1
|
Hybel TE, Sørensen EF, Enemark MH, Hemmingsen JK, Simonsen AT, Lauridsen KL, Møller MB, Pedersen C, Pedersen G, Obel N, Larsen CS, d'Amore F, Hamilton-Dutoit S, Stougaard M, Vase MØ, Ludvigsen M. Characterization of the genomic landscape of HIV-associated lymphoma reveals heterogeneity across histological subtypes. AIDS 2024; 38:1897-1906. [PMID: 39178160 DOI: 10.1097/qad.0000000000003996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/18/2024] [Indexed: 08/25/2024]
Abstract
OBJECTIVE Individuals with HIV experience an increased risk of lymphoma, making this an important cause of death among people with HIV. Nevertheless, little is known regarding the underlying genetic aberrations, which we therefore set out to characterize. DESIGN We conducted next-generation panel sequencing to explore the mutational status of diagnostic lymphoma biopsies from 18 patients diagnosed with lymphoma secondary to HIV infection. METHODS Ion Torrent next-generation sequencing was performed with an AmpliSeq panel on diagnostic lymphoma biopsies from HIV-associated B-cell lymphomas ( n = 18), comprising diffuse large B-cell lymphoma ( n = 9), classic Hodgkin lymphoma ( n = 6), Burkitt lymphoma ( n = 2), follicular lymphoma ( n = 1), and marginal zone lymphoma ( n = 1). The panel comprised 69 lymphoid and/or myeloid-relevant genes, in which either the entire coding sequence or a hotspot region was sequenced. RESULTS Among the 18 lymphomas, we detected 213 variants. The number of detected mutations ranged from 4 to 41 per tumor distributed among 42 genes, including both exonic and intronic regions. The most frequently mutated genes included KMT2D (67%), TNFAIP3 (50%), and TP53 (61%). Notably, no gene was found to harbor variants across all the HIV-associated lymphomas, nor did we find subtype-specific variants. While some variants were shared among patients, most were unique to the individual patient and were often not reported as malignant genetic variants in databases. CONCLUSION Our findings demonstrate genetic heterogeneity across histological subtypes of HIV-associated lymphomas and thus help elucidate the genetics and pathophysiological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| | | | - Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| | | | | | | | | | - Court Pedersen
- Department of Infectious Diseases, Odense University Hospital, Odense
| | - Gitte Pedersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg
| | - Niels Obel
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen
| | | | | | | | - Magnus Stougaard
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| |
Collapse
|
2
|
Qi C, Li Y, Zeng H, Wei Q, Tan S, Zhang Y, Li W, Tian P. Current status and progress of PD-L1 detection: guiding immunotherapy for non-small cell lung cancer. Clin Exp Med 2024; 24:162. [PMID: 39026109 PMCID: PMC11258158 DOI: 10.1007/s10238-024-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths and represents a substantial disease burden worldwide. Immune checkpoint inhibitors combined with chemotherapy are the standard first-line therapy for advanced NSCLC without driver mutations. Programmed death-ligand 1 (PD-L1) is currently the only approved immunotherapy marker. PD-L1 detection methods are diverse and have developed rapidly in recent years, such as improved immunohistochemical detection methods, the application of liquid biopsy in PD-L1 detection, genetic testing, radionuclide imaging, and the use of machine learning methods to construct PD-L1 prediction models. This review focuses on the detection methods and challenges of PD-L1 from different sources, and discusses the influencing factors of PD-L1 detection and the value of combined biomarkers. Provide support for clinical screening of immunotherapy-advantage groups and formulation of personalized treatment decisions.
Collapse
Affiliation(s)
- Chang Qi
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Wei
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sihan Tan
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Kiem D, Ocker M, Greil R, Neureiter D, Melchardt T. Enhancing anti-CD274 (PD-L1) targeting through combinatorial immunotherapy with bispecific antibodies and fusion proteins: from preclinical to phase II clinical trials. Expert Opin Investig Drugs 2024; 33:229-242. [PMID: 38354028 DOI: 10.1080/13543784.2024.2319317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors have achieved great success in the treatment of many different types of cancer. Programmed cell death protein ligand 1 (PD-L1, CD274) is a major immunosuppressive immune checkpoint and a target for several already approved monoclonal antibodies. Despite this, novel strategies are under development, as the overall response remains low. AREAS COVERED In this review, an overview of the current biomarkers for response to PD-L1 inhibitor treatment is given, followed by a discussion of potential novel biomarkers, including tumor mutational burden and circulating tumor DNA. Combinatorial immunotherapy is a potential novel strategy to increase the response to PD-L1 inhibitor treatment and currently, several interesting bispecific antibodies as well as bispecific fusion proteins are undergoing early clinical investigation. We focus on substances targeting PD-L1 and a secondary target, and a secondary immunomodulatory target like CTLA-4, TIGIT, or CD47. EXPERT OPINION Overall, the presented studies show anti-tumor activity of these combinatorial immunotherapeutic approaches. However, still relatively low response rates suggest a need for better biomarkers.
Collapse
Affiliation(s)
- Dominik Kiem
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
| | - Matthias Ocker
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus, Charité Mitte, Charité University Medicine Berlin, Berlin, Germany
- EO Translational Insights Consulting GmbH, Berlin, Germany
- Tacalyx GmbH, Berlin, Germany
| | - Richard Greil
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Cancer Cluster Salzburg, Salzburg, Austria
- Institute of Pathology, Paracelsus Medical University, University Hospital Salzburg (SALK), Salzburg, Austria
| | - Thomas Melchardt
- III Medical Department, Paracelsus Medical University, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
4
|
Wang X, Qiao Z, Aramini B, Lin D, Li X, Fan J. Potential biomarkers for immunotherapy in non-small-cell lung cancer. Cancer Metastasis Rev 2023; 42:661-675. [PMID: 37121931 DOI: 10.1007/s10555-022-10074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/09/2022] [Indexed: 05/02/2023]
Abstract
For individuals with advanced or metastatic non-small cell lung cancer (NSCLC), the primary treatment is platinum-based doublet chemotherapy. Immune checkpoint inhibitors (ICIs), primarily PD-1/PD-L1 and CTLA-4, have been found to be effective in patients with NSCLC who have no EGFR/ALK mutations. Furthermore, ICIs are considered a standard therapy. The quantity of fresh immunogenic antigens discovered by cytotoxic T cells was measured by PD-L1 expression and tumor mutational burden (TMB), which were the first biomarkers assessed in clinical trials. However, immunotherapy did not have response efficacy markers similar to targeted therapy, highlighting the significance of newly developed biomarkers. This investigation aims to review the research on immunotherapy for NSCLC, focusing primarily on the impact of biomarkers on efficacy prediction to determine whether biomarkers may be utilized to evaluate the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Xing Wang
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China
| | - Ziyun Qiao
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, G.B. Morgagni-L. Pierantoni Hospital, University of Bologna, Forlì, Italy
| | - Dong Lin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China
| | - Xiaolong Li
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai, China.
| |
Collapse
|