland School of Medicine, Baltimore
| | - Sonia I Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
17
|
Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, Chen SY. RGC-32 (Response Gene to Complement 32) Deficiency Protects Endothelial Cells From Inflammation and Attenuates Atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38:e36-e47. [PMID: 29449334 DOI: 10.1161/atvbaha.117.310656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective of this study is to determine the role and underlying mechanisms of RGC-32 (response gene to complement 32 protein) in atherogenesis. APPROACH AND RESULTS RGC-32 was mainly expressed in endothelial cells of atherosclerotic lesions in both ApoE-/- (apolipoprotein E deficient) mice and human patients. Rgc-32 deficiency (Rgc32-/-) attenuated the high-fat diet-induced and spontaneously developed atherosclerotic lesions in ApoE-/- mice without affecting serum cholesterol concentration. Rgc32-/- seemed to decrease the macrophage content without altering collagen and smooth muscle contents or lesional macrophage proliferation in the lesions. Transplantation of WT (wild type) mouse bone marrow to lethally irradiated Rgc32-/- mice did not alter Rgc32-/--caused reduction of lesion formation and macrophage accumulation, suggesting that RGC-32 in resident vascular cells, but not the macrophages, plays a critical role in the atherogenesis. Of importance, Rgc32-/- decreased the expression of ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) in endothelial cells both in vivo and in vitro, resulting in a decrease in TNF-α (tumor necrosis factor-α)-induced monocyte-endothelial cell interaction. Mechanistically, RGC-32 mediated the ICAM-1 and VCAM-1 expression, at least partially, through NF (nuclear factor)-κB signaling pathway. RGC-32 directly interacted with NF-κB and facilitated its nuclear translocation and enhanced TNF-α-induced NF-κB binding to ICAM-1 and VCAM-1 promoters. CONCLUSIONS RGC-32 mediates atherogenesis by facilitating monocyte-endothelial cell interaction via the induction of endothelial ICAM-1 and VCAM-1 expression, at least partially, through NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bing Cui
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Jun-Na Luan
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Kun Dong
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Sisi Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Yongyi Wang
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Wendy T Watford
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.)
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology (X.-B.C., J.-N.L., K.D., S.C., S.-Y.C.) and Department of Infectious Diseases (W.T.W.), University of Georgia, Athens; Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, China (S.C., S.-Y.C.); and Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China (Y.W.).
| |
Collapse
|
18
|
Rus V, Nguyen V, Tatomir A, Lees JR, Mekala AP, Boodhoo D, Tegla CA, Luzina IG, Antony PA, Cudrici CD, Badea TC, Rus HG. RGC-32 Promotes Th17 Cell Differentiation and Enhances Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2017; 198:3869-3877. [PMID: 28356385 DOI: 10.4049/jimmunol.1602158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
Abstract
Th17 cells play a critical role in autoimmune diseases, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Response gene to complement (RGC)-32 is a cell cycle regulator and a downstream target of TGF-β that mediates its profibrotic activity. In this study, we report that RGC-32 is preferentially upregulated during Th17 cell differentiation. RGC-32-/- mice have normal Th1, Th2, and regulatory T cell differentiation but show defective Th17 differentiation in vitro. The impaired Th17 differentiation is associated with defects in IFN regulatory factor 4, B cell-activating transcription factor, retinoic acid-related orphan receptor γt, and SMAD2 activation. In vivo, RGC-32-/- mice display an attenuated experimental autoimmune encephalomyelitis phenotype accompanied by decreased CNS inflammation and reduced frequency of IL-17- and GM-CSF-producing CD4+ T cells. Collectively, our results identify RGC-32 as a novel regulator of Th17 cell differentiation in vitro and in vivo and suggest that RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Violeta Rus
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; .,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Vinh Nguyen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201.,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Alexandru Tatomir
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Armugam P Mekala
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dallas Boodhoo
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cosmin A Tegla
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Irina G Luzina
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201.,Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201
| | - Paul A Antony
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Cornelia D Cudrici
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Tudor C Badea
- Retinal Circuit Development and Genetics Unit, Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Horea G Rus
- Research Service, Veteran Affairs Medical Center, Baltimore, MD 21201.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|