1
|
George EM, Rosvall KA. How a territorial challenge changes sex steroid-related gene networks in the female brain: A field experiment with the tree swallow. Horm Behav 2025; 169:105698. [PMID: 39955841 DOI: 10.1016/j.yhbeh.2025.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/21/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Territorial competition can stimulate secretion of testosterone (T), which is thought to act on neural circuits of aggression to promote further aggression. Here, we test the hypothesis that competition modulates sex steroid sensitivity and conversion in the brain, focused on the female tree swallow (Tachycineta bicolor). In this bird species, exogenous T enhances female aggression, but social competition for limited nesting territories does not stimulate systemic T elevation. We exposed free-living females to simulated territorial intrusions and sampled five regions of the vertebrate social behavior network (SBN). Using quantitative PCR, we measured mRNA abundance of: androgen receptor, 5-alpha reductase, estrogen receptor alpha, and aromatase. Using standard analyses, we found essentially no treatment effect on mRNA abundance in any one brain area; however, network analyses revealed marked socially-induced changes in gene co-expression across the SBN. After a territorial challenge, gene expression was more positively correlated with T, and genes specific to the androgen-signaling pathway were also more positively correlated with one another. The challenged brain also exhibited stronger negative correlations among genes in the nucleus taeniae, but stronger positive correlations between the lateral septum and bed nucleus of the stria terminalis. Together, these findings suggest that, in response to female-female territorial challenges, T acts on androgen-mediated circuits of aggression, with some divergence in gene regulation in the nucleus taeniae. The post-transcriptional consequences of these shifts require more research, but their existence underscores insights to be gained from analyzing the neuroendocrine properties of the SBN using network-level perspectives.
Collapse
Affiliation(s)
- Elizabeth M George
- Indiana University, Department of Biology, United States of America; The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, United States of America.
| | | |
Collapse
|
2
|
Farrar VS. Revisiting the specific and potentially independent role of the gonad in hormone regulation and reproductive behavior. J Exp Biol 2024; 227:jeb247686. [PMID: 39508240 DOI: 10.1242/jeb.247686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Gonadal sex steroid hormones are well-studied modulators of reproductive physiology and behavior. Recent behavioral endocrinology research has focused on how the brain dynamically responds to - and may even produce - sex steroids, but the gonadal tissues that primarily release these hormones receive much less attention as a potential mediator of behavioral variation. This Commentary revisits mechanisms by which the reproductive hypothalamic-pituitary-gonadal (HPG) axis can be modulated specifically at the gonadal level. These mechanisms include those that may allow the gonad to be regulated independently of the HPG axis, such as receptors for non-HPG hormones, neural inputs and local production of conventional 'neuropeptides'. Here, I highlight studies that examine variation in these gonadal mechanisms in diverse taxa, with an emphasis on recent transcriptomic work. I then outline how future work can establish functional roles of gonadal mechanisms in reproductive behavior and evaluate gonad responsiveness to environmental cues. When integrated with neural mechanisms, further investigation of gonadal hormone regulation can yield new insight into the control and evolution of steroid-mediated traits, including behavior.
Collapse
Affiliation(s)
- Victoria S Farrar
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Maruska KP, Butler JM. Reproductive- and Social-State Plasticity of Multiple Sensory Systems in a Cichlid Fish. Integr Comp Biol 2021; 61:249-268. [PMID: 33963407 DOI: 10.1093/icb/icab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra- and inter-sexual communications are vital to the survival and reproductive success of animals. In species that cycle in and out of breeding or other physiological condition, sensory function can be modulated to optimize communication at crucial times. Little is known, however, about how widespread this sensory plasticity is across taxa, whether it occurs in multiple senses or both sexes within a species, and what potential modulatory substances and substrates are involved. Thus, studying modulation of sensory communication in a single species can provide valuable insights for understanding how sensory abilities can be altered to optimize detection of salient signals in different sensory channels and social contexts. The African cichlid fish Astatotilapia burtoni uses multimodal communication in social contexts such as courtship, territoriality, and parental care and shows plasticity in sensory abilities. In this review, we synthesize what is known about how visual, acoustic, and chemosensory communication is used in A. burtoni in inter- and intra-specific social contexts, how sensory funtion is modulated by an individual's reproductive, metabolic, and social state, and discuss evidence for plasticity in potential modulators that may contribute to changes in sensory abilities and behaviors. Sensory plasticity in females is primarily associated with the natural reproductive cycle and functions to improve detection of courtship signals (visual, auditory, chemosensory, and likely mechanosensory) from high-quality males for reproduction. Plasticity in male sensory abilities seems to function in altering their ability to detect the status of other males in the service of territory ownership and future reproductive opportunities. Changes in different classes of potential modulators or their receptors (steroids, neuropeptides, and biogenic amines) occur at both peripheral sensory organs (eye, inner ear, and olfactory epithelium) and central visual, olfactory, and auditory processing regions, suggesting complex mechanisms contributing to plasticity of sensory function. This type of sensory plasticity revealed in males and females of A. burtoni is likely more widespread among diverse animals than currently realized, and future studies should take an integrative and comparative approach to better understand the proximate and ultimate mechanisms modulating communication abilities across taxa.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
London SE. Gene manipulation to test links between genome, brain and behavior in developing songbirds: a test case. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb206516. [PMID: 32034039 DOI: 10.1242/jeb.206516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Songbird research has made many seminal contributions to the fields of ethology, endocrinology, physiology, ecology, evolution and neurobiology. Genome manipulation is thus a promising new methodological strategy to enhance the existing strengths of the songbird system to advance and expand fundamental knowledge of how genetic sequences and regulation of genomic function support complex natural learned behaviors. In zebra finches (Taeniopygia guttata) in particular, a rich set of questions about the complex process of developmental song learning in juvenile males has been defined. This Review uses one area of zebra finch song learning to demonstrate how genome editing can advance causal investigations into known genome-brain-behavior relationships. Given the number and diversity of songbird species, comparative work leveraging genome manipulation would expand the influence of these birds in additional fields of ecology and evolution for song learning and other behaviors.
Collapse
Affiliation(s)
- Sarah E London
- Department of Psychology, Institute for Mind and Biology, Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Balthazart J. New concepts in the study of the sexual differentiation and activation of reproductive behavior, a personal view. Front Neuroendocrinol 2019; 55:100785. [PMID: 31430485 PMCID: PMC6858558 DOI: 10.1016/j.yfrne.2019.100785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/09/2023]
Abstract
Since the beginning of this century, research methods in neuroendocrinology enjoyed extensive refinements and innovation. These advances allowed collection of huge amounts of new data and the development of new ideas but have not led to this point, with a few exceptions, to the development of new conceptual advances. Conceptual advances that took place largely resulted from the ingenious insights of several investigators. I summarize here some of these new ideas as they relate to the sexual differentiation and activation by sex steroids of reproductive behaviors and I discuss how our research contributed to the general picture. This selective review clearly demonstrates the importance of conceptual changes that have taken place in this field since beginning of the 21st century. The recent technological advances suggest that our understanding of hormones, brain and behavior relationships will continue to improve in a very fundamental manner over the coming years.
Collapse
|
6
|
Lipshutz SE, George EM, Bentz AB, Rosvall KA. Evaluating testosterone as a phenotypic integrator: From tissues to individuals to species. Mol Cell Endocrinol 2019; 496:110531. [PMID: 31376416 PMCID: PMC6731036 DOI: 10.1016/j.mce.2019.110531] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/14/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022]
Abstract
Hormones have the potential to bring about rapid phenotypic change; however, they are highly conserved over millions of years of evolution. Here, we examine the evolution of hormone-mediated phenotypes, and the extent to which regulation is achieved via independence or integration of the many components of endocrine systems. We focus on the sex steroid testosterone (T), its cognate receptor (androgen receptor) and related endocrine components. We pose predictions about the mechanisms underlying phenotypic integration, including coordinated sensitivity to T within and among tissues and along the HPG axis. We then assess these predictions with case studies from wild birds, asking whether gene expression related to androgenic signaling naturally co-varies among individuals in ways that would promote phenotypic integration. Finally, we review how mechanisms of integration and independence vary over developmental or evolutionary time, and we find limited support for integration.
Collapse
Affiliation(s)
- S E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| | - E M George
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - A B Bentz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - K A Rosvall
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
7
|
James LS, Sakata JT. Developmental modulation and predictability of age-dependent vocal plasticity in adult zebra finches. Brain Res 2019; 1721:146336. [PMID: 31310739 DOI: 10.1016/j.brainres.2019.146336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Predicting the nature of behavioral plasticity can provide insight into mechanisms of behavioral expression and control. Songbirds like the zebra finch rely on vocal signals for communication, and the performance of these signals demonstrate considerable plasticity over development. Traditionally, these signals were thought to be fixed in adulthood, but recent studies have revealed significant age-dependent changes to spectral and temporal features of song in adult songbirds. A number of age-dependent changes to song resemble acute changes to adult song performance across social contexts (e.g., when an adult male sings to a female relative to when he sings in isolation). The ability of variation in social context-dependent changes to predict variation in age-dependent plasticity would suggest shared mechanisms, but little is known about this predictability. In addition, although developmental experiences can shape adult plasticity, little is known about the extent to which social interactions during development affect age-dependent change to adult song. To this end, we systematically analyzed age- and context-dependent changes to adult zebra finch song, and then examined the degree to which age-dependent changes varied across birds that were social or non-socially tutored birds and to which social context-dependent changes predicted age-dependent changes. Non-socially tutored birds showed more dramatic changes to the broad structure of their motif over time than socially tutored birds, but non-socially and socially tutored birds did not differ in the extent of changes to various spectral and temporal features of song. Overall, we found that adult zebra finches produced longer and more spectrally stereotyped songs when they were older than when they were younger. Moreover, regardless of developmental tutoring, individual variation in age-dependent changes to song bout duration and syllable repetition were predicted by variation in social context-dependent changes to these features. These data indicate that social experiences during development can shape some aspects of adult plasticity and that acute context-dependent and long-term age-dependent changes to some song features could be mediated by modifications within similar neural substrates.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
8
|
Liere P, Cornil CA, de Bournonville MP, Pianos A, Keller M, Schumacher M, Balthazart J. Steroid profiles in quail brain and serum: Sex and regional differences and effects of castration with steroid replacement. J Neuroendocrinol 2019; 31:e12681. [PMID: 30585662 PMCID: PMC6412023 DOI: 10.1111/jne.12681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/02/2023]
Abstract
Both systemic and local production contribute to the concentration of steroids measured in the brain. This idea was originally based on rodent studies and was later extended to other species, including humans and birds. In quail, a widely used model in behavioural neuroendocrinology, it was demonstrated that all enzymes needed to produce sex steroids from cholesterol are expressed and active in the brain, although the actual concentrations of steroids produced were never investigated. We carried out a steroid profiling in multiple brain regions and serum of sexually mature male and female quail by gas chromatography coupled with mass spectrometry. The concentrations of some steroids (eg, corticosterone, progesterone and testosterone) were in equilibrium between the brain and periphery, whereas other steroids (eg, pregnenolone (PREG), 5α/β-dihydroprogesterone and oestrogens) were more concentrated in the brain. In the brain regions investigated, PREG sulphate, progesterone and oestrogen concentrations were higher in the hypothalamus-preoptic area. Progesterone and its metabolites were more concentrated in the female than the male brain, whereas testosterone, its metabolites and dehydroepiandrosterone were more concentrated in males, suggesting that sex steroids present in quail brain mainly depend on their specific steroidogenic pathways in the ovaries and testes. However, the results of castration experiments suggested that sex steroids could also be produced in the brain independently of the peripheral source. Treatment with testosterone or oestradiol restored the concentrations of most androgens or oestrogens, respectively, although penetration of oestradiol in the brain appeared to be more limited. These studies illustrate the complex interaction between local brain synthesis and the supply from the periphery for the steroids present in the brain that are either directly active or represent the substrate of centrally located enzymes.
Collapse
Affiliation(s)
- Philippe Liere
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Charlotte A. Cornil
- University of Liège, GIGA Neurosciences, 1 Avenue de l’Hôpital (Bat. B36), 4000 Liège, Belgium
| | | | - Antoine Pianos
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 7247 INRA/CNRS/Université de Tours, Nouzilly, France
| | - Michael Schumacher
- U1195 INSERM, University Paris Sud and University Paris Saclay, 80 rue du Général Leclerc, 94276 Le Kremlin-Bicêtre Cédex, France
| | - Jacques Balthazart
- University of Liège, GIGA Neurosciences, 1 Avenue de l’Hôpital (Bat. B36), 4000 Liège, Belgium
| |
Collapse
|
9
|
Vahaba DM, Remage-Healey L. Neuroestrogens rapidly shape auditory circuits to support communication learning and perception: Evidence from songbirds. Horm Behav 2018; 104:77-87. [PMID: 29555375 PMCID: PMC7025793 DOI: 10.1016/j.yhbeh.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Steroid hormones, such as estrogens, were once thought to be exclusively synthesized in the ovaries and enact transcriptional changes over the course of hours to days. However, estrogens are also locally synthesized within neural circuits, wherein they rapidly (within minutes) modulate a range of behaviors, including spatial cognition and communication. Here, we review the role of brain-derived estrogens (neuroestrogens) as modulators within sensory circuits in songbirds. We first present songbirds as an attractive model to explore how neuroestrogens in auditory cortex modulate vocal communication processing and learning. Further, we examine how estrogens may enhance vocal learning and auditory memory consolidation in sensory cortex via mechanisms similar to those found in the hippocampus of rodents and birds. Finally, we propose future directions for investigation, including: 1) the extent of developmental and hemispheric shifts in aromatase and membrane estrogen receptor expression in auditory circuits; 2) how neuroestrogens may impact inhibitory interneurons to regulate audition and critical period plasticity; and, 3) dendritic spine plasticity as a candidate mechanism mediating estrogen-dependent effects on vocal learning. Together, this perspective of estrogens as neuromodulators in the vertebrate brain has opened new avenues in understanding sensory plasticity, including how hormones can act on communication circuits to influence behaviors in other vocal learning species, such as in language acquisition and speech processing in humans.
Collapse
Affiliation(s)
- Daniel M Vahaba
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
10
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
11
|
Eaton J, Pradhan DS, Barske J, Fusani L, Canoine V, Schlinger BA. 3β-HSD expression in the CNS of a manakin and finch. Gen Comp Endocrinol 2018; 256:43-49. [PMID: 28935582 PMCID: PMC5742301 DOI: 10.1016/j.ygcen.2017.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/01/2017] [Accepted: 09/16/2017] [Indexed: 12/26/2022]
Abstract
The prohormone, dehydroepiandrosterone (DHEA) circulates in vertebrate blood with the potential for actions on target tissues including the central nervous system (CNS). Many actions of DHEA require its conversion into more active products, some of which are catalyzed by the enzyme 3β-hydroxysteroid-dehydrogenase/isomerase (3β-HSD). Studies of birds show both expression and activity of 3β-HSD in brain and its importance in regulating social behavior. In oscine songbirds, 3β-HSD is expressed at reasonably high levels in brain, possibly linked to their complex neural circuitry controlling song. Studies also indicate that circulating DHEA may serve as the substrate for neural 3β-HSD to produce active steroids that activate behavior during non-breeding seasons. In the golden-collared manakin (Manacus vitellinus), a sub-oscine bird, low levels of courtship behavior are displayed by males when circulating testosterone levels are basal. Therefore, we asked whether DHEA circulates in blood of manakins and whether the brain expresses 3β-HSD mRNA. Given that the spinal cord is a target of androgens and likely important in regulating acrobatic movements, we also examined expression of this enzyme in the manakin spinal cord. For comparison, we examined expression levels with those of an oscine songbird, the zebra finch (Taeniopygia guttata), a species in which brain, but not spinal cord, 3β-HSD has been well studied. DHEA was detected in manakin blood at levels similar to that seen in other species. As described previously, 3β-HSD was expressed in all zebra finch brain regions examined. By contrast, expression of 3β-HSD was only detected in the manakin hypothalamus where levels were greater than zebra finches. In spinal cord, 3β-HSD was detected in some but not all regions in both species. These data point to species differences and indicate that manakins have the substrate and neural machinery to convert circulating DHEA into potentially active androgens and/or estrogens.
Collapse
Affiliation(s)
- Joy Eaton
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States
| | - Devaleena S Pradhan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States; Laboratory for Neuroendocrinology, University of California, Los Angeles, United States.
| | - Julia Barske
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, United States
| | - Leonida Fusani
- Department of Cognitive Biology, University of Vienna, Austria; Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Virginie Canoine
- Department of Behavioural Biology, University of Vienna, Austria
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, United States; Laboratory for Neuroendocrinology, University of California, Los Angeles, United States; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, United States
| |
Collapse
|
12
|
London SE. Developmental song learning as a model to understand neural mechanisms that limit and promote the ability to learn. Behav Processes 2017; 163:13-23. [PMID: 29162376 DOI: 10.1016/j.beproc.2017.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022]
Abstract
Songbirds famously learn their vocalizations. Some species can learn continuously, others seasonally, and still others just once. The zebra finch (Taeniopygia guttata) learns to sing during a single developmental "Critical Period," a restricted phase during which a specific experience has profound and permanent effects on brain function and behavioral patterns. The zebra finch can therefore provide fundamental insight into features that promote and limit the ability to acquire complex learned behaviors. For example, what properties permit the brain to come "on-line" for learning? How does experience become encoded to prevent future learning? What features define the brain in receptive compared to closed learning states? This piece will focus on epigenomic, genomic, and molecular levels of analysis that operate on the timescales of development and complex behavioral learning. Existing data will be discussed as they relate to Critical Period learning, and strategies for future studies to more directly address these questions will be considered. Birdsong learning is a powerful model for advancing knowledge of the biological intersections of maturation and experience. Lessons from its study not only have implications for understanding developmental song learning, but also broader questions of learning potential and the enduring effects of early life experience on neural systems and behavior.
Collapse
Affiliation(s)
- Sarah E London
- Department of Psychology, Institute for Mind and Biology, Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, 940 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
13
|
On the role of brain aromatase in females: why are estrogens produced locally when they are available systemically? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:31-49. [PMID: 29086012 DOI: 10.1007/s00359-017-1224-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 01/27/2023]
Abstract
The ovaries are often thought of as the main and only source of estrogens involved in the regulation of female behavior. However, aromatase, the key enzyme for estrogen synthesis, although it is more abundant in males, is expressed and active in the brain of females where it is regulated by similar mechanisms as in males. Early work had shown that estrogens produced in the ventromedial hypothalamus are involved in the regulation of female sexual behavior in musk shrews. However, the question of the role of central aromatase in general had not received much attention until recently. Here, I will review the emerging concept that central aromatization plays a role in the regulation of physiological and behavioral endpoints in females. The data support the notion that in females, brain aromatase is not simply a non-functional evolutionary vestige, and provide support for the importance of locally produced estrogens for brain function in females. These observations should also have an impact for clinical research.
Collapse
|
14
|
Fernández-Vargas M. Rapid effects of estrogens and androgens on temporal and spectral features in ultrasonic vocalizations. Horm Behav 2017; 94:69-83. [PMID: 28687274 DOI: 10.1016/j.yhbeh.2017.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/24/2017] [Accepted: 06/29/2017] [Indexed: 11/30/2022]
|
15
|
London SE. Influences of non-canonical neurosteroid signaling on developing neural circuits. Curr Opin Neurobiol 2016; 40:103-110. [PMID: 27429051 DOI: 10.1016/j.conb.2016.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/21/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Developing neural circuits are especially susceptible to environmental perturbation. Endocrine signaling systems such as steroids provide a mechanism to encode physiological changes and integrate function across various biological systems including the brain. 'Neurosteroids' are synthesized and act within the brain across development. There is a long history of steroids sculpting developing neural circuits; more recently, evidence has demonstrated how neurosteroids influence the early potential for neural circuits to organize and transmit precise information via non-canonical receptor types.
Collapse
Affiliation(s)
- Sarah E London
- University of Chicago, Psychology, 940 E 57th Street, 125C BPSB, Chicago, IL 60637, United States.
| |
Collapse
|
16
|
York JE, Radford AN, de Vries B, Groothuis TG, Young AJ. Dominance-related seasonal song production is unrelated to circulating testosterone in a subtropical songbird. Gen Comp Endocrinol 2016; 233:43-52. [PMID: 27179883 PMCID: PMC4920672 DOI: 10.1016/j.ygcen.2016.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/30/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
Circulating testosterone (T) is widely considered to play a key role in the production of sexual displays by male vertebrates. While numerous studies support a role for circulating T in promoting the production of song in male birds, this understanding is based primarily on evidence from seasonally breeding northern temperate species, leaving it unclear whether this mechanism generalizes to other regions of the world. Here we investigate whether variation in circulating levels of T can explain the marked within- and among-individual variation in male song performance observed in a subtropical population of the year-round territorial white-browed sparrow weaver (Plocepasser mahali mahali). Our findings reveal that both circulating T and male song production peaked at a similar time point, halfway through the population-level breeding season. However, while dominant males were more likely to sing and sang for longer than subordinate males, within-group paired comparisons revealed no dominance-related differences in circulating T. Moreover, comparisons both among and within individual dominant males revealed that song duration, syllable rate and proportion of time spent singing were all unrelated to circulating T. Together, our findings suggest that natural variation in male song production, at least in this population of white-browed sparrow weavers, is achieved principally through mechanisms other than variation in circulating T concentration. More widely, our results are in line with the view that male song production is not exclusively regulated by gonadally synthesized steroids.
Collapse
Affiliation(s)
- Jenny E York
- Centre for Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9EZ, UK; School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Andrew N Radford
- School of Biological Sciences, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Bonnie de Vries
- Behavioural Biology, The Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Ton G Groothuis
- Behavioural Biology, The Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - Andrew J Young
- Centre for Life and Environmental Sciences, University of Exeter, Penryn Campus, Cornwall TR10 9EZ, UK
| |
Collapse
|
17
|
Rensel MA, Schlinger BA. Determinants and significance of corticosterone regulation in the songbird brain. Gen Comp Endocrinol 2016; 227:136-42. [PMID: 26141145 PMCID: PMC4696926 DOI: 10.1016/j.ygcen.2015.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/03/2015] [Accepted: 06/09/2015] [Indexed: 11/18/2022]
Abstract
Songbirds exhibit significant adult neuroplasticity that, together with other neural specializations, makes them an important model system for neurobiological studies. A large body of work also points to the songbird brain as a significant target of steroid hormones, including corticosterone (CORT), the primary avian glucocorticoid. Whereas CORT positively signals the brain for many functions, excess CORT may interfere with natural neuroplasticity. Consequently, mechanisms may exist to locally regulate CORT levels in brain to ensure optimal concentrations. However, most studies in songbirds measure plasma CORT as a proxy for levels at target tissues. In this paper, we review literature concerning circulating CORT and its effects on behavior in songbirds, and discuss recent work suggesting that brain CORT levels are regulated independently of changes in adrenal secretion. We review possible mechanisms for CORT regulation in the avian brain, including corticosteroid-binding globulins, p-glycoprotein activity in the blood-brain barrier and CORT metabolism by the 11ß hydroxysteroid dehydrogenases. Data supporting a role for CORT regulation within the songbird brain have only recently begun to emerge, suggesting that this is an avenue for important future research.
Collapse
Affiliation(s)
- Michelle A Rensel
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA.
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Laboratory of Neuroendocrinology, Brain Research Institute, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA; Department of Ecology and Evolutionary Biology, The University of California, Los Angeles, 610 Charles E Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Schlinger BA. Steroids in the Avian Brain: Heterogeneity across Space and Time. JOURNAL OF ORNITHOLOGY 2015; 156:419-424. [PMID: 26924851 PMCID: PMC4767503 DOI: 10.1007/s10336-015-1184-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sex steroids influence a diversity of neural and behavioral endpoints in birds, including some that have little to do with reproduction per se. Recent advances in neurochemistry and molecular biology further indicate that the avian brain is comprised of a network of unique sex steroid microenvironments. Factors involved in steroid synthesis and metabolism are present in the avian brain with expression levels that vary from region to region and with activities that are, in some cases, subject to regulation over relatively slow or rapid time intervals. Advances in our ability to a) isolate steroids from brain tissue and b) precisely measure their concentrations reveal how steroid levels vary spatially and temporally. A full appreciation of sex steroid effects on the avian brain require not only measures of hormones in blood but also an understanding of the numerous and varied mechanisms whereby the brain creates such a heterogeneous steroidal environment.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology & Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90290, USA
| |
Collapse
|
19
|
Murphy K, Wilson DA, Burton M, Slaugh S, Dunning JL, Prather JF. Effectiveness of the GnRH agonist Deslorelin as a tool to decrease levels of circulating testosterone in zebra finches. Gen Comp Endocrinol 2015; 222:150-7. [PMID: 26391838 DOI: 10.1016/j.ygcen.2015.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/02/2015] [Accepted: 09/17/2015] [Indexed: 12/25/2022]
Abstract
Songbirds are widely used in studies of the neurobiology underlying learning, memory and performance of the sounds used in vocal communication. Development and activity of neurons in many brain sites implicated in those behaviors are closely related to levels of circulating testosterone. Approaches to understand the effects of testosterone in songbirds are presently limited to testosterone implants, which elevate testosterone levels to supraphysiological values, or castration, which eliminates gonadal production of testosterone. Previous studies in mammals indicate that GnRH agonists may be an effective tool to reduce testosterone within that range of extremes and without invasive surgery. To evaluate the effectiveness of the GnRH agonist Deslorelin as a tool to modulate levels of testosterone in songbirds, we recorded the effects of Deslorelin in adult male zebra finches. We recorded songs, body mass and blood testosterone levels pre-treatment, then we gave each bird a small subcutaneous implant of Deslorelin. We measured blood plasma testosterone levels weekly and recorded song behavior and gross morphology of brain, testes and heart at the end of each experiment. Testosterone levels were reduced at the 5mg/kg dose, and the very slight song changes we observed at that dose were like those reported for castrated zebra finches. As expected, there were no changes in the number of cells in androgen-sensitive brain structures. Suppression of testosterone at the 5mg/kg dose was reversible through implant removal. Thus, Deslorelin is a new tool to transiently suppress testosterone levels without the invasiveness and undesirable aftereffects of surgical castration.
Collapse
Affiliation(s)
- Karagh Murphy
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States.
| | - David A Wilson
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States.
| | - Mark Burton
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States.
| | - Shayla Slaugh
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States.
| | - Jeffery L Dunning
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States.
| | - Jonathan F Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States.
| |
Collapse
|
20
|
Heimovics SA, Trainor BC, Soma KK. Rapid Effects of Estradiol on Aggression in Birds and Mice: The Fast and the Furious. Integr Comp Biol 2015; 55:281-93. [PMID: 25980562 DOI: 10.1093/icb/icv048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Across invertebrates and vertebrates, steroids are potent signaling molecules that affect nearly every cell in the organism, including cells of the nervous system. Historically, researchers have focused on the genomic (or "nuclear-initiated") effects of steroids. However, all classes of steroids also have rapid non-genomic (or "membrane-initiated") effects, although there is far less basic knowledge of these non-genomic effects. In particular, steroids synthesized in the brain ("neurosteroids") have genomic and non-genomic effects on behavior. Here, we review evidence that estradiol has rapid effects on aggression, an important social behavior, and on intracellular signaling cascades in relevant regions of the brain. In particular, we focus on studies of song sparrows (Melospiza melodia) and Peromyscus mice, in which estradiol has rapid behavioral effects under short photoperiods only. Furthermore, in captive Peromyscus, estrogenic compounds (THF-diols) in corncob bedding profoundly alter the rapid effects of estradiol. Environmental factors in the laboratory, such as photoperiod, diet, and bedding, are critical variables to consider in experimental design. These studies are consistent with the hypothesis that locally-produced steroids are more likely than systemic steroids to act via non-genomic mechanisms. Furthermore, these studies illustrate the dynamic balance between genomic and non-genomic signaling for estradiol, which is likely to be relevant for other steroids, behaviors, and species.
Collapse
Affiliation(s)
- Sarah A Heimovics
- *Department of Biology, University of St Thomas, St Paul, MN 55105, USA;
| | - Brian C Trainor
- Department of Psychology, University of California-Davis, Davis, CA 95616, USA
| | - Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, V6T 1Z7, Canada
| |
Collapse
|
21
|
Pradhan DS, Solomon-Lane TK, Grober MS. Water-borne and Tissue Endocrine Profiles of an Alternative Male Reproductive Phenotype in the Sex Changing Fish,Lythrypnus dalli. COPEIA 2014. [DOI: 10.1643/cp-14-018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Prior NH, Yap KN, Soma KK. Acute and chronic effects of an aromatase inhibitor on pair-maintenance behavior of water-restricted zebra finch pairs. Gen Comp Endocrinol 2014; 196:62-71. [PMID: 24231681 DOI: 10.1016/j.ygcen.2013.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/06/2013] [Accepted: 10/29/2013] [Indexed: 01/25/2023]
Abstract
Zebra finches are highly social songbirds that maintain life-long monogamous pair-bonds. They rely heavily upon these pair-bonds to survive their ever-changing and unpredictable habitat in the Australian desert. These pair-bonds are maintained via a large repertoire of affiliative behaviors that for most of an individual's life are predominately associated with pair maintenance. Water restriction reduces circulating testosterone levels in male zebra finches and the size of the ovary and oviduct in female zebra finches, but water restriction has little or no effects on pair-maintenance behaviors and local levels of testosterone and estradiol in behaviorally-relevant brain regions. These data suggest that in water-restricted zebra finches, local synthesis of testosterone and estradiol in the brain may support the expression of pair-maintenance behaviors. Here, we directly test whether pair-maintenance behaviors are regulated by estradiol, acting via non-genomic or genomic mechanisms, in water-restricted (i.e., non-breeding) zebra finches. In two experiments, subjects were treated with an aromatase inhibitor (fadrozole) either acutely or chronically, and a variety of pair-maintenance behaviors were quantified. Additionally, we quantified the effect of acute fadrozole treatment on brain and circulating estradiol and testosterone levels. Acute fadrozole administration rapidly decreased estradiol levels in the circulation and brain of males and also rapidly increased testosterone levels in the circulation and brain of both males and females. However, neither the acute nor chronic fadrozole treatment decreased pair-maintenance behaviors. In one case, acute fadrozole treatment promoted affiliation. These data suggest that pair-maintenance behavior in non-breeding zebra finches is not promoted by estradiol acting via either non-genomic or genomic mechanisms.
Collapse
Affiliation(s)
- Nora H Prior
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - Kang Nian Yap
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Remage-Healey L, Jeon SD, Joshi NR. Recent evidence for rapid synthesis and action of oestrogens during auditory processing in a songbird. J Neuroendocrinol 2013; 25:1024-31. [PMID: 23746380 PMCID: PMC4153829 DOI: 10.1111/jne.12055] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/13/2013] [Accepted: 06/01/2013] [Indexed: 11/28/2022]
Abstract
It is now clear that oestrogens are not only circulating reproductive hormones, but that they also have neurotransmitter-like properties in a wide range of brain circuits. The view of oestrogens as intrinsic neuromodulators that shape behaviour has been bolstered by a series of recent developments from multiple vertebrate model systems. Here, we review several recent findings from studies of songbirds showing how the identified neural circuits that govern auditory processing and sensorimotor integration are modulated by the local and acute production of oestrogens. First, studies using in vivo microdialysis demonstrate that oestrogens fluctuate in the auditory cortex (30-min time bin resolution) when songbirds are hearing song and interacting with conspecifics. Second, oestrogens rapidly boost the auditory-evoked activity of neurones in the same auditory cortical region, enhancing auditory processing. Third, local pharmacological blockade of oestrogen signalling in this region impairs auditory neuronal responsiveness, as well as behavioural song preferences. Fourth, the rapid actions of oestrogens that occur within the auditory cortex can propagate downstream (trans-synaptically) to sensorimotor circuits to enhance the neural representation of song. Lastly, we present new evidence showing that the receptor for the rapid actions of oestradiol is likely in neuronal membranes, and that traditional nuclear oestrogen receptor agonists do not mimic these rapid actions. Broadly speaking, many of these findings are observed in both males and females, emphasising the fundamental importance of oestrogens in neural circuit function. Together, these and other emergent studies provide support for rapid, brain-derived oestrogen signalling in regulating sensorimotor integration, learning and perception.
Collapse
|
24
|
Context-specific effects of estradiol on spatial learning and memory in the zebra finch. Neurobiol Learn Mem 2012; 100:41-7. [PMID: 23257279 DOI: 10.1016/j.nlm.2012.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/02/2012] [Accepted: 12/06/2012] [Indexed: 11/23/2022]
Abstract
Estradiol is known to impact cognitive function including spatial learning and memory, with studies focused largely on rodent models. Estrogens can be produced peripherally or centrally as neuroestrogens, and the specific role for neuroestrogens in memory processes remains unresolved. Many songbirds possess remarkable spatial memory capabilities and also express the estrogen synthetic enzyme aromatase abundantly in the hippocampus, suggesting that locally-produced estrogens may promote the acquisition or retrieval of spatial memories in these birds. We examined the effect of estradiol on spatial memory in three contexts in the zebra finch: retrieval after discrimination training, retrieval after familiarization but without discrimination training, and memory acquisition, using a combination of estradiol implants and oral dosing with the aromatase inhibitor fadrozole (FAD). Retrieval of spatial memory in both contexts was impaired when estradiol production was blocked. However, spatial memory acquisition was enhanced when estradiol production was inhibited whereas estradiol replacement impaired acquisition. These results provide evidence for a context-specific role of estradiol in songbird spatial memory, results that find accord with some mammalian studies but have not yet been observed in birds.
Collapse
|
25
|
Terasawa E, Kenealy BP. Neuroestrogen, rapid action of estradiol, and GnRH neurons. Front Neuroendocrinol 2012; 33:364-75. [PMID: 22940545 PMCID: PMC3496051 DOI: 10.1016/j.yfrne.2012.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/29/2012] [Accepted: 08/15/2012] [Indexed: 02/01/2023]
Abstract
Estradiol plays a pivotal role in the control of GnRH neuronal function, hence female reproduction. A series of recent studies in our laboratory indicate that rapid excitatory actions of estradiol directly modify GnRH neuronal activity in primate GnRH neurons through GPR30 and STX-sensitive receptors. Similar rapid direct actions of estradiol through estrogen receptor beta are also described in mouse GnRH neurons. In this review, we propose two novel hypotheses as a possible physiological role of estradiol in primates. First, while ovarian estradiol initiates the preovulatory GnRH surge through interneurons expressing estrogen receptor alpha, rapid direct membrane-initiated action of estradiol may play a role in sustaining GnRH surge release for many hours. Second, locally produced neuroestrogens may contribute to pulsatile GnRH release. Either way, estradiol synthesized in interneurons in the hypothalamus may play a significant role in the control of the GnRH surge and/or pulsatility of GnRH release.
Collapse
Affiliation(s)
- Ei Terasawa
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, United States.
| | | |
Collapse
|
26
|
Cornil CA, Ball GF, Balthazart J. Rapid control of male typical behaviors by brain-derived estrogens. Front Neuroendocrinol 2012; 33:425-46. [PMID: 22983088 PMCID: PMC3496013 DOI: 10.1016/j.yfrne.2012.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
Abstract
Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanisms that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, Liège, Belgium.
| | | | | |
Collapse
|
27
|
Rosvall KA, Bergeon Burns CM, Barske J, Goodson JL, Schlinger BA, Sengelaub DR, Ketterson ED. Neural sensitivity to sex steroids predicts individual differences in aggression: implications for behavioural evolution. Proc Biol Sci 2012; 279:3547-55. [PMID: 22673360 PMCID: PMC3396890 DOI: 10.1098/rspb.2012.0442] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/16/2012] [Indexed: 01/08/2023] Open
Abstract
Testosterone (T) regulates many traits related to fitness, including aggression. However, individual variation in aggressiveness does not always relate to circulating T, suggesting that behavioural variation may be more closely related to neural sensitivity to steroids, though this issue remains unresolved. To assess the relative importance of circulating T and neural steroid sensitivity in predicting behaviour, we measured aggressiveness during staged intrusions in free-living male and female dark-eyed juncos (Junco hyemalis). We compared aggressiveness to plasma T levels and to the abundance of androgen receptor (AR), aromatase (AROM) and oestrogen receptor alpha (ORα) mRNA in behaviourally relevant brain areas (avian medial amygdala, hypothalamus and song control regions). We also asked whether patterns of covariation among behaviour and endocrine parameters differed in males and females, anticipating that circulating T may be a better predictor of behaviour in males than in females. We found that circulating T related to aggressiveness only in males, but that gene expression for ORα, AR and AROM covaried with individual differences in aggressiveness in both sexes. These findings are among the first to show that individual variation in neural gene expression for three major sex steroid-processing molecules predicts individual variation in aggressiveness in both sexes in nature. The results have broad implications for our understanding of the mechanisms by which aggressive behaviour may evolve.
Collapse
Affiliation(s)
- K A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Influence of testosterone metabolites on song-control system neuroplasticity during photostimulation in adult European starlings (Sturnus vulgaris). PLoS One 2012; 7:e40060. [PMID: 22792214 PMCID: PMC3391231 DOI: 10.1371/journal.pone.0040060] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/31/2012] [Indexed: 02/03/2023] Open
Abstract
The song-control system is a network of discrete nuclei in the songbird brain that controls the production and learning of birdsong and exhibits some of the best-studied neuroplasticity found in the adult brain. Photoperiodic growth of the song-control system during the breeding season is driven, at least in part, by the gonadal steroid testosterone. When acting on neural tissue, however, testosterone can be metabolized into 5α-dihydrotestosterone (DHT) or 17β-estradiol (E2), which activate different hormonal signaling pathways. By treating adult starlings with both testosterone metabolites and metabolite antagonists, we attempted to isolate the effects of androgen and estrogen treatment on neuroplasticity during photostimulation in male and female European starlings (Sturnus vulgaris). Photostimulation resulted in a large HVC volume typical of the breeding season in all treatments independent of hormone treatment. E2 had additional effects on HVC growth by reducing neuron density and enhancing early survival of new neurons recruited to HVC in females but did not significantly affect HVC volume. Conversely, DHT reduced the migration of new neurons, assessed by the expression of doublecortin, to HVC. DHT also increased syrinx mass and maintained RA (robust nucleus of the arcopallium) cytoarchitecture in the presence of aromatase inhibitors. In addition, we document the first evidence of sex-specific neuroplastic responses of the song-control system to androgens and estrogens. These findings suggest that the contributions of DHT and E2 signaling in songbird neuroplasticity may be regulated by photoperiod and that future studies should account for species and sex differences in the brain.
Collapse
|
29
|
Abstract
The long-held dogma that the brain is a target of steroids produced by peripheral organs has delayed the widespread acceptance of the functional importance of neurosteroidogenesis. Comparative studies have been vital for establishing the key actions of gonadal and adrenal hormones on brain and behaviour. No doubt, studies across diverse phyla will continue to be crucial for revealing the true significance of neurosteroidogenesis to proper function of the vertebrate brain. Here, we review work carried out in our laboratory, as well as in others, highlighting advances to our understanding of brain steroid synthesis and action using songbirds as animal models. These studies show that steroidogenic transporters and enzymes are present in the songbird brain and that their expression and/or activities are subject to developmental, seasonal or short-term regulation. Our work in a songbird points to synaptic synthesis of neuroactive steroids and fast, perisynaptic membrane actions. Combined with evidence for rapid steroidal control of behaviour, these studies firmly establish a neuromodulatory role for avian neurosteroids. We hope this work will join with that of other species to embolden the acceptance of neurosteroidal signalling as a core property of vertebrate neurobiology.
Collapse
Affiliation(s)
- B A Schlinger
- Laboratory of Neuroendocrinology, Department of Integrative Biology and Physiology, Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
30
|
Maney DL, Pinaud R, Pinaud R. Estradiol-dependent modulation of auditory processing and selectivity in songbirds. Front Neuroendocrinol 2011; 32:287-302. [PMID: 21146556 PMCID: PMC3119742 DOI: 10.1016/j.yfrne.2010.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
The steroid hormone estradiol plays an important role in reproductive development and behavior and modulates a wide array of physiological and cognitive processes. Recently, reports from several research groups have converged to show that estradiol also powerfully modulates sensory processing, specifically, the physiology of central auditory circuits in songbirds. These investigators have discovered that (1) behaviorally-relevant auditory experience rapidly increases estradiol levels in the auditory forebrain; (2) estradiol instantaneously enhances the responsiveness and coding efficiency of auditory neurons; (3) these changes are mediated by a non-genomic effect of brain-generated estradiol on the strength of inhibitory neurotransmission; and (4) estradiol regulates biochemical cascades that induce the expression of genes involved in synaptic plasticity. Together, these findings have established estradiol as a central regulator of auditory function and intensified the need to consider brain-based mechanisms, in addition to peripheral organ dysfunction, in hearing pathologies associated with estrogen deficiency.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
31
|
Saldanha CJ, Remage-Healey L, Schlinger BA. Synaptocrine signaling: steroid synthesis and action at the synapse. Endocr Rev 2011; 32:532-49. [PMID: 21622487 PMCID: PMC3369574 DOI: 10.1210/er.2011-0004] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex steroids have long been recognized for their dramatic impact on brain and behavior, including rapid modulation of membrane excitability. It is a widely held perception that these molecules are largely derived from peripheral sources and lack the spatial and temporal specificity ascribed to classical neuromodulatory systems. Neuromodulatory systems, in contrast, are defined by their regulated neuronal presynaptic secretion and by their functional modulation of perisynaptic events. Here we provide evidence for regulated presynaptic estrogen synthesis and functional postsynaptic actions. These results meet all the criteria for a neuromodulatory system and shift our perception of estrogens from that of peripheral signals exclusively to include that of a signaling system intrinsic to the brain itself. We apply the term synaptocrine to describe this form of neuromodulation.
Collapse
Affiliation(s)
- Colin J Saldanha
- Departments of Integrative Biology and Physiology, Ecology and Evolutionary Biology, University of California-Los Angeles, USA
| | | | | |
Collapse
|
32
|
Diotel N, Do Rego JL, Anglade I, Vaillant C, Pellegrini E, Gueguen MM, Mironov S, Vaudry H, Kah O. Activity and expression of steroidogenic enzymes in the brain of adult zebrafish. Eur J Neurosci 2011; 34:45-56. [DOI: 10.1111/j.1460-9568.2011.07731.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Abstract
In the twentieth century, the dominant model of sexual differentiation stated that genetic sex (XX versus XY) causes differentiation of the gonads, which then secrete gonadal hormones that act directly on tissues to induce sex differences in function. This serial model of sexual differentiation was simple, unifying and seductive. Recent evidence, however, indicates that the linear model is incorrect and that sex differences arise in response to diverse sex-specific signals originating from inherent differences in the genome and involve cellular mechanisms that are specific to individual tissues or brain regions. Moreover, sex-specific effects of the environment reciprocally affect biology, sometimes profoundly, and must therefore be integrated into a realistic model of sexual differentiation. A more appropriate model is a parallel-interactive model that encompasses the roles of multiple molecular signals and pathways that differentiate males and females, including synergistic and compensatory interactions among pathways and an important role for the environment.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Departments of Physiology and Psychiatry and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
34
|
King SR, Stocco DM. Steroidogenic acute regulatory protein expression in the central nervous system. Front Endocrinol (Lausanne) 2011; 2:72. [PMID: 22649383 PMCID: PMC3355896 DOI: 10.3389/fendo.2011.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/24/2011] [Indexed: 11/13/2022] Open
Abstract
Locally produced neurosteroids are proposed to have many functions in the central nervous system. The identification of the steroidogenic acute regulatory protein in steroid-producing neural cells provides a new tool to understand the sites, regulation, and importance of their synthesis.
Collapse
Affiliation(s)
- Steven R. King
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX, USA
| | - Douglas M. Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences CenterLubbock, TX, USA
- *Correspondence: Douglas M. Stocco, Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA. e-mail:
| |
Collapse
|
35
|
Remage-Healey L, Saldanha CJ, Schlinger BA. Estradiol synthesis and action at the synapse: evidence for "synaptocrine" signaling. Front Endocrinol (Lausanne) 2011; 2:28. [PMID: 22654800 PMCID: PMC3356004 DOI: 10.3389/fendo.2011.00028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/26/2011] [Indexed: 02/01/2023] Open
Abstract
Classically, the modulation of brain function and behavior by steroid hormones was linked exclusively to secretion by peripheral endocrine glands. Subsequently, steroid actions within the brain were shown dependent upon either synthesis and secretion by peripheral organs or by production within the CNS itself using peripheral sources of precursors. Discovery of the estrogen-synthetic enzyme aromatase in brain further bolstered the latter view and served as a catalyst for expanding concepts of neurosteroidogenesis. In parallel research, several steroids, including estradiol, were found to have rapid effects on neuronal excitability, partially explained by novel actions at neuronal membranes. Recent findings from multiple levels of analysis and labs necessitate an updated view on how steroids are delivered to neural circuits. There is now considerable evidence for expression of the aromatase enzyme within synaptic boutons in the vertebrate CNS. Furthermore, additional work now directly couples rapid regulation of neuroestrogen synthesis with neurophysiological and behavioral outcomes. In this review we summarize evidence for targeted and acute synaptic estrogen synthesis and perisynaptic estrogen actions in the CNS of songbirds. We evaluate these findings in the context of criteria associated with classic neuromodulatory signaling. We term this novel form of signaling "synaptocrine," and discuss its implications.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of MassachusettsAmherst, MA, USA
| | | | - Barney A. Schlinger
- Department of Integrative Biology and Physiology, University of California at Los AngelesLos Angeles, CA, USA
- Ecology and Evolutionary Biology, University of California at Los AngelesLos Angeles, CA, USA
- Laboratory for Neuroendocrinology, University of California at Los AngelesLos Angeles, CA, USA
- *Correspondence: Barney A. Schlinger, Department of Integrative Biology and Physiology and Ecology and Evolutionary Biology, University of California at Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095, USA. e-mail:
| |
Collapse
|
36
|
Kirn JR. The relationship of neurogenesis and growth of brain regions to song learning. BRAIN AND LANGUAGE 2010; 115:29-44. [PMID: 19853905 PMCID: PMC2888937 DOI: 10.1016/j.bandl.2009.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 09/25/2009] [Accepted: 09/25/2009] [Indexed: 05/28/2023]
Abstract
Song learning, maintenance and production require coordinated activity across multiple auditory, sensory-motor, and neuromuscular structures. Telencephalic components of the sensory-motor circuitry are unique to avian species that engage in song learning. The song system shows protracted development that begins prior to hatching but continues well into adulthood. The staggered developmental timetable for construction of the song system provides clues of subsystems involved in specific stages of song learning and maintenance. Progressive events, including neurogenesis and song system growth, as well as regressive events such as apoptosis and synapse elimination, occur during periods of song learning and the transitions between variable and stereotyped song during both development and adulthood. There is clear evidence that gonadal steroids influence the development of song attributes and shape the underlying neural circuitry. Some aspects of song system development are influenced by sensory, motor and social experience, while other aspects of neural development appear to be experience-independent. Although there are species differences in the extent to which song learning continues into adulthood, growing evidence suggests that despite differences in learning trajectories, adult refinement of song motor control and song maintenance can require remarkable behavioral and neural flexibility reminiscent of sensory-motor learning.
Collapse
Affiliation(s)
- John R Kirn
- Biology Department, Wesleyan University, Middletown, CT 06459, United States.
| |
Collapse
|
37
|
Aste N, Watanabe Y, Harada N, Saito N. Distribution and sex differences in aromatase-producing neurons in the brain of Japanese quail embryos. J Chem Neuroanat 2010; 39:272-88. [DOI: 10.1016/j.jchemneu.2010.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 01/24/2023]
|
38
|
London SE, Clayton DF. Genomic and neural analysis of the estradiol-synthetic pathway in the zebra finch. BMC Neurosci 2010; 11:46. [PMID: 20359328 PMCID: PMC2865489 DOI: 10.1186/1471-2202-11-46] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/01/2010] [Indexed: 01/19/2023] Open
Abstract
Background Steroids are small molecule hormones derived from cholesterol. Steroids affect many tissues, including the brain. In the zebra finch, estrogenic steroids are particularly interesting because they masculinize the neural circuit that controls singing and their synthesis in the brain is modulated by experience. Here, we analyzed the zebra finch genome assembly to assess the content, conservation, and organization of genes that code for components of the estrogen-synthetic pathway and steroid nuclear receptors. Based on these analyses, we also investigated neural expression of a cholesterol transport protein gene in the context of song neurobiology. Results We present sequence-based analysis of twenty steroid-related genes using the genome assembly and other resources. Generally, zebra finch genes showed high homology to genes in other species. The diversity of steroidogenic enzymes and receptors may be lower in songbirds than in mammals; we were unable to identify all known mammalian isoforms of the 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase families in the zebra finch genome assembly, and not all splice sites described in mammals were identified in the corresponding zebra finch genes. We did identify two factors, Nobox and NR1H2-RXR, that may be important for coordinated transcription of multiple steroid-related genes. We found very little qualitative overlap in predicted transcription factor binding sites in the genes for two cholesterol transport proteins, the 18 kDa cholesterol transport protein (TSPO) and steroidogenic acute regulatory protein (StAR). We therefore performed in situ hybridization for TSPO and found that its mRNA was not always detected in brain regions where StAR and steroidogenic enzymes were previously shown to be expressed. Also, transcription of TSPO, but not StAR, may be regulated by the experience of hearing song. Conclusions The genes required for estradiol synthesis and action are represented in the zebra finch genome assembly, though the complement of steroidogenic genes may be smaller in birds than in mammals. Coordinated transcription of multiple steroidogenic genes is possible, but results were inconsistent with the hypothesis that StAR and TSPO mRNAs are co-regulated. Integration of genomic and neuroanatomical analyses will continue to provide insights into the evolution and function of steroidogenesis in the songbird brain.
Collapse
Affiliation(s)
- Sarah E London
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | |
Collapse
|
39
|
London SE, Itoh Y, Lance VA, Wise PM, Ekanayake PS, Oyama RK, Arnold AP, Schlinger BA. Neural expression and post-transcriptional dosage compensation of the steroid metabolic enzyme 17beta-HSD type 4. BMC Neurosci 2010; 11:47. [PMID: 20359329 PMCID: PMC2858028 DOI: 10.1186/1471-2202-11-47] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 04/01/2010] [Indexed: 11/10/2022] Open
Abstract
Background Steroids affect many tissues, including the brain. In the zebra finch, the estrogenic steroid estradiol (E2) is especially effective at promoting growth of the neural circuit specialized for song. In this species, only the males sing and they have a much larger and more interconnected song circuit than females. Thus, it was surprising that the gene for 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4), an enzyme that converts E2 to a less potent estrogen, had been mapped to the Z sex chromosome. As a consequence, it was likely that HSD17B4 was differentially expressed in males (ZZ) and females (ZW) because dosage compensation of Z chromosome genes is incomplete in birds. If a higher abundance of HSD17B4 mRNA in males than females was translated into functional enzyme in the brain, then contrary to expectation, males could produce less E2 in their brains than females. Results Here, we used molecular and biochemical techniques to confirm the HSD17B4 Z chromosome location in the zebra finch and to determine that HSD17B4 mRNA and activity were detectable in the early developing and adult brain. As expected, HSD17B4 mRNA expression levels were higher in males compared to females. This provides further evidence of the incomplete Z chromosome inactivation mechanisms in birds. We detected HSD17B4 mRNA in regions that suggested a role for this enzyme in the early organization and adult function of song nuclei. We did not, however, detect significant sex differences in HSD17B4 activity levels in the adult brain. Conclusions Our results demonstrate that the HSD17B4 gene is expressed and active in the zebra finch brain as an E2 metabolizing enzyme, but that dosage compensation of this Z-linked gene may occur via post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Sarah E London
- Interdepartmental Program in Neuroscience, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TAF, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backström N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Völker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AFA, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang SP, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK. The genome of a songbird. Nature 2010; 464:757-62. [PMID: 20360741 PMCID: PMC3187626 DOI: 10.1038/nature08819] [Citation(s) in RCA: 625] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/06/2010] [Indexed: 01/16/2023]
Abstract
The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
Collapse
Affiliation(s)
- Wesley C Warren
- The Genome Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Remage-Healey L, London SE, Schlinger BA. Birdsong and the neural production of steroids. J Chem Neuroanat 2009; 39:72-81. [PMID: 19589382 DOI: 10.1016/j.jchemneu.2009.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/30/2009] [Accepted: 06/25/2009] [Indexed: 10/20/2022]
Abstract
The forebrain circuits involved in singing and audition (the 'song system') in songbirds exhibit a remarkable capacity to synthesize and respond to steroid hormones. This review considers how local brain steroid production impacts the development, sexual differentiation, and activity of song system circuitry. The songbird forebrain contains all of the enzymes necessary for the de novo synthesis of steroids - including neuroestrogens - from cholesterol. Steroid production enzymes are found in neuronal cell bodies, but they are also expressed in pre-synaptic terminals in the song system, indicating a novel mode of brain steroid delivery to local circuits. The song system expresses nuclear hormone receptors, consistent with local action of brain-derived steroids. Local steroid production also occurs in brain regions that do not express nuclear hormone receptors, suggesting a non-classical mode of action. Recent evidence indicates that local steroid levels can change rapidly within the forebrain, in a manner similar to traditional neuromodulators. Lastly, we consider growing evidence for modulatory interactions between brain-derived steroids and neurotransmitter/neuropeptide networks within the song system. Songbirds have therefore emerged as a rich and powerful model system to explore the neural and neurochemical regulation of social behavior.
Collapse
Affiliation(s)
- Luke Remage-Healey
- Department of Physiological Science & Ecology and Evolutionary Biology, Brain Research Institute, University of California, Los Angeles, CA 90095, United States
| | | | | |
Collapse
|