1
|
Thompson WA, Shvartsburd Z, Vijayan MM. The antidepressant venlafaxine perturbs cardiac development and function in larval zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106041. [PMID: 34856460 DOI: 10.1016/j.aquatox.2021.106041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is a highly prescribed antidepressant and is detected at µg/L concentrations in waterways receiving municipal wastewater effluents. We previously showed that early-life venlafaxine exposure disrupted the normal development of the nervous system and reduces larval activity in zebrafish (Danio rerio). However, it is unclear whether the reduced swimming activity may be associated with impaired cardiac function. Here we tested the hypothesis that zygotic exposure to venlafaxine impacts the development and function of the larval zebrafish heart. Venlafaxine (0, 1 or 10 ng) was administered by microinjection into freshly fertilized zebrafish embryos (1-4 cell stage) to assess heart development and function during early-life stages. Venlafaxine deposition in the zygote led to precocious development of the embryo heart, including the timing of the first heartbeat, increased heart size, and a higher heart rate at 24- and 48-hours post-fertilization (hpf). Also, waterborne exposure to environmental levels of this antidepressant during early development increased the heart rate at 48 hpf of zebrafish larvae mimicking the zygotic deposition. The venlafaxine-induced higher heart rate in the embryos was abolished in the presence of NAN-190, an antagonist of the 5HT1A receptor. Also, heart rate dropped below control levels in the 10 ng, but not 1 ng venlafaxine group at 72 and 96 hpf. An acute stressor reduced the venlafaxine-induced heart rate at 48 hpf but did not affect the already reduced heart rate at 72 and 96 hpf in the 10 ng venlafaxine group. Our results suggest that the higher heart rate in the venlafaxine group may be due to an enhanced serotonin stimulation of the 5HT1A receptor. Taken together, early-life venlafaxine exposure disrupts cardiac development and has the potential to compromise the cardiovascular performance of larval zebrafish.
Collapse
Affiliation(s)
- W Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Zachary Shvartsburd
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4.
| |
Collapse
|
2
|
Disruption of tph1 genes demonstrates the importance of serotonin in regulating ventilation in larval zebrafish (Danio rerio). Respir Physiol Neurobiol 2020; 285:103594. [PMID: 33271304 DOI: 10.1016/j.resp.2020.103594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023]
Abstract
Serotonergic neuroepithelial cells (NECs) in larval zebrafish are believed to be O2 chemoreceptors. Serotonin (5-HT) within these NECs has been implicated as a neurotransmitter mediating the hypoxic ventilatory response (HVR). Here, we use knockout approaches to discern the role of 5-HT in regulating the HVR by targeting the rate limiting enzyme for 5-HT synthesis, tryptophan hydroxylase (Tph). Using transgenic lines, we determined that Tph1a is expressed in skin and pharyngeal arch NECs, as well as in pharyngeal arch Merkel-like cells (MLCs), whereas Tph1b is expressed predominately in MLCs. Knocking out the two tph1 paralogs resulted in similar changes in detectable serotonergic cell density between the two mutants, yet their responses to hypoxia (35 mmHg) were different. Larvae lacking Tph1a (tph1a-/- mutants) displayed a higher ventilation rate when exposed to hypoxia compared to wild-types, whereas tph1b-/- mutants exhibited a lower ventilation rate suggesting that 5-HT located in locations other than NECs, may play a dominant role in regulating the HVR.
Collapse
|
3
|
Pan YK, Perry SF. Neuroendocrine control of breathing in fish. Mol Cell Endocrinol 2020; 509:110800. [PMID: 32240728 DOI: 10.1016/j.mce.2020.110800] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Beginning with the discovery more than 35 years ago that oxygen chemoreceptors of the fish gill are enriched with serotonin, numerous studies have examined the importance of this, and other neuroendocrine factors in piscine chemoreceptor function, and in particular on the chemoreceptor-mediated reflex control of breathing. However, despite these studies, there is continued debate as to the role of neuroendocrine factors in the initiation or modulation of breathing during environmental disturbances or physical activity. In this review, we summarize the state-of-knowledge surrounding the neuroendocrine control of oxygen chemoreception in fish and the associated reflex adjustments to ventilation. We focus on neurohumoral substances that either are present in chemosensory cells or those that are localised elsewhere but have also been implicated in the direct control of breathing. These substances include serotonin, catecholamines (adrenaline and noradrenaline), acetylcholine, purines and gaseous neurotransmitters. Despite the growing indirect evidence for an involvement of these neuroendocrine factors in chemoreception and ventilatory control, direct evidence awaits the incorporation of novel methods currently under development.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
4
|
Robert A, Monsinjon T, Péden R, Rasoamampianina V, Le Mével JC, Knigge T. In vivo effects of serotonin and fluoxetine on cardio-ventilatory functions in the shore crab Carcinus maenas (L. 1758). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:132-141. [PMID: 30557758 DOI: 10.1016/j.aquatox.2018.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Serotonin (5-HT) takes a key position in regulating vital functions, such as cardio-ventilatory activity, locomotion and behaviour. Selective serotonin reuptake inhibitors (SSRIs) modulate the serotonergic system and thus affect these functions. Rhythmic behaviours, such as cardio-ventilatory activity, are controlled by central pattern generators, which in turn are regulated by 5-HT. In crustaceans, 5-HT also regulates the synthesis and secretion of crustacean hyperglycaemic hormone, a pleiotropic hormone involved in the mobilisation and release of glucose into the haemolymph, thus stimulating the animal's activity. As a matter of consequence, SSRIs may affect cardio-ventilatory activity. In order to examine how the SSRIs affect fundamental physiological parameters based on rhythmic behaviours in decapods, cardio-respiratory activity in the shore crab Carcinus maenas was assessed after pericardial injection of a single dose of either 0.5 μM, 0.75 μM or 1 μM fluoxetine, respectively. Simultaneous recordings of heart and scaphognathite movements in both brachial chambers were conducted by measuring impedance changes in the respective body compartments. Injection of 5-HT had an immediate effect on cardio-ventilatory activities and strongly upregulated both cardiac and ventilatory activities. Fluoxetine showed similar effects, entailing moderate tachycardia and increased ventilation rates. Compared to 5-HT, these effects were delayed in time and much less pronounced. Metabolism of fluoxetine into the active compound nor-fluoxetine might account for the delayed action, whereas compensatory regulation of cardio-ventilatory frequencies and amplitudes are likely to explain the attenuation of the responses compared to the strong and immediate increase by 5-HT. Overall, the results suggest increased 5-HT levels in invertebrates following fluoxetine exposure, which are able to disturb physiological functions regulated by 5-HT, such as cardiac and respiratory activity.
Collapse
Affiliation(s)
- Alexandrine Robert
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France
| | - Tiphaine Monsinjon
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France
| | - Romain Péden
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Virginie Rasoamampianina
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France
| | - Jean-Claude Le Mével
- Université Européenne de Bretagne, Université de Brest, INSERM U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, CHU de Brest, 22 Avenue Camille Desmoulins, CS 93837, F-29238, Brest Cedex 3, France
| | - Thomas Knigge
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France.
| |
Collapse
|
5
|
Amador MHB, Schauer KL, McDonald MD. Does fluoxetine exposure affect hypoxia tolerance in the Gulf toadfish, Opsanus beta? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:55-64. [PMID: 29609092 DOI: 10.1016/j.aquatox.2018.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Due to ineffective wastewater treatment technologies, pharmaceuticals such as the selective serotonin reuptake inhibitors (SSRIs)-a common class of antidepressants which inhibit the serotonin transporter (SERT)-can be found in surface waters and marine receiving waters near wastewater effluents. Understanding how exposure to these chemicals might impact non-target organisms, especially combined with other environmental stressors like hypoxia, is essential in order to thoroughly evaluate environmental risk. It was hypothesized that both acute and chronic exposure to the SSRI fluoxetine (FLX) would interfere with the metabolic hypoxia response of the Gulf toadfish, Opsanus beta. Here we demonstrate that acute intraperitoneal treatment with 50 μg g-1 FLX significantly reduces the regulation index, or degree of metabolic regulation, in toadfish. Acute FLX exposure significantly reduced SERT mRNA expression in the first and third gill arches, but mRNA expression was not affected in heart tissues or in the second gill arch. In contrast, the regulation index was unaffected by 14-17 day waterborne FLX exposure to environmentally relevant (0.01 μg L-1) and approximately 1000-fold higher (8.5 μg L-1) concentrations. However, the higher concentration was sufficient to induce a systemic elevation in plasma serotonin concentrations. Chronic FLX exposure did not alter SERT mRNA expression in heart or gill tissues. The results of this study implicate the involvement of 5-HT pathways in hypoxia tolerance but demonstrate that current environmental levels of FLX are insufficient to impair the metabolic hypoxia response in marine fish.
Collapse
Affiliation(s)
- Molly H B Amador
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | - Kevin L Schauer
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| | - M Danielle McDonald
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA.
| |
Collapse
|
6
|
McDonald MD. An AOP analysis of selective serotonin reuptake inhibitors (SSRIs) for fish. Comp Biochem Physiol C Toxicol Pharmacol 2017; 197:19-31. [PMID: 28288906 DOI: 10.1016/j.cbpc.2017.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/16/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022]
Abstract
Pharmaceuticals and personal care products (PPCPs) are found in measureable quantities within the aquatic environment. Selective serotonin reuptake inhibitor (SSRI) antidepressants are one class of pharmaceutical compound that has received a lot of attention. Consistent with most PPCPs, the pharmacokinetics and physiological impacts of SSRI treatment have been well-studied in small mammals and humans and this, combined with the evolutionary conservation of the serotonergic system across vertebrates, allows for the read-across of known SSRI effects in mammals to potential SSRI impacts on aquatic organisms. Using an Adverse Outcome Pathway (AOP) framework, this review examines the similarities and differences between the mammalian and teleost fish SSRI target, the serotonin transporter (SERT; SLC6A4), and the downstream impacts of elevated extracellular serotonin (5-HT; 5-hydroxytryptamine), the consequence of SERT inhibition, on organ systems and physiological processes within teleost fish. This review also intends to reveal potentially understudied endpoints for SSRI toxicity based on what is known to be controlled by 5-HT in fish.
Collapse
Affiliation(s)
- M Danielle McDonald
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.
| |
Collapse
|
7
|
Treatment with the selective serotonin reuptake inhibitor, fluoxetine, attenuates the fish hypoxia response. Sci Rep 2016; 6:31148. [PMID: 27499056 PMCID: PMC4976378 DOI: 10.1038/srep31148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022] Open
Abstract
The selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX), the active ingredient of the antidepressant drug Prozac, inhibits reuptake of the neurotransmitter, serotonin (5-HT; 5-hydroxytryptamine), into cells by the 5-HT transporter (SERT). Given the role of 5-HT in oxygen detection and the cardiovascular and ventilatory responses of fish to hypoxia, we hypothesized that treatment of the Gulf toadfish, Opsanus beta, with FLX would interfere with their response to hypoxia. Toadfish treated intra-arterially with 3.4 μg.g−1 FLX under normoxic conditions displayed a transient tachycardia and a biphasic caudal arterial blood pressure (PCA) response that are in direct conflict with the typical hypoxia response. Fish injected intraperitoneally with FLX under normoxia had resting cardiovascular and ventilatory parameters similar to controls. Upon exposure to hypoxia, control toadfish exhibit a significant bradycardia, reduction in PCA and an increase in ventilatory amplitude (VAMP) without any changes in ventilatory frequency (fV). Fish treated IP with 10 μg.g−1 FLX showed an interference in the cardiovascular and ventilatory response to hypoxia. Interestingly, when treated with 25 μg.g−1 FLX, the bradycardia and VAMP response to hypoxia were similar to control fish while the PCA response to hypoxia was further inhibited. These results suggest that SERT inhibition by FLX may hinder survival in hypoxia.
Collapse
|
8
|
Rahbar S, Pan W, Jonz MG. Purinergic and Cholinergic Drugs Mediate Hyperventilation in Zebrafish: Evidence from a Novel Chemical Screen. PLoS One 2016; 11:e0154261. [PMID: 27100625 PMCID: PMC4839714 DOI: 10.1371/journal.pone.0154261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/10/2016] [Indexed: 12/29/2022] Open
Abstract
A rapid test to identify drugs that affect autonomic responses to hypoxia holds therapeutic and ecologic value. The zebrafish (Danio rerio) is a convenient animal model for investigating peripheral O2 chemoreceptors and respiratory reflexes in vertebrates; however, the neurotransmitters and receptors involved in this process are not adequately defined. The goals of the present study were to demonstrate purinergic and cholinergic control of the hyperventilatory response to hypoxia in zebrafish, and to develop a procedure for screening of neurochemicals that affect respiration. Zebrafish larvae were screened in multi-well plates for sensitivity to the cholinergic receptor agonist, nicotine, and antagonist, atropine; and to the purinergic receptor antagonists, suramin and A-317491. Nicotine increased ventilation frequency (fV) maximally at 100 μM (EC50 = 24.5 μM). Hypoxia elevated fV from 93.8 to 145.3 breaths min-1. Atropine reduced the hypoxic response only at 100 μM. Suramin and A-317491 maximally reduced fV at 50 μM (EC50 = 30.4 and 10.8 μM) and abolished the hyperventilatory response to hypoxia. Purinergic P2X3 receptors were identified in neurons and O2-chemosensory neuroepithelial cells of the gills using immunohistochemistry and confocal microscopy. These studies suggest a role for purinergic and nicotinic receptors in O2 sensing in fish and implicate ATP and acetylcholine in excitatory neurotransmission, as in the mammalian carotid body. We demonstrate a rapid approach for screening neuroactive chemicals in zebrafish with implications for respiratory medicine and carotid body disease in humans; as well as for preservation of aquatic ecosystems.
Collapse
Affiliation(s)
- Saman Rahbar
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Wen Pan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G. Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|