1
|
Hong Y, Wang D, Lin Y, Yang Q, Wang Y, Xie Y, Shu W, Gao S, Hua C. Environmental triggers and future risk of developing autoimmune diseases: Molecular mechanism and network toxicology analysis of bisphenol A. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117352. [PMID: 39550874 DOI: 10.1016/j.ecoenv.2024.117352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Bisphenol A (BPA), a chemical compound in plastics and resins, widely exist in people's production and life which have great potential to damage human and animal health. It has been proved that BPA could affect human immune function and promote the occurrence and development of autoimmune diseases (ADs). However, the mechanism and pathophysiology remain unknown. Therefore, this study aims to advance network toxicology strategies to efficiently investigate the putative toxicity and underlying molecular mechanisms of environmental pollutants, focusing on ADs induced by BPA exposure. Leveraging databases including ChEMBL, STITCH, SwissTargetPrediction, GeneCards, and OMIM, we identified potential targets associated with BPA exposure and ADs, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), Hashimoto's thyroiditis (HT), inflammatory bowel disease (IBD), and type 1 diabetes (T1D). Subsequent refinement using STRING and Cytoscape software highlighted core targets respectively, and Metascape was utilized for enrichment analysis. Gene expression data from the GEO database revealed the upregulation or downregulation of these targets across these ADs. Molecular docking performed with Autodock confirmed robust binding between BPA and core targets, notably PPARG, CTNNB1, ESR1, EGFR, SRC, and CCND1. These findings suggest that BPA exposure may serve as an environmental trigger in the development of autoimmunity, underscoring potential environmental risk factors for the onset of autoimmune conditions.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Deqi Wang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Yinfang Lin
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Qianru Yang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province 325035, China
| | - Yuanyuan Xie
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Wanyi Shu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| |
Collapse
|
2
|
Jiang Y, Cesta CE, Liu Q, Kingwell E, Stridh P, Shchetynsky K, Olsson T, Kockum I, Stener-Victorin E, Jiang X, Manouchehrinia A. Exploring the relationship between polycystic ovarian syndrome, testosterone, and multiple sclerosis in women: A nationwide cohort study and genome-wide cross-trait analysis. Mult Scler 2024; 30:1765-1774. [PMID: 39503308 PMCID: PMC11616213 DOI: 10.1177/13524585241292802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/25/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Women have a higher risk of developing multiple sclerosis (MS), potentially due to hormonal factors. Elevated testosterone levels, common in polycystic ovary syndrome (PCOS), might influence MS risk. OBJECTIVE To investigate the relationship between PCOS, as a proxy for elevated testosterone levels, and MS risk through phenotypic and genomic analysis. METHODS Cox regression models analysed the association between PCOS and MS risk. The genome-wide cross-trait analysis examined the genetic architecture. RESULTS In a Swedish cohort of 1,374,529 women, 77 (0.3%) with PCOS and 3,654 (0.3%) without PCOS were diagnosed with MS. After adjusting for birth year and obesity, no association was found between PCOS and MS (HR = 0.91, 95% CI = 0.72-1.15), which was confirmed by Mendelian randomization analysis, where genetically predicted PCOS propensity, sex hormone-binding globulin (SHBG), or testosterone levels did not causally affect MS risk (all p-values > 0.05). By exploring horizontal pleiotropy, we identified shared genetic regions and 19 independent pleiotropic SNPs for SHBG with MS and 11 for testosterone with MS. CONCLUSION We did not find evidence for a causal role of PCOS, as a proxy of elevated testosterone, in reducing the risk of MS in women. The shared genetic loci between testosterone, SHBG, and MS provide biological insights.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carolyn E Cesta
- Centre for Pharmacoepidemiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qianwen Liu
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Elaine Kingwell
- Research Department of Primary Care & Population Health, University College London, London, UK
| | - Pernilla Stridh
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Klementy Shchetynsky
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Xia Jiang
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ali Manouchehrinia
- Department of Clinical Neuroscience, The Karolinska Neuroimmunology & Multiple Sclerosis Centre, Centre for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Haghmorad D, Soltanmohammadi A, Jadid Tavaf M, Zargarani S, Yazdanpanah E, Shadab A, Yousefi B. The protective role of interaction between vitamin D, sex hormones and calcium in multiple sclerosis. Int J Neurosci 2024; 134:735-753. [PMID: 36369838 DOI: 10.1080/00207454.2022.2147431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Multiple sclerosis (MS) is a neurological disorder that causes disability and paralysis, especially among young adults. Although interactions of several factors, such as viral infections, autoimmunity, genetic and environmental factors, performance a role in the beginning and progression of the disease, the exact cause of MS is unknown to date. Different immune cells such as Th1 and Th17 play an impressive role in the immunopathogenesis of MS, while, regulatory cells such as Th2 and Treg diminish the severity of the illness. Sex hormones have a vital role in many autoimmune disorders, including multiple sclerosis. Testosterone, estrogen and progesterone have various roles in the progress of MS, which higher prevalence of disease in women and more severe in men reveals the importance of sex hormones' role in this disease. Vitamin D after chemical changes in the body, as an active hormone called calcitriol, plays an important role in regulating immune responses and improves MS by modulating the immune system. The optimum level of calcium in the body with vitamin D modulates immune responses and calcium as an essential ion in the body plays a key role in the treatment of autoimmune diseases. The interaction between vitamin D and sex hormones has protective and therapeutic effects against MS and functional synergy between estrogen and calcitriol occurs in disease recovery. Moreover, vitamin D and calcium interact with each other to regulate the immune system and shift them to anti-inflammatory responses.
Collapse
Affiliation(s)
- Dariush Haghmorad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Azita Soltanmohammadi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Jadid Tavaf
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Simin Zargarani
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Department of Immunology and Allergy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Prajapati A, Mehan S, Khan Z, Chhabra S, Das Gupta G. Purmorphamine, a Smo-Shh/Gli Activator, Promotes Sonic Hedgehog-Mediated Neurogenesis and Restores Behavioural and Neurochemical Deficits in Experimental Model of Multiple Sclerosis. Neurochem Res 2024; 49:1556-1576. [PMID: 38160216 DOI: 10.1007/s11064-023-04082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Multiple sclerosis (MS) is a pathological condition characterized by the demyelination of nerve fibers, primarily attributed to the destruction of oligodendrocytes and subsequent motor neuron impairment. Ethidium bromide (EB) is a neurotoxic compound that induces neuronal degeneration, resulting in demyelination and symptoms resembling those observed in experimental animal models of multiple sclerosis (MS). The neurotoxic effects induced by EB in multiple sclerosis (MS) are distinguished by the death of oligodendrocytes, degradation of myelin basic protein (MBP), and deterioration of axons. Neurological complications related to MS have been linked to alterations in the signaling pathway known as smo-shh. Purmorphine (PUR) is a semi-synthetic compound that exhibits potent Smo-shh agonistic activity. It possesses various pharmacological properties, including antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory effects. Hence, the current investigation was conducted to assess the neuroprotective efficacy of PUR (at doses of 5 and 10 mg/kg, administered intraperitoneally) both individually and in conjunction with Fingolimod (FING) (at a dose of 0.5 mg/kg, administered intraperitoneally) in the experimental model of MS induced by EB. The administration of EB was conducted via the intracerebropeduncle route (ICP) over a period of seven days in the brain of rats. The Wistar rats were allocated into six groups using randomization, each consisting of eight rats (n = 8 per group). The experimental groups in this study were categorized as follows: (I) Sham Control, (II) Vehicle Control, (III) PUR per se, (IV) EB, (V) EB + PUR5, (VI) EB + PUR10, (VII) EB + FING 0.5, and (VIII) EB + PUR10 + FING 0.5. On the final day of the experimental timeline, all animal subjects were euthanized, and subsequent neurochemical estimations were conducted on cerebrospinal fluid, blood plasma, and brain tissue samples. In addition, we conducted neurofilament (NFL) analysis and histopathological examination. We utilized the luxol myelin stain to understand better the degeneration associated with MS and its associated neurological complications. The findings of our study indicate that the activation of SMO-Shh by PUR has a mitigating effect on neurobehavioral impairments induced by EB, as well as a restorative effect on cellular and neurotransmitter abnormalities in an experimental model of MS.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| |
Collapse
|
5
|
Hosseinzadeh S, Afshari S, Molaei S, Rezaei N, Dadkhah M. The role of genetics and gender specific differences in neurodegenerative disorders: Insights from molecular and immune landscape. J Neuroimmunol 2023; 384:578206. [PMID: 37813041 DOI: 10.1016/j.jneuroim.2023.578206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Neurodegenerative disorders (NDDs) are the most common neurological disorders with high prevalence and have significant socioeconomic implications. Understanding the underlying cellular and molecular mechanisms associated with the immune system can be effective in disease etiology, leading to more effective therapeutic approaches for both females and males. The central nervous system (CNS) actively participates in immune responses, both within and outside the CNS. Immune system activation is a common feature in NDDs. Gender-specific factors play a significant role in the prevalence, progression, and manifestation of NDDs. Neuroinflammation, in both inflammatory neurological and neurodegenerative conditions, is defined by the triggering of microglia and astrocyte cell activation. This results in the secretion of pro-inflammatory cytokines and chemokines. Numerous studies have documented the role of neuroinflammation in neurological diseases, highlighting the involvement of immune signaling pathways in disease development. Converging evidence support immune system involvement during neurodegeneration in NDDs. In this review, we summarize emerging evidence that reveals gender-dependent differences in immune responses related to NDDs. Also, we highlight sex differences in immune responses and discuss how these sex-specific influences can increase the risk of NDDs. Understanding the role of gender-specific factors can aid in developing targeted therapeutic strategies and improving patient outcomes. Ultimately, the better understanding of these mechanisms contributed to sex-dependent immune response in NDDs, can be critically usful in targeting of immune signaling cascades in such disorders. In this regard, sex-related immune responses in NDDs may be promising and effective targets in therapeutic strategies.
Collapse
Affiliation(s)
- Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, School of Medicine, Ardabil University of Medical Sciences, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
6
|
Cutia CA, Christian-Hinman CA. Mechanisms linking neurological disorders with reproductive endocrine dysfunction: Insights from epilepsy research. Front Neuroendocrinol 2023; 71:101084. [PMID: 37506886 PMCID: PMC10818027 DOI: 10.1016/j.yfrne.2023.101084] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Gonadal hormone actions in the brain can both worsen and alleviate symptoms of neurological disorders. Although neurological conditions and reproductive endocrine function are seemingly disparate, compelling evidence indicates that reciprocal interactions exist between certain disorders and hypothalamic-pituitary-gonadal (HPG) axis irregularities. Epilepsy is a neurological disorder that shows significant reproductive endocrine dysfunction (RED) in clinical populations. Seizures, particularly those arising from temporal lobe structures, can drive HPG axis alterations, and hormones produced in the HPG axis can reciprocally modulate seizure activity. Despite this relationship, mechanistic links between seizures and RED, and vice versa, are still largely unknown. Here, we review clinical evidence alongside recent investigations in preclinical animal models into the contributions of seizures to HPG axis malfunction, describe the effects of HPG axis hormonal feedback on seizure activity, and discuss how epilepsy research can offer insight into mechanisms linking neurological disorders to HPG axis dysfunction, an understudied area of neuroendocrinology.
Collapse
Affiliation(s)
- Cathryn A Cutia
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Catherine A Christian-Hinman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Abstract
Multiple sclerosis is a disease that tends to affect women during their childbearing years. Although relapse risk decreases during pregnancy, patients should still be optimized on disease-modifying therapy before and after pregnancy to minimize gaps in treatment. Exclusive breastfeeding may reduce the chances of disease relapse postpartum, and many disease-modifying therapies are considered to be safe while breastfeeding. Treatments for other neuroimmunologic disorders such as neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, neurosarcoidosis, and central nervous system vasculitis may require rituximab before and prednisone or intravenous immunoglobulin therapy during pregnancy.
Collapse
|
8
|
Zalewska T, Pawelec P, Ziabska K, Ziemka-Nalecz M. Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules 2022; 13:26. [PMID: 36671411 PMCID: PMC9855831 DOI: 10.3390/biom13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in brain responses to several neurological conditions. It is suggested that sex-related differences between men and women may have profound effects on disease susceptibility, pathophysiology, and progression. Sexual differences of the brain are achieved through the complex interplay of several factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic differences. Despite recent advances, the precise link between these factors and brain disorders is incompletely understood. This review aims to briefly outline the most relevant aspects that differ between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM). Recognition of disparities between both sexes could aid the development of individual approaches to ameliorate or slow the progression of intractable disorders.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Str., 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
9
|
Murgia F, Giagnoni F, Lorefice L, Caria P, Dettori T, D’Alterio MN, Angioni S, Hendren AJ, Caboni P, Pibiri M, Monni G, Cocco E, Atzori L. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines 2022; 10:biomedicines10123107. [PMID: 36551863 PMCID: PMC9775368 DOI: 10.3390/biomedicines10123107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND A variety of autoimmune diseases, including MS, amplify sex-based physiological differences in immunological responsiveness. Female MS patients experience pathophysiological changes during reproductive phases (pregnancy and menopause). Sex hormones can act on immune cells, potentially enabling them to modify MS risk, activity, and progression, and to play a role in treatment. METHODS Scientific papers (published between 1998 and 2021) were selected through PubMed, Google Scholar, and Web of Science literature repositories. The search was limited to publications analyzing the hormonal profile of male and female MS patients during different life phases, in particular focusing on sex hormone treatment. RESULTS Both men and women with MS have lower testosterone levels compared to healthy controls. The levels of estrogens and progesterone increase during pregnancy and then rapidly decrease after delivery, possibly mediating an immune-stabilizing process. The literature examined herein evidences the neuroprotective effect of testosterone and estrogens in MS, supporting further examinations of their potential therapeutic uses. CONCLUSIONS A correlation has been identified between sex hormones and MS clinical activity. The combination of disease-modifying therapies with estrogen or estrogen plus a progestin receptor modulator promoting myelin repair might represent an important strategy for MS treatment in the future.
Collapse
Affiliation(s)
- Federica Murgia
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
- Correspondence:
| | - Florianna Giagnoni
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Regional Center, ASSL Cagliari, ATS Sardinia, 09126 Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Section of Biochemistry, Biology, and Genetics, University of Cagliari, Cittadella Universitaria, 09124 Cagliari, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, Section of Biochemistry, Biology, and Genetics, University of Cagliari, Cittadella Universitaria, 09124 Cagliari, Italy
| | - Maurizio N. D’Alterio
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Stefano Angioni
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Aran J. Hendren
- Sussex Neuroscience, University of Sussex, Brighton BN1 9QG, UK
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Monica Pibiri
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Giovanni Monni
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital “A. Cao”, 09121 Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Regional Center, ASSL Cagliari, ATS Sardinia, Department of Medical Sciences and Public Health, University of Cagliari, 09126 Cagliari, Italy
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
10
|
Eickhoff A, Tjaden J, Stahlke S, Vorgerd M, Theis V, Matschke V, Theiss C. Effects of progesterone on T-type-Ca 2+-channel expression in Purkinje cells. Neural Regen Res 2022; 17:2465-2471. [PMID: 35535898 PMCID: PMC9120685 DOI: 10.4103/1673-5374.339008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Plasticity of cerebellar Purkinje cells (PC) is influenced by progesterone via the classical progesterone receptors PR-A and PR-B by stimulating dendritogenesis, spinogenesis, and synaptogenesis in these cells. Dissociated PC cultures were used to analyze progesterone effects at a molecular level on the voltage-gated T-type-Ca2+-channels Cav3.1, Cav3.2, and Cav3.3 as they helped determine neuronal plasticity by regulating Ca2+-influx in neuronal cells. The results showed direct effects of progesterone on the mRNA expression of T-type-Ca2+-channels, as well as on the protein kinases A and C being involved in downstream signaling pathways that play an important role in neuronal plasticity. For the mRNA expression studies of T-type-Ca2+-channels and protein kinases of the signaling cascade, laser microdissection and purified PC cultures of different maturation stages were used. Immunohistochemical staining was also performed to characterize the localization of T-type-Ca2+-channels in PC. Experimental progesterone treatment was performed on the purified PC culture for 24 and 48 hours. Our results show that progesterone increases the expression of Cav3.1 and Cav3.3 and associated protein kinases A and C in PC at the mRNA level within 48 hours after treatment at latest. These effects extend the current knowledge of the function of progesterone in the central nervous system and provide an explanatory approach for its influence on neuronal plasticity.
Collapse
Affiliation(s)
- Annika Eickhoff
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Tjaden
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Matthias Vorgerd
- Department of Neurology, Neuromuscular Center Ruhrgebiet, University Hospital Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - Verena Theis
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Kolatorova L, Vitku J, Suchopar J, Hill M, Parizek A. Progesterone: A Steroid with Wide Range of Effects in Physiology as Well as Human Medicine. Int J Mol Sci 2022; 23:7989. [PMID: 35887338 PMCID: PMC9322133 DOI: 10.3390/ijms23147989] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Progesterone is a steroid hormone traditionally linked with female fertility and pregnancy. In current reproductive medicine, progesterone and its analogues play crucial roles. While the discovery of its effects has a long history, over recent decades, various novel actions of this interesting steroid have been documented, of which its neuro- and immunoprotective activities are the most widely discussed. Discoveries of the novel biological activities of progesterone have also driven research and development in the field of progesterone analogues used in human medicine. Progestogen treatment has traditionally and predominately been used in maintaining pregnancy, the prevention of preterm labor, various gynecological pathologies, and in lowering the negative effects of menopause. However, there are also various other medical fields where progesterone and its analogues could find application in the future. The aim of this work is to show the mechanisms of action of progesterone and its metabolites, the physiological and pharmacological actions of progesterone and its synthetic analogues in human medicine, as well as the impacts of its production and use on the environment.
Collapse
Affiliation(s)
- Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Josef Suchopar
- DrugAgency, a.s., Klokotska 833/1a, 142 00 Prague, Czech Republic;
| | - Martin Hill
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic; (J.V.); (M.H.)
| | - Antonin Parizek
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General Teaching Hospital, Apolinarska 18, 128 51 Prague, Czech Republic;
| |
Collapse
|
12
|
Seeker LA, Williams A. Oligodendroglia heterogeneity in the human central nervous system. Acta Neuropathol 2022; 143:143-157. [PMID: 34860266 PMCID: PMC8742806 DOI: 10.1007/s00401-021-02390-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/30/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
It is the centenary of the discovery of oligodendrocytes and we are increasingly aware of their importance in the functioning of the brain in development, adult learning, normal ageing and in disease across the life course, even in those diseases classically thought of as neuronal. This has sparked more interest in oligodendroglia for potential therapeutics for many neurodegenerative/neurodevelopmental diseases due to their more tractable nature as a renewable cell in the central nervous system. However, oligodendroglia are not all the same. Even from the first description, differences in morphology were described between the cells. With advancing techniques to describe these differences in human tissue, the complexity of oligodendroglia is being discovered, indicating apparent functional differences which may be of critical importance in determining vulnerability and response to disease, and targeting of potential therapeutics. It is timely to review the progress we have made in discovering and understanding oligodendroglial heterogeneity in health and neuropathology.
Collapse
Affiliation(s)
- Luise A Seeker
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
13
|
Brain Volume Loss, Astrocyte Reduction, and Inflammation in Anorexia Nervosa. ADVANCES IN NEUROBIOLOGY 2021; 26:283-313. [PMID: 34888839 DOI: 10.1007/978-3-030-77375-5_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Anorexia nervosa is the third most common chronic disease in adolescence and is characterized by low body weight, body image distortion, weight phobia, and severe somatic consequences. Among the latter, marked brain volume reduction has been linked to astrocyte cell count reduction of about 50% in gray and white matter, while neuronal and other glial cell counts remain normal. Exact underlying mechanisms remain elusive; however, first results point to important roles of the catabolic state and the very low gonadal steroid hormones in these patients. They also appear to involve inflammatory states of "hungry astrocytes" and interactions with the gut microbiota. Functional impairments could affect the role of astrocytes in supporting neurons metabolically, neurotransmitter reuptake, and synapse formation, among others. These could be implicated in reduced learning, mood alterations, and sleep disturbances often seen in patients with AN and help explain their rigidity and difficulties in relearning processes in psychotherapy during starvation.
Collapse
|
14
|
An LC-APCI +-MS/MS-based method for determining the concentration of neurosteroids in the brain of male mice with different gut microbiota. J Neurosci Methods 2021; 360:109268. [PMID: 34171313 DOI: 10.1016/j.jneumeth.2021.109268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although the interaction between the gut microbiota and central nervous system (CNS) is well-known, the effects of gut microbiota on different brain regions remain obscure. NEW METHOD In present study, we developed a simple and sensitive high-performance liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization in positive mode (LC-APCI+-MS/MS) for simultaneous detection of 12 analytes in the rodent' brain with different housing conditions RESULTS: The results showed that male mice in XZ group had significantly higher brain levels of dehydroepiandrosterone (DHEA), androstenedione (A4), testosterone (T), progesterone (P), corticosterone (CORT), aldosterone (ALD) and 11-dehydrocorticosterone (11-DHC) than those in SPF group. CORT level was higher in the left prefrontal cortex, whereas ALD and 11-DHC levels were higher in the left hypothalamus than in the right symmetrical areas in both groups. DHEA and CORT levels were highest in the striatum than in the prefrontal cortex, hippocampus, hypothalamus, regardless of the region and group (XZ and SPF). COMPARISON WITH EXISTING METHODS These results demonstrated that the method developed in this study provides, for the first time, direct quantitation of neurosteroids in male mice brain. CONCLUSIONS DHEA levels showed a left-lateralized pattern in the hippocampus and hypothalamus. Mice in the XZ group showed significantly elevated levels of CORT and/or its metabolites, ALD and 11-DHC in brain than mice in the SPF group. Insanitation living conditions increased more diverse gut microbiota.
Collapse
|
15
|
Sitruk-Ware R, Bonsack B, Brinton R, Schumacher M, Kumar N, Lee JY, Castelli V, Corey S, Coats A, Sadanandan N, Gonzales-Portillo B, Heyck M, Shear A, Blaise C, Zhang H, Sheyner M, García-Sánchez J, Navarro L, El-Etr M, De Nicola AF, Borlongan CV. Progress in progestin-based therapies for neurological disorders. Neurosci Biobehav Rev 2020; 122:38-65. [PMID: 33359391 DOI: 10.1016/j.neubiorev.2020.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/16/2022]
Abstract
Hormone therapy, primarily progesterone and progestins, for central nervous system (CNS) disorders represents an emerging field of regenerative medicine. Following a failed clinical trial of progesterone for traumatic brain injury treatment, attention has shifted to the progestin Nestorone for its ability to potently and selectively transactivate progesterone receptors at relatively low doses, resulting in robust neurogenetic, remyelinating, and anti-inflammatory effects. That CNS disorders, including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), spinal cord injury (SCI), and stroke, develop via demyelinating, cell death, and/or inflammatory pathological pathways advances Nestorone as an auspicious candidate for these disorders. Here, we assess the scientific and clinical progress over decades of research into progesterone, progestins, and Nestorone as neuroprotective agents in MS, ALS, SCI, and stroke. We also offer recommendations for optimizing timing, dosage, and route of the drug regimen, and identifying candidate patient populations, in advancing Nestorone to the clinic.
Collapse
Affiliation(s)
| | - Brooke Bonsack
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | - Jea-Young Lee
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Vanessa Castelli
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alexandreya Coats
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Alex Shear
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Cozene Blaise
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Henry Zhang
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Michael Sheyner
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Julián García-Sánchez
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Lisset Navarro
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
16
|
Schumacher M, Liere P, Ghoumari A. Progesterone and fetal-neonatal neuroprotection. Best Pract Res Clin Obstet Gynaecol 2020; 69:50-61. [PMID: 33039311 DOI: 10.1016/j.bpobgyn.2020.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023]
Abstract
The role of progesterone goes beyond the maintenance of pregnancy. The hormone, indeed, protects the developing fetal brain and influences its maturation. Metabolomes analyzed by mass spectrometric methods have revealed the great diversity of steroids in maternal plasma and fetal fluids, but their developmental significance remains to be investigated. Progesterone and its metabolites reach highest levels during the third trimester, when the brain growth spurt occurs: its volume triples, synaptogenesis is particularly active, and axons start to be myelinated. This developmental stage coincides with a period of great vulnerability. Studies in sheep have shown that progesterone and its metabolite allopregnanolone protect the vulnerable fetal brain. Work in rats and mice have demonstrated that progesterone plays an important role in myelin formation. These experimental studies are discussed in relation to preterm birth. Influences of progesterone on very early stages of neural development at the beginning of pregnancy are yet to be explored.
Collapse
Affiliation(s)
- Michael Schumacher
- U1195 "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue Du Général Leclerc, 94276, Kremlin-Bicêtre, France.
| | - Philippe Liere
- U1195 "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue Du Général Leclerc, 94276, Kremlin-Bicêtre, France
| | - Abdelmoumen Ghoumari
- U1195 "Diseases and Hormones of the Nervous System", Inserm and University Paris-Saclay, 80, Rue Du Général Leclerc, 94276, Kremlin-Bicêtre, France
| |
Collapse
|
17
|
Vandenbark AA, Meza-Romero R, Benedek G, Offner H. A novel neurotherapeutic for multiple sclerosis, ischemic injury, methamphetamine addiction, and traumatic brain injury. J Neuroinflammation 2019; 16:14. [PMID: 30683115 PMCID: PMC6346590 DOI: 10.1186/s12974-018-1393-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023] Open
Abstract
Neurovascular, autoimmune, and traumatic injuries of the central nervous system (CNS) all have in common an initial acute inflammatory response mediated by influx across the blood-brain barrier of activated mononuclear cells followed by chronic and often progressive disability. Although some anti-inflammatory therapies can reduce cellular infiltration into the initial lesions, there are essentially no effective treatments for the progressive phase. We here review the successful treatment of animal models for four separate neuroinflammatory and neurodegenerative CNS conditions using a single partial MHC class II construct called DRa1-hMOG-35-55 or its newest iteration, DRa1(L50Q)-hMOG-35-55 (DRhQ) that can be administered without a need for class II tissue type matching due to the conserved DRα1 moiety of the drug. These constructs antagonize the cognate TCR and bind with high affinity to their cell-bound CD74 receptor on macrophages and dendritic cells, thereby competitively inhibiting downstream signaling and pro-inflammatory effects of macrophage migration inhibitory factor (MIF) and its homolog, d-dopachrome tautomerase (D-DT=MIF-2) that bind to identical residues of CD74 leading to progressive disease. These effects suggest the existence of a common pathogenic mechanism involving a chemokine-driven influx of activated monocytes into the CNS tissue that can be reversed by parenteral injection of the DRa1-MOG-35-55 constructs that also induce anti-inflammatory macrophages and microglia within the CNS. Due to their ability to block this common pathway, these novel drugs appear to be prime candidates for therapy of a wide range of neuroinflammatory and neurodegenerative CNS conditions.
Collapse
Affiliation(s)
- Arthur A Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA. .,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA. .,Department of Molecular Microbiology & Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| | - Roberto Meza-Romero
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Gil Benedek
- Present Address: Tissue Typing and Immunogenetics Laboratory, Hadassah Medical Center, Jerusalem, Israel
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| |
Collapse
|
18
|
Pichkaleva YA, Baidina TV, Trushnikova TN, Danilova MA. The association of psychological gender characteristics with quality of life and clinical aspects in patients with multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:49-51. [DOI: 10.17116/jnevro20191192249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Triggering microglia through toll-like receptor 2 pathway induced interferon β expression in cell and animal model of Alzheimer’s disease. Neuroreport 2018; 29:1456-1462. [DOI: 10.1097/wnr.0000000000001132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Gu Y, Wu Y, Su W, Xing L, Shen Y, He X, Li L, Yuan Y, Tang X, Chen G. 17β-Estradiol Enhances Schwann Cell Differentiation via the ERβ-ERK1/2 Signaling Pathway and Promotes Remyelination in Injured Sciatic Nerves. Front Pharmacol 2018; 9:1026. [PMID: 30356713 PMCID: PMC6189327 DOI: 10.3389/fphar.2018.01026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Remyelination is critical for nerve regeneration. However, the molecular mechanism involved in remyelination is poorly understood. To explore the roles of 17β-estradiol (E2) for myelination in the peripheral nervous system, we used a co-culture model of rat dorsal root ganglion (DRG) explants and Schwann cells (SCs) and a regeneration model of the crushed sciatic nerves in ovariectomized (OVX) and non-ovariectomized (non-OVX) rats for in vitro and in vivo analysis. E2 promoted myelination by facilitating the differentiation of SCs in vitro, which could be inhibited by the estrogen receptors (ER) antagonist ICI182780, ERβ antagonist PHTPP, or ERK1/2 antagonist PD98059. This suggests that E2 accelerates SC differentiation via the ERβ-ERK1/2 signaling. Furthermore, E2 promotes remyelination in crushed sciatic nerves of both OVX and non-OVX rats. Interestingly, E2 also significantly increased the expression of the lysosome membrane proteins LAMP1 and myelin protein P0 in the regenerating nerves. Moreover, P0 has higher degree of colocalization with LAMP1 in the regenerating nerves. Taking together, our results suggest that E2 enhances Schwann cell differentiation and further myelination via the ERβ-ERK1/2 signaling and that E2 increases the expression of myelin proteins and lysosomes in SCs to promotes remyelination in regenerating sciatic nerves.
Collapse
Affiliation(s)
- Yun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, China
| | - Yumen Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wenfeng Su
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - LingYan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaowen He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lilan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Yuan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
21
|
Rafiee Zadeh A, Ghadimi K, Mohammadi B, Hatamian H, Naghibi SN, Danaeiniya A. Effects of Estrogen and Progesterone on Different Immune Cells Related to Multiple Sclerosis. CASPIAN JOURNAL OF NEUROLOGICAL SCIENCES 2018. [DOI: 10.29252/cjns.4.13.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
22
|
Multipotency and therapeutic potential of NG2 cells. Biochem Pharmacol 2017; 141:42-55. [DOI: 10.1016/j.bcp.2017.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/12/2017] [Indexed: 12/20/2022]
|
23
|
Benedek G, Chaudhary P, Meza-Romero R, Calkins E, Kent G, Offner H, Bourdette D, Vandenbark AA. Sex-dependent treatment of chronic EAE with partial MHC class II constructs. J Neuroinflammation 2017; 14:100. [PMID: 28477623 PMCID: PMC5420407 DOI: 10.1186/s12974-017-0873-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/26/2017] [Indexed: 12/29/2022] Open
Abstract
Background One of the main challenges in treating multiple sclerosis (MS) is reversing the effects of accumulated damage in the central nervous system (CNS) of progressive MS subjects. While most of the available drugs for MS subjects are anti-inflammatory and thus are limited to relapsing-remitting MS subjects, it is not clear to what extent their effects are capable of inducing axonal repair and remyelination in subjects with chronic MS. Methods A chronic model of experimental autoimmune encephalomyelitis (EAE) was used to evaluate the potency of partial MHC (pMHC) class II constructs in treating progressive EAE. Results We demonstrated an estrogen receptor alpha (ERα)-dependent increased dose requirement for effective treatment of female vs. male mice using pMHC. Such treatment using 100-μg doses of RTL342M or DRα1-mMOG-35-55 constructs significantly reversed clinical severity and showed a clear trend for inhibiting ongoing CNS damage, demyelination, and infiltration of inflammatory cells into the CNS in male mice. In contrast, WT female mice required larger 1-mg doses for effective treatment, although lower 100-μg doses were effective in ovariectomized or ERα-deficient mice with EAE. Conclusions These findings will assist in the design of future clinical trials using pMHC for treatment of progressive MS. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0873-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gil Benedek
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Tykeson MS Research Laboratory, Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Priya Chaudhary
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Roberto Meza-Romero
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Tykeson MS Research Laboratory, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Evan Calkins
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Gail Kent
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Dennis Bourdette
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.,Neurology Service, VA Portland Health Care System, Portland, OR, USA
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, USA. .,Tykeson MS Research Laboratory, Department of Neurology, Oregon Health & Science University, Portland, OR, USA. .,Department of Neurology, Oregon Health & Science University, Portland, OR, USA. .,Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA. .,Research Service R&D31, VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA.
| |
Collapse
|
24
|
Dulamea AO. The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for remyelination therapeutic strategies. Neural Regen Res 2017; 12:1939-1944. [PMID: 29323026 PMCID: PMC5784335 DOI: 10.4103/1673-5374.221146] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oligodencrocytes (OLs) are the main glial cells of the central nervous system involved in myelination of axons. In multiple sclerosis (MS), there is an imbalance between demyelination and remyelination processes, the last one performed by oligodendrocyte progenitor cells (OPCs) and OLs, resulting into a permanent demyelination, axonal damage and neuronal loss. In MS lesions, astrocytes and microglias play an important part in permeabilization of blood-brain barrier and initiation of OPCs proliferation. Migration and differentiation of OPCs are influenced by various factors and the process is finalized by insufficient acummulation of OLs into the MS lesion. In relation to all these processes, the author will discuss the potential targets for remyelination strategies.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Department of Neurology, Fundeni Clinical Institute, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| |
Collapse
|
25
|
Dulamea AO. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:91-127. [PMID: 28093710 DOI: 10.1007/978-3-319-47861-6_7] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS) during development and throughout adulthood. They result from a complex and well controlled process of activation, proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs) from the germinative niches of the CNS. In multiple sclerosis (MS), the complex pathological process produces dysfunction and apoptosis of OLs leading to demyelination and neurodegeneration. This review attempts to describe the patterns of demyelination in MS, the steps involved in oligodendrogenesis and myelination in healthy CNS, the different pathways leading to OLs and myelin loss in MS, as well as principles involved in restoration of myelin sheaths. Environmental factors and their impact on OLs and pathological mechanisms of MS are also discussed. Finally, we will present evidence about the potential therapeutic targets in re-myelination processes that can be accessed in order to develop regenerative therapies for MS.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Neurology Clinic, University of Medicine and Pharmacy "Carol Davila", Fundeni Clinical Institute, Building A, Neurology Clinic, Room 201, 022328, Bucharest, Romania.
| |
Collapse
|
26
|
Garay L, Gonzalez Giqueaux P, Guennoun R, Schumacher M, Gonzalez Deniselle MC, De Nicola AF. Progesterone treatment modulates mRNA OF neurosteroidogenic enzymes in a murine model of multiple sclerosis. J Steroid Biochem Mol Biol 2017; 165:421-429. [PMID: 27597394 DOI: 10.1016/j.jsbmb.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 11/20/2022]
Abstract
Previous studies of experimental autoimmune encephalomyelitis (EAE) have shown that progesterone decreases inflammatory cell infiltration and proinflammatory factors, increases myelination and attenuates clinical grade of EAE mice. To elucidate potential mediators of these effects, we analyzed the mRNA expression of neurosteroidogenic enzymes in the spinal cord, in view of the protective role of steroids in EAE. We also analyzed mitochondrial morphology and dynamics (fusion and fission proteins), considering the role of mitochondria in neurosteroidogenesis. EAE was induced in C57Bl6 mice using MOG40-54 and killed on day 16 after induction. Using qPCR, we found in steroid-untreated EAE mice decreased mRNAs for the steroidogenic acute regulatory protein (Star), voltage-dependent anion channel (VDAC), P450scc (cholesterol side-chain cleavage), 5α-reductase, 3α-hydroxysteroid dehydrogenase (3α-HSD) and aromatase, whereas levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) showed a large intra-group variance. We also found increased mRNA expression of 18Kd translocator protein (TSPO), which likely resulted from the reactive microgliosis in this model. EAE mice also showed pathological mitochondrial morphology and reduced expression of fission and fusion protein mRNAs. Most importantly, pretreatment with progesterone a week before EAE induction increased Star,VDAC, P450scc, 5α-reductase type I, 3α-HSD and aromatase mRNAs and did not modify 3β-HSD. TSPO mRNA was decreased, consequent with the inhibition of microgliosis. Mitochondrial morphology was improved and fission/fusion protein mRNAs were enhanced by progesterone treatment. Furthermore, progesterone protective effects on mitochondrial and endoplasmic reticulum may allow the recovery of neurosteroidogenesis. In this way, endogenously synthesized neurosteroids may reinforce the beneficial effects of exogenous progesterone previously shown in MS mice.
Collapse
Affiliation(s)
- Laura Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina; Dept. of Human Biochemistry(,) Faculty of Medicine, University of Buenos Aires, Argentina
| | - Paula Gonzalez Giqueaux
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Kremlin-Bicêtre, France
| | - Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina; Dept. of Human Physiology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental, Buenos Aires, Argentina; Dept. of Human Biochemistry(,) Faculty of Medicine, University of Buenos Aires, Argentina.
| |
Collapse
|
27
|
Chew LJ, DeBoy CA. Pharmacological approaches to intervention in hypomyelinating and demyelinating white matter pathology. Neuropharmacology 2016; 110:605-625. [PMID: 26116759 PMCID: PMC4690794 DOI: 10.1016/j.neuropharm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
White matter disease afflicts both developing and mature central nervous systems. Both cell intrinsic and extrinsic dysregulation result in profound changes in cell survival, axonal metabolism and functional performance. Experimental models of developmental white matter (WM) injury and demyelination have not only delineated mechanisms of signaling and inflammation, but have also paved the way for the discovery of pharmacological approaches to intervention. These reagents have been shown to enhance protection of the mature oligodendrocyte cell, accelerate progenitor cell recruitment and/or differentiation, or attenuate pathological stimuli arising from the inflammatory response to injury. Here we highlight reports of studies in the CNS in which compounds, namely peptides, hormones, and small molecule agonists/antagonists, have been used in experimental animal models of demyelination and neonatal brain injury that affect aspects of excitotoxicity, oligodendrocyte development and survival, and progenitor cell function, and which have been demonstrated to attenuate damage and improve WM protection in experimental models of injury. The molecular targets of these agents include growth factor and neurotransmitter receptors, morphogens and their signaling components, nuclear receptors, as well as the processes of iron transport and actin binding. By surveying the current evidence in non-immune targets of both the immature and mature WM, we aim to better understand pharmacological approaches modulating endogenous oligodendroglia that show potential for success in the contexts of developmental and adult WM pathology. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| | - Cynthia A DeBoy
- Biology Department, Trinity Washington University, Washington, DC, USA
| |
Collapse
|
28
|
17 β-Estradiol Promotes Schwann Cell Proliferation and Differentiation, Accelerating Early Remyelination in a Mouse Peripheral Nerve Injury Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7891202. [PMID: 27872858 PMCID: PMC5107215 DOI: 10.1155/2016/7891202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/04/2016] [Indexed: 12/25/2022]
Abstract
Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation.
Collapse
|
29
|
Rolf L, Damoiseaux J, Hupperts R, Huitinga I, Smolders J. Network of nuclear receptor ligands in multiple sclerosis: Common pathways and interactions of sex-steroids, corticosteroids and vitamin D3-derived molecules. Autoimmun Rev 2016; 15:900-10. [DOI: 10.1016/j.autrev.2016.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023]
|
30
|
Ćurko-Cofek B, Kezele TG, Marinić J, Tota M, Čizmarević NS, Milin Č, Ristić S, Radošević-Stašić B, Barac-Latas V. Chronic iron overload induces gender-dependent changes in iron homeostasis, lipid peroxidation and clinical course of experimental autoimmune encephalomyelitis. Neurotoxicology 2016; 57:1-12. [PMID: 27570231 DOI: 10.1016/j.neuro.2016.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 01/13/2023]
Abstract
To analyze iron- and gender-dependent mechanisms possibly involved in pathogenesis of multiple sclerosis (MS) in this study we evaluated the effects of iron overload (IO) on iron status and lipid peroxidation processes (LPO) in tissues of female and male DA rats during chronic relapsing experimental autoimmune encephalomyelitis, a well-established MS animal model. Rats were treated by iron sucrose (75mg/kg bw/day) or with saline solution during two weeks before the sensitization with bovine brain homogenate in complete Freund's adjuvant. Clinical signs of EAE were monitored during 29 days. Serum and tissues of CNS and liver were sampled before immunization and at day 13th post immunization (during acute phase of EAE). The determination of ferritin, iron, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) and evaluation of histopathology were performed by ELISA, ICP spectrometry and immunohistochemistry. Results showed that IO in female EAE rats accelerated the onset of disease. In contrast, in male rats it accelerated the progression of disease and increased the mortality rate. During acute phase of EAE female IO rats sequestered more Fe in the liver, spinal cord and in the brain and produced more ferritin than male EAE rats. Male rats, however, reacted on IO by higher production of MDA or 4-HNE in the neural tissues and showed greater signs of plaque formation and gliosis in spinal cord. The data point to sexual dimorphism in mechanisms that regulate peripheral and brain iron homeostasis and imply that men and women during MS might be differentially vulnerable to exogenous iron overload.
Collapse
Affiliation(s)
- Božena Ćurko-Cofek
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 22, 51 000 Rijeka, Croatia
| | - Tanja Grubić Kezele
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 22, 51 000 Rijeka, Croatia
| | - Jelena Marinić
- Department of Chemistry and Biochemistry, Medical Faculty, University of Rijeka, B. Branchetta 22, 51 000 Rijeka, Croatia
| | - Marin Tota
- Department of Chemistry and Biochemistry, Medical Faculty, University of Rijeka, B. Branchetta 22, 51 000 Rijeka, Croatia
| | - Nada Starčević Čizmarević
- Department of Biology and Medical Genetics, Medical Faculty, University of Rijeka, B. Branchetta 22, 51 000 Rijeka, Croatia
| | - Čedomila Milin
- Department of Chemistry and Biochemistry, Medical Faculty, University of Rijeka, B. Branchetta 22, 51 000 Rijeka, Croatia
| | - Smiljana Ristić
- Department of Biology and Medical Genetics, Medical Faculty, University of Rijeka, B. Branchetta 22, 51 000 Rijeka, Croatia
| | - Biserka Radošević-Stašić
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 22, 51 000 Rijeka, Croatia.
| | - Vesna Barac-Latas
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 22, 51 000 Rijeka, Croatia
| |
Collapse
|
31
|
Kipp M, Hochstrasser T, Schmitz C, Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neurosci Biobehav Rev 2016; 67:125-36. [DOI: 10.1016/j.neubiorev.2015.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023]
|
32
|
Khalaj AJ, Hasselmann J, Augello C, Moore S, Tiwari-Woodruff SK. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. J Steroid Biochem Mol Biol 2016; 160:43-52. [PMID: 26776441 PMCID: PMC5233753 DOI: 10.1016/j.jsbmb.2016.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
Abstract
Demyelination in multiple sclerosis (MS) leads to significant, progressive axonal and neuronal degeneration. Currently existing immunosuppressive and immunomodulatory therapies alleviate MS symptoms and slow, but fail to prevent or reverse, disease progression. Restoration of damaged myelin sheath by replenishment of mature oligodendrocytes (OLs) should not only restore saltatory axon conduction, but also provide a major boost to axon survival. Our previous work has shown that therapeutic treatment with the modestly selective generic estrogen receptor (ER) β agonist diarylpropionitrile (DPN) confers functional neuroprotection in a chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS by stimulating endogenous remyelination. Recently, we found that the more potent, selective ERβ agonist indazole-chloride (Ind-Cl) improves clinical disease and motor performance. Importantly, electrophysiological measures revealed improved corpus callosal conduction and reduced axon refractoriness. This Ind-Cl treatment-induced functional remyelination was attributable to increased OL progenitor cell (OPC) and mature OL numbers. At the intracellular signaling level, transition of early to late OPCs requires ERK1/2 signaling, and transition of immature to mature OLs requires mTOR signaling; thus, the PI3K/Akt/mTOR pathway plays a major role in the late stages of OL differentiation and myelination. Indeed, therapeutic treatment of EAE mice with various ERβ agonists results in increased brain-derived neurotrophic factor (BDNF) and phosphorylated (p) Akt and p-mTOR levels. It is notable that while DPN's neuroprotective effects occur in the presence of peripheral and central inflammation, Ind-Cl is directly neuroprotective, as demonstrated by remyelination effects in the cuprizone-induced demyelination model, as well as immunomodulatory. Elucidating the mechanisms by which ER agonists and other directly remyelinating agents modulate endogenous OPC and OL regulatory signaling is critical to the development of effective remyelinating drugs. The discovery of signaling targets to induce functional remyelination will valuably contribute to the treatment of demyelinating neurological diseases, including MS, stroke, and traumatic brain and spinal cord injury.
Collapse
Affiliation(s)
- Anna J Khalaj
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Jonathan Hasselmann
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Catherine Augello
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Spencer Moore
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine at the University of California, Riverside, United States; Neuroscience Graduate Program, University of California, Riverside, United States.
| |
Collapse
|
33
|
Lammerding L, Slowik A, Johann S, Beyer C, Zendedel A. Poststroke Inflammasome Expression and Regulation in the Peri-Infarct Area by Gonadal Steroids after Transient Focal Ischemia in the Rat Brain. Neuroendocrinology 2016; 103:460-75. [PMID: 26337121 DOI: 10.1159/000439435] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/16/2015] [Indexed: 11/19/2022]
Abstract
CNS ischemia results in locally confined and rapid tissue damage accompanied by a loss of neurons and their circuits. Early and time-delayed inflammatory responses are critical variables determining the extent of neural disintegration and regeneration. Inflammasomes are vital effectors in innate immunity. Their activation in brain-intrinsic immune cells contributes to ischemia-related brain damage. The steroids 17β-estradiol (E2) and progesterone (P) are neuroprotective and anti-inflammatory. Using a transient focal rat ischemic model, we evaluated the time response of different inflammasomes in the peri-infarct zone from the early to late phases after poststroke ischemia. We show that the different inflammasome complexes reveal a specific time-oriented sequential expression pattern with a maximum at approximately 24 h after the infarct. Within the limits of antibody availability, immunofluorescence labeling demonstrated that microglia and neurons are major sources of the locally activated inflammasomes NOD-like receptor protein-3 (NLRP3) and associated speck-like protein (ASC), respectively. E2 and P given for 24 h immediately after ischemia onset reduced hypoxia-induced mRNA expression of the inflammasomes NLRC4, AIM2 and ASC, and decreased the protein levels of ASC and NLRP3. In addition, mRNA protein levels of the cytokines interleukin-1β (IL1β), IL18 and TNFα were reduced by the steroids. The findings provide for the first time a detailed flow chart of hypoxia-driven inflammasome regulation in the peri-infarct cerebral cortex. Further, we demonstrate that E2 and P alleviate the expression of certain inflammasome components, sometimes in a hormone-specific way. Besides directly regulating other cellular neuroprotective pathways, the control of inflammasomes by these steroids might contribute to its neuroprotective potency.
Collapse
|
34
|
Tronnes AA, Koschnitzky J, Daza R, Hitti J, Ramirez JM, Hevner R. Effects of Lipopolysaccharide and Progesterone Exposures on Embryonic Cerebral Cortex Development in Mice. Reprod Sci 2015; 23:771-8. [PMID: 26621965 DOI: 10.1177/1933719115618273] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our objective was to determine if progesterone pretreatment could ameliorate the detrimental effects of lipopolysaccharide (LPS)-induced inflammation on cortical neurogenesis. Timed pregnant mouse dams (n = 8) were given intraperitoneal injections of progesterone (42 mg/kg) or vehicle on embryonic day 17.5. Two hours later, mice were given intraperitoneal LPS (140 μg/kg) or vehicle. Mice were sacrificed 16 hours later on embryonic day 18. Two-color immunofluorescence was performed with primary antibodies T-box transcription factor 2 (Tbr2), ionized calcium binding adapter molecule 1 (Iba1), cleaved caspase 3 (CC3), and 5-bromo-2'-deoxyuridine (BrdU). Cells were counted, and statistical analysis was determined using analysis of variance and Tukey-Kramer method. The Tbr2 intermediate neural progenitor cell density decreased after LPS exposure (P = .0022). Pre-exposure to progesterone statistically increased Tbr2 intermediate neural progenitors compared to LPS treatment alone and was similar to controls (P = .0022). After LPS exposure, microglia displayed an activated phenotype, and cell density was increased (P < .001). Cell death rates were low among study groups but was increased in LPS exposure groups compared to progesterone alone (P = .0015). Lipopolysaccharide-induced systemic inflammation reduces prenatal neurogenesis in mice. Pre-exposure with progesterone is associated with increased neurogenesis. Progesterone may protect the preterm brain from defects of neurogenesis induced by inflammation.
Collapse
Affiliation(s)
- Ashlie A Tronnes
- Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA, USA
| | - Jenna Koschnitzky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ray Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jane Hitti
- Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA, USA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Robert Hevner
- Department of Neurological Surgery, Center for Integrative Brain Research, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
35
|
Schumacher M, Guennoun R, Mattern C, Oudinet JP, Labombarda F, De Nicola AF, Liere P. Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system. Steroids 2015; 103:42-57. [PMID: 26301525 DOI: 10.1016/j.steroids.2015.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/17/2015] [Accepted: 08/19/2015] [Indexed: 12/22/2022]
Abstract
Levels of steroids in the adult central nervous system (CNS) show marked changes in response to stress, degenerative disorders and injury. However, their analysis in complex matrices such as fatty brain and spinal cord tissues, and even in plasma, requires accurate and precise analytical methods. Radioimmunoassays (RIA) and enzyme-linked immunosorbent assays, even with prepurification steps, do not provide sufficient specificity, and they are at the origin of many inconsistent results in the literature. The analysis of steroids by mass spectrometric methods has become the gold standard for accurate and sensitive steroid analysis. However, these technologies involve multiple purification steps prone to errors, and they only provide accurate reference values when combined with careful sample workup. In addition, the interpretation of changes in CNS steroid levels is not an easy task because of their multiple sources: the endocrine glands and the local synthesis by neural cells. In the CNS, decreased steroid levels may reflect alterations of their biosynthesis, as observed in the case of chronic stress, post-traumatic stress disorders or depressive episodes. In such cases, return to normalization by administering exogenous hormones or by stimulating their endogenous production may have beneficial effects. On the other hand, increases in CNS steroids in response to acute stress, degenerative processes or injury may be part of endogenous protective or rescue programs, contributing to the resistance of neural cells to stress and insults. The aim of this review is to encourage a more critical reading of the literature reporting steroid measures, and to draw attention to the absolute need for well-validated methods. We discuss reported findings concerning changing steroid levels in the nervous system by insisting on methodological issues. An important message is that even recent mass spectrometric methods have their limits, and they only become reliable tools if combined with careful sample preparation.
Collapse
Affiliation(s)
| | | | | | | | - Florencia Labombarda
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Instituto de Biologia y Medicina Experimental and University of Buenos Aires, Argentina
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud, Kremlin-Bicêtre, France
| |
Collapse
|
36
|
O'Malley P, Mulla Z, Nesic O. Multiple sclerosis and breast cancer. J Neurol Sci 2015; 356:137-41. [DOI: 10.1016/j.jns.2015.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/30/2015] [Accepted: 06/13/2015] [Indexed: 02/09/2023]
|
37
|
Abstract
Background: Despite positive preclinical studies and two positive Phase II clinical trials, two large Phase III clinical trials of progesterone treatment of acute traumatic brain injury (TBI) recently ended with negative results, so a 100% failure rate continues to plague the field of TBI trials. Methods: This paper reviews and analyses the trial structures and outcomes and discusses the implications of these failures for future drug and clinical trial development. Persistently negative trial outcomes have led to disinvestment in new drug research by companies and policy-makers and disappointment for patients and their families, failures which represent a major public health concern. The problem is not limited to TBI. Failure rates are high for trials in stroke, sepsis, cardiology, cancer and orthopaedics, among others. Results: This paper discusses some of the reasons why the Phase III trials have failed. These reasons may include faulty extrapolation from pre-clinical data in designing clinical trials and the use of subjective outcome measures that accurately reflect neither the nature of the deficits nor long-term quantitative recovery. Conclusions: Better definitions of injury and healing and better outcome measures are essential to change the embrace of failure that has dominated the field for over 30 years. This review offers suggestions to improve the situation.
Collapse
Affiliation(s)
- Donald G Stein
- a Department of Emergency Medicine , Emory University , Atlanta , GA , USA
| |
Collapse
|
38
|
Kalakh S, Mouihate A. The promyelinating properties of androstenediol in gliotoxin-induced demyelination in rat corpus callosum. Neuropathol Appl Neurobiol 2015; 41:964-82. [DOI: 10.1111/nan.12237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Samah Kalakh
- Department of Physiology, Faculty of Medicine; Kuwait University; Safat Kuwait
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine; Kuwait University; Safat Kuwait
| |
Collapse
|
39
|
Singh V, Stingl C, Stoop MP, Zeneyedpour L, Neuteboom RF, Smitt PS, Hintzen RQ, Luider TM. Proteomics urine analysis of pregnant women suffering from multiple sclerosis. J Proteome Res 2015; 14:2065-73. [PMID: 25793971 DOI: 10.1021/pr501162w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple sclerosis (MScl) frequently is remitted during the third trimester of pregnancy but exacerbated in the first postpartum period. In this context, we investigated protein identification, its abundance, and its change in urine related to these two periods. Using mass spectrometry (LTQ Orbitrap), we identified 1699 tryptic peptides (related to 402 proteins) in urine from 31 MScl and 8 control at these two periods. Pregnancy-related peptides were significantly elevated (p < 0.01) in MScl patients compared with controls (Analysis 1: 531 peptides in MScl and 36 peptides in controls higher abundant in the third trimester compared to postpartum). When comparing the longitudinal differences (Analysis 2), we identified 43 (related to 35 proteins) MScl disease-associated peptides (p < 0.01) with increased or decreased difference ratio in MScl compared with controls. The most discriminating peptides identified were trefoil factor 3 and lysosomal-associated membrane protein 2. Both proteins have a role in the innate immune system. Three proteins with a significant decreased ratio were plasma glutamate carboxypeptidase, Ig mu chain C region, and osteoclast associated immune like receptor. Our results indicate that the protein expression pattern in urine of MScl patients contains information about remote CNS and brain disease processes.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Christoph Stingl
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Marcel P Stoop
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Lona Zeneyedpour
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Rinze F Neuteboom
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Peter Sillevis Smitt
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Rogier Q Hintzen
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus University Medical Center, Dr. Molewaterplein 50, Rotterdam 3015 GE, The Netherlands
| |
Collapse
|
40
|
Babri S, Mehrvash F, Mohaddes G, Hatami H, Mirzaie F. Effect of intrahippocampal administration of vitamin C and progesterone on learning in a model of multiple sclerosis in rats. Adv Pharm Bull 2015; 5:83-7. [PMID: 25789223 DOI: 10.5681/apb.2015.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/18/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effect of intrahippocampal injection of vitamin C and progesterone, alone or in combination, on passive avoidance learning (PAL) in multiple sclerosis. METHODS Sixty- three male wistar rats were divided into nine groups (n=7) as following: control (saline), lesion, vitamin C (0.2, 1, 5 mg/kg), progesterone (0.01, 0.1, 1 µg/µl) and combination therapy. Lesion was induced by intrahippocampal injection of ethidium bromide. In combination therapy, animals were treated with vitamin C (5 mg/kg) plus progesterone (0.01 mg/kg). Animals in experimental groups received different treatments for 7 days, and then all groups were tested for step through latency (STL). RESULTS Our results showed that intrahippocampal injection of ethidium bromide destroys PAL significantly (p<0.001). Treatment with vitamin C (5mg/kg) significantly (p<0.05) improved PAL. Lower doses of progesterone did not affect latency but dose of 1 µg/µl significantly (p<0.05) increased STL. In combination therapy group STL was significantly (p<0.05) more than in the lesion group, although it was not significantly different from the vitamin C group. CONCLUSION Based on our results, we concluded that intrahippocampal injection of vitamin C improves memory for PAL, but progesterone alone or in combination with vitamin C had no improving effects on memory.
Collapse
Affiliation(s)
- Shirin Babri
- Neuroscience Research Center of Tabriz University of Medical Sciences (NSRC), Tabriz, 51666-14766, Iran
| | - Faezeh Mehrvash
- Neuroscience Research Center of Tabriz University of Medical Sciences (NSRC), Tabriz, 51666-14766, Iran
| | - Gisou Mohaddes
- Drug Applied Research Center of Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Homeira Hatami
- Department of Biology, Faculty of Science, University of Tabriz, Tabriz, 51666-14761, Iran
| | - Fariba Mirzaie
- Neuroscience Research Center of Tabriz University of Medical Sciences (NSRC), Tabriz, 51666-14766, Iran
| |
Collapse
|
41
|
Hoffmann S, Beyer C. Gonadal steroid hormones as therapeutic tools for brain trauma: the time is ripe for more courageous clinical trials to get into emergency medicine. J Steroid Biochem Mol Biol 2015; 146:1-2. [PMID: 25196186 DOI: 10.1016/j.jsbmb.2014.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefanie Hoffmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
42
|
Habib P, Beyer C. Regulation of brain microglia by female gonadal steroids. J Steroid Biochem Mol Biol 2015; 146:3-14. [PMID: 24607811 DOI: 10.1016/j.jsbmb.2014.02.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
Microglial cells are the primary mediators of the CNS immune defense system and crucial for shaping inflammatory responses. They represent a highly dynamic cell population which is constantly moving and surveying their environment. Acute brain damage causes a local attraction and activation of this immune cell type which involves neuron-to-glia and glia-to-glia interactions. The prevailing view attributes microglia a "negative" role such as defense and debris elimination. More topical studies also suggest a protective and "positive" regulatory function. Estrogens and progestins exert anti-inflammatory and neuroprotective effects in the CNS in acute and chronic brain diseases. Recent work revealed that microglial cells express subsets of classical and non-classical estrogen and progesterone receptors in a highly dynamic way. In this review article, we would like to stress the importance of microglia for the spreading of neural damage during hypoxia, their susceptibility to functional modulation by sex steroids, the potency of sex hormones to switch microglia from a pro-inflammatory M1 to neuroprotective M2 phenotype, and the regulation of pro- and anti-inflammatory properties including the inflammasome. We will further discuss the possibility that the neuroprotective action of sex steroids in the brain involves an early and direct modulation of local microglia cell function. This article is part of a Special Issue entitled 'Sex steroids and brain disorders'.
Collapse
Affiliation(s)
- Pardes Habib
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany.
| |
Collapse
|
43
|
Multiple sclerosis at menopause: Potential neuroprotective effects of estrogen. Maturitas 2014; 80:133-9. [PMID: 25544310 DOI: 10.1016/j.maturitas.2014.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating and neurodegenerative condition of the central nervous system that preferentially afflicts women more than men. Low estrogen states such as menopause and the postpartum period favor exacerbations of multiple sclerosis in women with the disease. Existing and emerging evidence suggests a role for estrogen in the alleviation of symptoms and reversal of pathology associated with MS. While clinical evidence is sparse regarding the benefit of estrogen therapy for women at risk for MS exacerbations, scientific data demonstrates that estrogen potentiates numerous neuroprotective effects on the central nervous system (CNS). Estrogens play a wide range of roles involved in MS disease pathophysiology, including increasing antiinflammatory cytokines, decreasing demyelination, and enhancing oxidative and energy producing processes in CNS cells.
Collapse
|
44
|
Rojas-Villarraga A, Torres-Gonzalez JV, Ruiz-Sternberg ÁM. Safety of hormonal replacement therapy and oral contraceptives in systemic lupus erythematosus: a systematic review and meta-analysis. PLoS One 2014; 9:e104303. [PMID: 25137236 PMCID: PMC4138076 DOI: 10.1371/journal.pone.0104303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/07/2014] [Indexed: 12/19/2022] Open
Abstract
Background There is conflicting data regarding exogenous sex hormones [oral contraceptives (OC) and hormonal replacement therapy (HRT)] exposure and different outcomes on Systemic Lupus Erythematosus (SLE). The aim of this work is to determine, through a systematic review and meta-analysis the risks associated with estrogen use for women with SLE as well as the association of estrogen with developing SLE. Methods and Findings MEDLINE, EMBASE, SciElo, BIREME and the Cochrane library (1982 to July 2012), were databases from which were selected and reviewed (PRISMA guidelines) randomized controlled trials, cross-sectional, case-control and prospective or retrospective nonrandomized, comparative studies without language restrictions. Those were evaluated by two investigators who extracted information on study characteristics, outcomes of interest, risk of bias and summarized strength of evidence. A total of 6,879 articles were identified; 20 full-text articles were included. Thirty-two meta-analyses were developed. A significant association between HRT exposure (Random model) and an increased risk of developing SLE was found (Rate Ratio: 1.96; 95%-CI: 1.51–2.56; P-value<0.001). One of eleven meta-analyses evaluating the risk for SLE associated with OC exposure had a marginally significant result. There were no associations between HRT or OC exposure and specific outcomes of SLE. It was not always possible to Meta-analyze all the available data. There was a wide heterogeneity of SLE outcome measurements and estrogen therapy administration. Conclusion An association between HRT exposure and SLE causality was observed. No association was found when analyzing the risk for SLE among OC users, however since women with high disease activity/Thromboses or antiphospholipid-antibodies were excluded from most of the studies, caution should be exercised in interpreting the present results. To identify risk factors that predispose healthy individuals to the development of SLE who are planning to start HRT or OC is suggested.
Collapse
Affiliation(s)
- Adriana Rojas-Villarraga
- Center for Autoimmune Diseases Research (CREA), School of medicine and health sciences, Universidad del Rosario, Bogotá, Colombia
- * E-mail:
| | - July-Vianneth Torres-Gonzalez
- Medical social service provision mandatory, research assistant in partnership with the School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ángela-María Ruiz-Sternberg
- Departamento de investigación Grupo Investigación Clínica, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
45
|
|
46
|
Conner J. Glatiramer acetate and therapeutic peptide vaccines for multiple sclerosis. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2054-989x-1-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Galvez-Contreras AY, Quiñones-Hinojosa A, Gonzalez-Perez O. The role of EGFR and ErbB family related proteins in the oligodendrocyte specification in germinal niches of the adult mammalian brain. Front Cell Neurosci 2013; 7:258. [PMID: 24381541 PMCID: PMC3865447 DOI: 10.3389/fncel.2013.00258] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/27/2013] [Indexed: 12/13/2022] Open
Abstract
In the adult brain, multipotent progenitor cells have been identified in three areas: the ventricular-subventricular zone (VZ-SVZ), adjacent to the striatal wall of the lateral ventricles, the subgranular zone (SGZ), located at the dentate gyrus of the hippocampus and the subcallosal zone (SCZ), located between the corpus callosum and the CA1 and CA2 regions of the hippocampus. The neural progenitor cells of these regions express the epidermal growth factor receptor (EGFR, ErbB-1 or HER1). EGF, the most important ligand for the EGFR, is a potent mitogenic agent that stimulates proliferation, survival, migration and differentiation into the oligodendrocyte lineage. Other ErbB receptors also activate several intracellular pathways for oligodendrocyte specification, migration and survival. However, the specific downstream pathways related to oligodendrogenesis and the hierarchic interaction among intracellular signaling cascades is not well-known. We summarize the current data regarding the role of EGFR and ErbB family signaling on neural stem cells and the downstream cascades involved in oligodendrogenesis in the neurogenic niches of the adult brain. Understanding the mechanisms that regulate proliferation, differentiation, migration of oligodendrocytes and myelination is of critical importance for the field of neurobiology and constitutes a crucial step in the design of stem-cell-based therapies for demyelinating diseases.
Collapse
Affiliation(s)
| | - Alfredo Quiñones-Hinojosa
- Department of Neurological Surgery and Oncology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Oscar Gonzalez-Perez
- Laboratorio de Neurociencias, Facultad de Psicologia, Universidad de Colima Colima, Mexico
| |
Collapse
|
48
|
Hepatic expression of metallothionein I/II, glycoprotein 96, IL-6, and TGF- β in rat strains with different susceptibilities to experimental autoimmune encephalomyelitis. Clin Dev Immunol 2013; 2013:750406. [PMID: 24489578 PMCID: PMC3893782 DOI: 10.1155/2013/750406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/21/2013] [Indexed: 12/24/2022]
Abstract
In a search of peripheral factors that could be responsible for the discrepancy in susceptibility to EAE in Albino Oxford (AO) and Dark Agouti (DA) rats, we estimated the expression of metallothioneins I/II (MT), heat shock protein-gp96, interleukin (IL)-6, and transforming growth factor (TGF)-β in the livers of these animals. Rats were immunized with bovine brain homogenate (BBH) emulsified in complete Freund adjuvant (CFA) or only with CFA. Western blot and immunohistochemical analyses were done on day 12 after the immunization, as well as in intact rats. The data have shown that during the first attack of EAE only the EAE prone-DA rats markedly upregulated the hepatic MTs, gp96, IL-6, and TGF-β. In contrast, AO rats had a significantly higher expression of MT I/II, IL-6, and TGF-β in intact liver (P < 0,001), suggesting that the greater constitutive expression of these proteins contributed to the resistance of EAE. Besides, since previously we found that AO rats reacted on immunization by an early upregulation of TGF-β on several hepatic structures (vascular endothelium, Kupffer cells, and hepatocytes), the data suggest that the specific hepatic microenvironment might contribute also to the faster recovery of these rats from EAE.
Collapse
|
49
|
17β-estradiol delays 6-OHDA-induced apoptosis by acting on Nur77 translocation from the nucleus to the cytoplasm. Neurotox Res 2013; 25:124-34. [PMID: 24277157 DOI: 10.1007/s12640-013-9442-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (Nurs) represent a large family of gene expression regulating proteins. Gathering evidence indicates an important role for Nurs as transcription factors in dopamine neurotransmission. Nur77, a member of the Nur superfamily, plays a role in mediating the effects of antiparkinsonian and neuroleptic drugs. Besides, Nur77 survival and apoptotic roles depend largely on its subcellular localization. Estrogens are known for their neuroprotective properties, as demonstrated in animal and clinical studies. However, their action on Nur77 translocation pertaining to neuroprotection has not been investigated yet. The aim of our study was to perform a kinetic study on the effect of neurotoxic 6-hydroxydopamine (6-OHDA) and 17β-estradiol (E2) on the subcellular localization of Nur77 with reference to the modulation of apoptosis in PC12 cells. Our results demonstrate that E2 administration alone does not affect Nur77 cytoplasmic/nuclear ratio, mRNA levels, or apoptosis in PC12 cells. The neurotoxin 6-OHDA significantly enhances cytoplasmic localization of Nur77 after merely 3 h, while precipitating apoptosis. 6-OHDA also increases Nur77 transcription, which could partly explain the rise in cytoplasmic localization of the protein. Finally, treatment with both E2 and 6-OHDA delays Nur77 accumulation in the cytoplasm and delays cell death for a few hours in our cellular paradigm. Pre-treatment with E2 does not alter the increase in levels of Nur77 mRNA produced by 6-OHDA, suggesting that a raise in nuclear translocation is likely responsible for the stabilization of the cytoplasmic/nuclear ratio until 6 h. These results suggest an intriguing cooperation between E2 and Nur77 toward cellular fate guidance.
Collapse
|
50
|
Handel AE, Sandve GK, Disanto G, Handunnetthi L, Giovannoni G, Ramagopalan SV. Integrating multiple oestrogen receptor alpha ChIP studies: overlap with disease susceptibility regions, DNase I hypersensitivity peaks and gene expression. BMC Med Genomics 2013; 6:45. [PMID: 24171864 PMCID: PMC4228442 DOI: 10.1186/1755-8794-6-45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 10/23/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND A wealth of nuclear receptor binding data has been generated by the application of chromatin immunoprecipitation (ChIP) techniques. However, there have been relatively few attempts to apply these datasets to human complex disease or traits. METHODS We integrated multiple oestrogen receptor alpha (ESR1) ChIP datasets in the Genomic Hyperbrowser. We analysed these datasets for overlap with DNase I hypersensitivity peaks, differentially expressed genes with estradiol treatment and regions near single nucleotide polymorphisms associated with sex-related diseases and traits. We used FIMO to scan ESR1 binding sites for classical ESR1 binding motifs drawn from the JASPAR database. RESULTS We found that binding sites present in multiple datasets were enriched for classical ESR1 binding motifs, DNase I hypersensitivity peaks and differentially expressed genes after estradiol treatment compared with those present in only few datasets. There was significant enrichment of ESR1 binding present in multiple datasets near genomic regions associated with breast cancer (7.45-fold, p = 0.001), height (2.45-fold, p = 0.002), multiple sclerosis (5.97-fold, p < 0.0002) and prostate cancer (4.47-fold, p = 0.0008), and suggestive evidence of ESR1 enrichment for regions associated with coronary artery disease, ovarian cancer, Parkinson's disease, polycystic ovarian syndrome and testicular cancer. Integration of multiple cell line ESR1 ChIP datasets also increases overlap with ESR1 ChIP-seq peaks from primary cancer samples, further supporting this approach as helpful in identifying true positive ESR1 binding sites in cell line systems. CONCLUSIONS Our study suggests that integration of multiple ChIP datasets can highlight binding sites likely to be of particular biological importance and can provide important insights into understanding human health and disease. However, it also highlights the high number of likely false positive binding sites in ChIP datasets drawn from cell lines and illustrates the importance of considering multiple independent experiments together.
Collapse
Affiliation(s)
- Adam E Handel
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Geir K Sandve
- Department of Informatics, University of Oslo, Blindern, Norway
| | - Giulio Disanto
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Lahiru Handunnetthi
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Gavin Giovannoni
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| | - Sreeram V Ramagopalan
- Medical Research Council Functional Genomics Unit and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Blizard Institute, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, London, UK
| |
Collapse
|