1
|
Zhang X, Dong M, Zheng G, Sun M, Zhang C, Zhou Z, Tang S. MCM4 Promotes the Progression of Malignant Melanoma by Activating the PI3K/AKT Pathway. ENVIRONMENTAL TOXICOLOGY 2025; 40:306-317. [PMID: 39501995 DOI: 10.1002/tox.24433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 01/14/2025]
Abstract
This study aims to elucidate the role of minichromosome maintenance protein 4 (MCM4) in malignant melanoma (MM) and explore the underlying mechanism. Initially, data from The Cancer Genome Atlas (TCGA) database and the Molecular Signature Database (MSigDB) were used to investigate the biological impact of MCM4 on MM. Further, a prognostic model using Cox regression analysis was developed to predict the overall survival (OS) rate in the MM patients. The effects of MCM4 on the proliferation, migration, and invasion abilities of MM (B16F0 and A375) cells were demonstrated using the CCK-8, colony formation, EDU, wound scratch, and Transwell assays. In subcutaneous tumor models in C57BL/6 mice in vivo, the expression levels of MCM4 in MM cells and tumors were detected using Western blot and immunofluorescence approaches. The bioinformatics analysis indicated that MCM4 was expressed higher in MM tissues than in the normal tissues (p < 0.05). The established OS prediction model could significantly contribute to devising follow-up strategies and treating MM patients. MCM4 knockdown resulted in reduced proliferation, migration, and invasion abilities of MM cells, which were reversed by MCM4 overexpression (p < 0.05). Moreover, MCM4 could activate the phosphatidylinositol 3'-kinase (PI3K)/AKT pathway in MM cells. The PI3K inhibitor (LY294002) could reverse the effects of MCM4 on MM cells. MCM4 could substantially prompt the tumor growth of MM in mice through the PI3K/AKT pathway in vivo. In summary, MCM4 prompted the development and metastasis of MM by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xuewei Zhang
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Mingming Dong
- Department of Orthopedic, The Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Guoxing Zheng
- Department of Orthopedic, The Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Meng Sun
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Chuzhao Zhang
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Zibin Zhou
- Department of Orthopedic, The Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Shijie Tang
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
2
|
Shaikh MAJ, Babu MA, Ghaboura N, Altamimi ASA, Sharma P, Rani R, Rani GB, Lakhanpal S, Ali H, Balaraman AK, Rawat S, Alzarea SI, Kazmi I. Non-coding RNAs: Key regulators of CDK and Wnt/β-catenin signaling in cancer. Pathol Res Pract 2024; 263:155659. [PMID: 39461246 DOI: 10.1016/j.prp.2024.155659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Non-coding RNAs (ncRNAs) have become important modulators of gene expression and biological processes, contributing significantly to the initiation and spread of cancer. This study focuses on the complex interactions between ncRNAs and two major signaling pathways-Wnt/β-catenin signaling and cyclin-dependent kinase (CDK)-linked to cancer. We provide an overview of current research on the modulation of these pathways in many cancer types by distinct classes of ncRNAs, such as miRNAs, lncRNAs, and circRNAs. The review focuses on the processes by which ncRNAs regulate cancer cell survival, proliferation, and metastasis. These mechanical processes include CDK activity, the activation of the Wnt/β-catenin cascade and cell cycle advancement. We also discuss the importance of ncRNAs in drug resistance and treatment outcomes, as well as prognosis markers (diagnostic) and therapeutic targets for cancer. Understanding these complex regulatory networks may help in a large way to improve cancer research and diagnosis - but also perhaps treat patients more effectively.
Collapse
Affiliation(s)
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Nehmat Ghaboura
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P. O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pawan Sharma
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | - G B Rani
- KKR and KSR Institute of Technology and Sciences, Guntur, India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University, Phagwara 144411, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Kazlauskiene M, Klimaite R, Kondrotiene A, Dauksa A, Dauksiene D, Verkauskiene R, Zilaitiene B. Plasma miRNA-146b-3p, -222-3p, -221-5p, -21a-3p Expression Levels and TSHR Methylation: Diagnostic Potential and Association with Clinical and Pathological Features in Papillary Thyroid Cancer. Int J Mol Sci 2024; 25:8412. [PMID: 39125979 PMCID: PMC11313006 DOI: 10.3390/ijms25158412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
This study aimed to investigate the expression of microRNAs (miRNAs) -146b-3p, -221-5p, -222-3p, and -21a-3p and the methylation pattern of the thyroid-stimulating hormone receptor (TSHR) gene in blood plasma samples from papillary thyroid cancer (PTC) patients before and after thyroidectomy compared to healthy controls (HCs). This study included 103 participants, 46 PTC patients and 57 HCs, matched for gender and age. Significantly higher preoperative expression levels of miRNAs and TSHR methylation were determined in the PTC patients compared to HCs. Post-surgery, there was a notable decrease in these biomarkers. Elevated TSHR methylation was linked to larger tumor sizes and lymphovascular invasion, while increased miRNA-222-3p levels correlated with multifocality. Receiver operating characteristic (ROC) analysis showed AUCs below 0.8 for all candidate biomarkers. However, significant changes in the expression of all analyzed miRNAs and TSHR methylation levels indicate their potential to differentiate PTC patients from healthy individuals. These findings suggest that miRNAs and TSHR methylation levels may serve as candidate biomarkers for early diagnosis and monitoring of PTC, with the potential to distinguish PTC patients from healthy individuals. Further research is needed to validate these biomarkers for clinical application.
Collapse
Affiliation(s)
- Mintaute Kazlauskiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (M.K.); (A.K.); (D.D.); (R.V.); (B.Z.)
| | - Raimonda Klimaite
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (M.K.); (A.K.); (D.D.); (R.V.); (B.Z.)
| | - Aiste Kondrotiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (M.K.); (A.K.); (D.D.); (R.V.); (B.Z.)
| | - Albertas Dauksa
- Institute of Digestive Research, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Dalia Dauksiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (M.K.); (A.K.); (D.D.); (R.V.); (B.Z.)
| | - Rasa Verkauskiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (M.K.); (A.K.); (D.D.); (R.V.); (B.Z.)
| | - Birute Zilaitiene
- Institute of Endocrinology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (M.K.); (A.K.); (D.D.); (R.V.); (B.Z.)
| |
Collapse
|
4
|
Phannasil P, Akekawatchai C, Jitrapakdee S. MicroRNA expression profiles associated with the metastatic ability of MDA‑MB‑231 breast cancer cells. Oncol Lett 2023; 26:339. [PMID: 37427352 PMCID: PMC10326657 DOI: 10.3892/ol.2023.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 07/11/2023] Open
Abstract
Breast cancer is an important worldwide public health concern. The incidence rate of breast cancer increases every year. The primary cause of death is metastasis, a process by which cancer cells spread from a primary site to secondary organs. MicroRNAs (miRs/miRNAs) are small non-coding RNAs that control gene expression at the post-transcriptional level. Dysregulation of certain miRNAs is involved in carcinogenesis, cancer cell proliferation and metastasis. Therefore, the present study assessed miRNAs associated with breast cancer metastasis using two breast cancer cell lines, the low-metastatic MCF-7 and the highly metastatic MDA-MB-231. miRNA array analysis of both cell lines indicated that 46 miRNAs were differentially expressed when compared between the two cell lines. A total of 16 miRNAs were upregulated in MDA-MB-231 compared with MCF-7 cells, which suggested that their expression levels may be associated with the highly invasive phenotype of MDA-MB-231 cells. Among these miRNAs, miR-222-3p was selected for further study and its expression was confirmed by reverse transcription-quantitative PCR (RT-qPCR). Under both non-adherent and adherent culture conditions, the expression levels of miR-222-3p in the MDA-MB-231 cell line were higher than those noted in the MCF-7 cell line under the same conditions. Suppression of endogenous miR-222-3p expression in MDA-MB-231 cells using a miR-222-3p inhibitor resulted in a 20-40% reduction in proliferation, and a ~30% reduction in migration, which suggested that the aggressive phenotype of MDA-MB-231 cells was partly regulated by miR-222-3p. Bioinformatic analysis of miR-222-3p using TargetScan 8.0, miRDB and PicTar identified 25 common mRNA targets, such as cyclin-dependent kinase inhibitor 1B, ADP-ribosylation factor 4, iroquois homeobox 5 and Bcl2 modifying factor. The results of the present study indicated that miR-222-3p was potentially associated with the proliferation and migratory ability of the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chareeporn Akekawatchai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumtani 12121, Thailand
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
5
|
Chen H, Xie G, Luo Q, Yang Y, Hu S. Regulatory miRNAs, circRNAs and lncRNAs in cell cycle progression of breast cancer. Funct Integr Genomics 2023; 23:233. [PMID: 37432486 DOI: 10.1007/s10142-023-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Breast cancer is a complex and heterogeneous disease that poses a significant public health concern worldwide, and it remains a major challenge despite advances in treatment options. One of the main properties of cancer cells is the increased proliferative activity that has lost regulation. Dysregulation of various positive and negative modulators in the cell cycle has been identified as one of the driving factors of breast cancer. In recent years, non-coding RNAs have garnered much attention in the regulation of cell cycle progression, with microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) being of particular interest. MiRNAs are a class of highly conserved and regulatory small non-coding RNAs that play a crucial role in the modulation of various cellular and biological processes, including cell cycle regulation. CircRNAs are a novel form of non-coding RNAs that are highly stable and capable of modulating gene expression at posttranscriptional and transcriptional levels. LncRNAs have also attracted considerable attention because of their prominent roles in tumor development, including cell cycle progression. Emerging evidence suggests that miRNAs, circRNAs and lncRNAs play important roles in the regulation of cell cycle progression in breast cancer. Herein, we summarized the latest related literatures in breast cancer that emphasize the regulatory roles of miRNAs, circRNAs and lncRNAs in cell cycle progress of breast cancer. Further understanding of the precise roles and mechanisms of non-coding RNAs in breast cancer cell cycle regulation could lead to the development of new diagnostic and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Qunying Luo
- Department of Internal Medicine-Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, China
| | - Yisha Yang
- Luoyang Campus, Henan Vocational College of Agriculture, Luoyang, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Wuhan, China.
| |
Collapse
|
6
|
Sobhani N, Chahwan R, Roudi R, Morris R, Volinia S, Chai D, D’Angelo A, Generali D. Predictive and Prognostic Value of Non-Coding RNA in Breast Cancer. Cancers (Basel) 2022; 14:2952. [PMID: 35740618 PMCID: PMC9221286 DOI: 10.3390/cancers14122952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
For decades since the central dogma, cancer biology research has been focusing on the involvement of genes encoding proteins. It has been not until more recent times that a new molecular class has been discovered, named non-coding RNA (ncRNA), which has been shown to play crucial roles in shaping the activity of cells. An extraordinary number of studies has shown that ncRNAs represent an extensive and prevalent group of RNAs, including both oncogenic or tumor suppressive molecules. Henceforth, various clinical trials involving ncRNAs as extraordinary biomarkers or therapies have started to emerge. In this review, we will focus on the prognostic and diagnostic role of ncRNAs for breast cancer.
Collapse
Affiliation(s)
- Navid Sobhani
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA 94305, USA;
| | - Rachel Morris
- Thunder Biotech, 395 Cougar Blvd, Provo, UT 84604, USA;
| | - Stefano Volinia
- Department of Morphology, Embryology and Medical Oncology, Università Degli Studi di Ferrara, 44100 Ferrara, Italy;
| | - Dafei Chai
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Alberto D’Angelo
- Department of Biology & Biochemistry, University of Bath, Bath BA27AY, UK;
| | - Daniele Generali
- Department of Medical Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
7
|
Myrzabekova M, Labeit S, Niyazova R, Akimniyazova A, Ivashchenko A. Identification of Bovine miRNAs with the Potential to Affect Human Gene Expression. Front Genet 2022; 12:705350. [PMID: 35087564 PMCID: PMC8787201 DOI: 10.3389/fgene.2021.705350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Milk and other products from large mammals have emerged during human evolution as an important source of nutrition. Recently, it has been recognized that exogenous miRNAs (mRNA inhibited RNA) contained in milk and other tissues of the mammalian body can enter the human body, which in turn have the ability to potentially regulate human metabolism by affecting gene expression. We studied for exogenous miRNAs from Bos taurus that are potentially contain miRNAs from milk and that could act postprandially as regulators of human gene expression. The interaction of 17,508 human genes with 1025 bta-miRNAs, including 245 raw milk miRNAs was studied. The milk bta-miR-151-5p, bta-miR-151-3p, bta-miRNA-320 each have 11 BSs (binding sites), and bta-miRNA-345-5p, bta-miRNA-614, bta-miRNA-1296b and bta-miRNA-149 has 12, 14, 15 and 26 BSs, respectively. The bta-miR-574-5p from cow’s milk had 209 human genes in mRNAs from one to 25 repeating BSs. We found 15 bta-miRNAs that have 100% complementarity to the mRNA of 13 human target genes. Another 12 miRNAs have BSs in the mRNA of 19 human genes with 98% complementarity. The bta-miR-11975, bta-miR-11976, and bta-miR-2885 BSs are located with the overlap of nucleotide sequences in the mRNA of human genes. Nucleotide sequences of BSs of these miRNAs in 5′UTR mRNA of human genes consisted of GCC repeats with a total length of 18 nucleotides (nt) in 18 genes, 21 nt in 11 genes, 24 nt in 14 genes, and 27–48 nt in nine genes. Nucleotide sequences of BSs of bta-miR-11975, bta-miR-11976, and bta-miR-2885 in CDS mRNA of human genes consisted of GCC repeats with a total length of 18 nt in 33 genes, 21 nt in 13 genes, 24 nt in nine genes, and 27–36 nt in 11 genes. These BSs encoded polyA or polyP peptides. In only one case, the polyR (SLC24A3 gene) was encoded. The possibility of regulating the expression of human genes by exogenous bovine miRNAs is discussed.
Collapse
Affiliation(s)
- Moldir Myrzabekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemuend, Germany
| | - Raigul Niyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aigul Akimniyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anatoliy Ivashchenko
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|