1
|
Li X, Li J, Lu K, Li X, Song K, Wang L, Zhang C. Effect of dietary supplementation of selenium-L-methionine on growth, antioxidant capacity and resistance to nitrite stress of spotted seabass ( Lateolabrax maculatus) under two rearing water temperatures. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:166-179. [PMID: 39635417 PMCID: PMC11615926 DOI: 10.1016/j.aninu.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/07/2024]
Abstract
A 10-week feeding trial, followed by 24-h nitrite stress, was performed to evaluate the effects of dietary selenium-L-methionine (Se-Met) on growth, Se accumulation, antioxidant capacity, transcripts of selenoproteins and histological changes of muscle as well as resistance to nitrite stress in spotted seabass (Lateolabrax maculatus) reared at optimal (27 °C) and high (33 °C) temperatures. Five experimental diets were formulated to contain 0, 0.9, 1.8, 3.5, and 7.0 mg Se-Met/kg. Each diet was fed to fish (2.60 ± 0.2 g) in two parallel treatments at 27 or 33 °C. The results showed that elevated temperature (33 °C) induced thermal stress in fish, and fish under thermal stress exhibited lower weight gain and hepatosomatic index but a higher condition factor compared to those reared at 27 °C. However, the growth and feed utilisation were promoted in L. maculatus with 0.9 to 3.5 mg/kg Se-Met treatments. The protein and lipid content in the muscle increased with the dietary Se-Met level, and the total Se level in the whole body and muscle showed a linear increase with dietary Se-Met supplementation. Thermal stress changed the histology of the muscle, leading to raised levels of malondialdehyde (MDA), reduced antioxidant parameters in the serum and liver, and a decrease in the transcripts of selenoprotein genes in the muscle. Meanwhile, increased antioxidant capacity of serum and liver and up-regulated transcripts of selenoprotein of muscle were observed in L. maculatus reaching a maximum with 3.5 mg Se-Met/kg treatment. After 24 h of nitrite stress, thermal stress exacerbated oxidative damage caused by nitrite stress in L. maculatus. In contrast, dietary Se-Met enhanced the resistance to nitrite stress of L. maculatus fed with Se-Met enriched diets containing 0.9 to 1.8 mg Se-Met/kg. Based on the effects of dietary Se-Met on the growth, antioxidant capacity and resistance to nitrite stress of L. maculatus, this study suggests that the optimal range of Se-Met supplementation in L. maculatus diets is 1.80 to 2.39 mg Se-Met/kg of diet at 27 °C and 1.80 to 4.46 mg Se-Met/kg of diet at 33 °C.
Collapse
Affiliation(s)
- Xiao Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jing Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kangle Lu
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xueshan Li
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Kai Song
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ling Wang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei University, Xiamen 361021, China
| |
Collapse
|
2
|
Liu Y, Li X, Lin J, Song K, Li X, Wang L, Zhang C, Lu K. Effects of Dietary Supplementation of Bile Acids on Growth, Glucose Metabolism, and Intestinal Health of Spotted Seabass ( Lateolabrax maculatus). Animals (Basel) 2024; 14:1299. [PMID: 38731303 PMCID: PMC11083208 DOI: 10.3390/ani14091299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
An 8-week feeding trial was performed to investigate the effects of dietary bile acids on growth, glucose metabolism, and intestinal health in spotted seabass (Lateolabrax maculatus) reared at high temperatures (33 °C). The fish (20.09 ± 1.12 g) were fed diets supplemented with bile acids: 0 (Con), 400 (BA400), 800 (BA800), and 1200 (BA1200) mg/kg, respectively. The results showed that the growth was promoted in fish at the BA800 treatment compared with the control (p < 0.05). Increased enzyme activities and transcripts of gluconeogenesis in the liver were observed, whereas decreased enzyme activities and transcripts of glycolysis, as well as glycogen content, were shown in the BA800 treatment (p < 0.05). The transcripts of bile acid receptors fxr in the liver were up-regulated in the BA800 treatment (p < 0.05). A bile acid supplementation of 800 mg/kg improved the morphological structure in the intestine. Meanwhile, intestinal antioxidant physiology and activities of lipase and trypsin were enhanced in the BA800 treatment. The transcripts of genes and immunofluorescence intensity related to pro-inflammation cytokines (il-1β, il-8, and tnf-α) were inhibited, while those of genes related to anti-inflammation (il-10 and tgf-β) were induced in the BA800 treatment. Furthermore, transcripts of genes related to the NF-κB pathway in the intestine (nfκb, ikkα, ikkβ, and ikbα1) were down-regulated in the BA800 treatment. This study demonstrates that a dietary bile acid supplementation of 800 mg/kg could promote growth, improve glucose metabolism in the liver, and enhance intestinal health by increasing digestive enzyme activity and antioxidant capacity and inhibiting inflammatory response in L. maculatus.
Collapse
Affiliation(s)
- Yongping Liu
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Xiao Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen 361021, China
| | - Jibin Lin
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Kai Song
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Xueshan Li
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Ling Wang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Chunxiao Zhang
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| | - Kangle Lu
- State Key Laboratory for Mariculture Breeding, Fisheries College of Jimei University, Xiamen 361021, China; (Y.L.); (X.L.)
- Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College of Jimei University, Xiamen 361021, China
| |
Collapse
|
3
|
Castañeda-Cortés DC, Rosa IF, Boan AF, Marrone D, Pagliaro N, Oliveira MA, Rodrigues MS, Doretto LB, Silva C, Tavares-Júnior J, Costa DF, Dodds MS, Strobl-Mazzulla PH, Langlois VS, Nóbrega RH, Fernandino JI. Thyroid axis participates in high-temperature-induced male sex reversal through its activation by the stress response. Cell Mol Life Sci 2023; 80:253. [PMID: 37589787 PMCID: PMC11071808 DOI: 10.1007/s00018-023-04913-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Environmental changes alter the sex fate in about 15% of vertebrate orders, mainly in ectotherms such as fish and reptiles. However, the effects of temperature changes on the endocrine and molecular processes controlling gonadal sex determination are not fully understood. Here, we provide evidence that thyroid hormones (THs) act as co-players in heat-induced masculinization through interactions with the stress axis to promote testicular development. We first demonstrated that the thyroid axis (through thyroid-related genes and T3 levels) is highly active in males during the gonadal development in medaka (Oryzias latipes). Similarly, T3 treatments promoted female-to-male sex reversal in XX embryos. Subsequently, embryonic exposure to temperature-induced stress up-regulated the genes related to the thyroid and stress axes with a final increase in T3 levels. In this context, we show that blocking the stress axis response by the loss of function of the corticotropin-releasing hormone receptors suppresses thyroid-stimulating hormone expression, therefore, heat-induced activation of the thyroid axis. Thus, our data showed that early activation of the stress axis and, in consequence, the TH axis, too, leaves us with that both being important endocrine players in inducing female-to-male reversal, which can help predict possible upcoming physiological impacts of global warming on fish populations.
Collapse
Affiliation(s)
- Diana C Castañeda-Cortés
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Québec, QC, Canada
| | - Ivana F Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Agustín F Boan
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Demian Marrone
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Natalia Pagliaro
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Marcos A Oliveira
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maira S Rodrigues
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Camila Silva
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - José Tavares-Júnior
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniel F Costa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - María S Dodds
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Pablo H Strobl-Mazzulla
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina
| | - Valerie S Langlois
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Québec, QC, Canada.
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodňany, Ceske Budejovice, 389 25, Czech Republic.
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Chascomús, Argentina.
| |
Collapse
|
4
|
Seebacher F. Interactive effects of anthropogenic environmental drivers on endocrine responses in wildlife. Mol Cell Endocrinol 2022; 556:111737. [PMID: 35931299 DOI: 10.1016/j.mce.2022.111737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Anthropogenic activity has created unique environmental drivers, which may interact to produce unexpected effects. My aim was to conduct a systematic review of the interactive effects of anthropogenic drivers on endocrine responses in non-human animals. The interaction between temperature and light can disrupt reproduction and growth by impacting gonadotropins, thyroid hormones, melatonin, and growth hormone. Temperature and endocrine disrupting compounds (EDCs) interact to modify reproduction with differential effects across generations. The combined effects of light and EDCs can be anxiogenic, so that light-at-night could increase anxiety in wildlife. Light and noise increase glucocorticoid release by themselves, and together can modify interactions between individuals and their environment. The literature detailing interactions between drivers is relatively sparse and there is a need to extend research to a broader range of taxa and interactions. I suggest that incorporating endocrine responses into Adverse Outcome Pathways would be beneficial to improve predictions of environmental effects.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Accustomed to the heat: Temperature and thyroid hormone influences on oogenesis and gonadal steroidogenesis pathways vary among populations of Amargosa pupfish (Cyprinodon nevadensis amargosae). Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111280. [PMID: 35902003 DOI: 10.1016/j.cbpa.2022.111280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Many fish experience diminished reproductive performance under atypically high or prolonged elevations of temperature. Such high temperature inhibition of reproduction comes about in part from altered stimulation of gametogenesis by the hypothalamic-pituitary-gonadal (HPG) endocrine axis. Elevated temperatures have also been shown to affect thyroid hormone (TH) signaling, and altered TH status under high temperatures may impact gametogenesis via crosstalk with HPG axis pathways. Here, we examined effects of temperature and 3'-triiodo-L-thyronine (T3) on pathways for gonadal steroidogenesis and gametogenesis in Amargosa pupfish (Cyprinodon nevadensis amargosae) from two allopatric populations: 1) the Amargosa River - a highly variable temperature habitat, and 2) Tecopa Bore - an invariably warm groundwater-fed marsh. These populations were previously shown to differ in TH signaling profiles both in the wild and under common laboratory conditions. Sexually-mature pupfish from each population were maintained at 24 °C or 34 °C for 88 days, after which a subset of fish was treated with T3 for 18-24 h. In both populations, mRNA abundances for follicle-stimulating hormone receptor and luteinizing hormone receptor were higher in the ovary and testis at 24 °C compared to 34 °C. Females from Tecopa Bore - but not from the Amargosa River - also had greater ovarian transcript abundances for steroidogenic enzymes cytochrome P450 aromatase, 3β-hydroxysteroid dehydrogenase, and 17β-hydroxysteroid dehydrogenase at 24 °C compared to 34 °C, as well as higher liver mRNA levels of vitellogenins and choriogenins at cooler temperature. Transcript abundances for estrogen receptors esr1, esr2a, and esr2b were reduced at 34 °C in Amargosa River females, but not in Tecopa Bore females. T3 augmented gonadal gene transcript levels for steroid acute regulatory protein (StAR) transporter in both sexes and populations. T3 also downregulated liver estrogen receptor mRNAs in females from the warmer Tecopa Bore habitat only, suggesting T3 modulation of liver E2 sensitivity as a possible mechanism whereby temperature-induced changes in TH status may contribute to shifts in thermal sensitivity for oogenesis.
Collapse
|
6
|
Islam MJ, Kunzmann A, Slater MJ. Extreme winter cold-induced osmoregulatory, metabolic, and physiological responses in European seabass (Dicentrarchus labrax) acclimatized at different salinities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145202. [PMID: 33736134 DOI: 10.1016/j.scitotenv.2021.145202] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Despite climate-change challenges, for most aquaculture species, physiological responses to different salinities during ambient extreme cold events remain unknown. Here, European seabass acclimatized at 3, 6, 12, and 30 PSU were subjected to 20 days of an ambient extreme winter cold event (8 °C), and monitored for growth and physiological performance. Growth performance decreased significantly (p < 0.05) in fish exposed at 3 and 30 PSU compared to 6 and 12 PSU. During cold stress exposure, serum Na+, Cl-, and K+ concentrations were significantly (p < 0.05) increased in fish exposed at 30 PSU. Serum cortisol, glucose, and blood urea nitrogen (BUN) were increased significantly (p < 0.05) in fish exposed at 3 and 30 PSU. In contrast, opposite trends were observed for serum protein, lactate, and triglycerides content during cold exposure. Transaminase activities [glutamic-pyruvate transaminase (GPT), glutamic oxaloacetic transaminase (GOT), lactic acid dehydrogenase (LDH), gamma-glutamyl-transaminase (γGGT)] were significantly higher in fish exposed at 3 and 30 PSU on days 10 and 20. The abundance of heat shock protein 70 (HSP70), tumor necrosis factor-α (TNF-α), cystic fibrosis transmembrane conductance (CFTR) were significantly (p < 0.05) increased in fish exposed at 3 and 30 PSU during cold shock exposure. In contrast, insulin-like growth factor 1 (Igf1) expression was significantly lower in fish exposed at 3 and 30 PSU. Whereas, on day 20, Na+/K+ ATPase α1 and Na+/K+/Cl- cotransporter-1 (NKCC1) were significantly upregulated in fish exposed at 30 PSU, followed by 12, 6, and 3 PSU. Results demonstrated that ambient extreme winter cold events induce metabolic and physiological stress responses and provide a conceivable mechanism by which growth and physiological fitness are limited at cold thermal events. However, during ambient extreme cold (8 °C) exposure, European seabass exhibited better physiological fitness at 12 and 6 PSU water, providing possible insight into future aquaculture management options.
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Faculty of Biology and Chemistry (FB 02), University of Bremen, 28359 Bremen, Germany.
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
7
|
Islam MJ, Slater MJ, Kunzmann A. What metabolic, osmotic and molecular stress responses tell us about extreme ambient heatwave impacts in fish at low salinities: The case of European seabass, Dicentrarchus labrax. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141458. [PMID: 32829272 DOI: 10.1016/j.scitotenv.2020.141458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Unprecedented shifts in temperature and precipitation patterns in recent decades place multiple abiotic stressors on the fish. In teleosts, metabolic, osmoregulatory, and molecular potential as tolerance responses to extreme ambient heatwave events at different salinities are poorly understood. The study was performed to evaluate the physio-biochemical stress responses and acclimation potential of European seabass, Dicentrarchus labrax maintained at four different salinities followed by an extreme ambient heatwave exposure. Fish were kept at 32, 12, 6, and 2 psu for 35 days followed by a simulated extreme ambient heatwave (33 °C) exposure for 10 days. Fish growth performances, physio-biochemical and molecular responses were recorded. Fish acclimated at 32 and 2 psu exhibited significantly (p < 0.05) decreased growth performance. Serum [Na+] and [Cl-] ions were significantly lowered (p < 0.05) in 32 psu fish on day 10 of heatwave exposure. While serum glucose, triglycerides, and protein tended to decrease during the extreme ambient heatwave exposure, lactate content increased significantly (p < 0.05) in 32 psu fish on day 10. In 32 and 2 psu fish, serum metabolic enzymes, and cortisol levels increased significantly (p < 0.05) during the extreme heatwave exposure. On days 5 and 10, HSP70 mRNA was significantly (p < 0.05) upregulated in kidneys and gills of 32 and 2 psu fish, while Igf1 showed downregulation. In gills of 2 psu fish, ATPase Na+/K+-α1 and NKCC1 expression decreased significantly (p < 0.05) in 2 psu, in contrast, significant upregulation was observed at 32 psu fish during extreme ambient heatwave exposure. On days 5 and 10, cystic fibrosis transmembrane conductance (CFTR) upregulation was significantly lower (p < 0.05) in 32 and 2 psu fish. Results suggest that European seabass held at 12 and 6 psu water fare better physiological fitness during the tested extreme ambient heatwave event (33 °C), providing possible insights into options for future aquaculture management in a warming environment.
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany; Faculty of Biology and Chemistry (FB 02), University of Bremen, 28359 Bremen, Germany.
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| |
Collapse
|
8
|
Chang CC, Lu YC, Wang CC, Ko TL, Chen JR, Wang W, Chen YL, Wang YW, Chang TH, Hsu HF, Houng JY. Antrodia cinnamomea Extraction Waste Supplementation Promotes Thermal Stress Tolerance and Tissue Regeneration Ability of Zebrafish. Molecules 2020; 25:molecules25184213. [PMID: 32937928 PMCID: PMC7571120 DOI: 10.3390/molecules25184213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/08/2020] [Accepted: 09/12/2020] [Indexed: 12/11/2022] Open
Abstract
Antrodia cinnamomea (AC) has been shown to have anti-inflammatory, anti-tumor, and immunomodulation activities. It is estimated that hundreds of metric tons of AC extraction waste (ACEW) are produced per year in Taiwan. This study aims to assess the feasibility of applying ACEW as feed supplement in the aquaculture industry. ACEW significantly inhibited the growth of microorganisms in the water tank, by around 39.4% reduction on the fifth day with feed supplemented of 10% ACEW. The feed conversion efficiency of zebrafish with 10% ACEW supplementation for 30 days was 1.22-fold compared to that of the control. ACEW dramatically improved the tolerances of zebrafish under the heat and cold stresses. When at water temperature extremes of 38 °C or 11 °C, compared to the 100% mortality rate in the control group, the 10% ACEW diet group still had 91.7% and 83.3% survival rates, respectively. In a caudal fin amputation test, the fin recovery of zebrafish was increased from 68.4% to 93% with 10% ACEW diet after 3-week regeneration. ACEW effectively down-regulated the gene expression of TNF-α, IL-1β, IL-6, and IL-10, and up-regulated the gene expression of IL-4/13A. Additionally, the supplement of ACEW in the feed can maintain and prevent the fish’s body weight from dropping too much under enteritis. Taken together, ACEW has beneficial potential in aquaculture.
Collapse
Affiliation(s)
- Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yung-Chuan Lu
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Chih-Chun Wang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
- Department of Otolaryngology, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Tsui-Ling Ko
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (C.-C.C.); (Y.-C.L.); (C.-C.W.); (T.-L.K.)
| | - Jung-Ren Chen
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Wei Wang
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (J.-R.C.); (W.W.)
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, Kaohsiung 82445, Taiwan;
| | - Yu-Wen Wang
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Tzu-Hsien Chang
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Hsia-Fen Hsu
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
| | - Jer-Yiing Houng
- Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-W.W.); (H.-F.H.)
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan;
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7915)
| |
Collapse
|
9
|
Little AG, Loughland I, Seebacher F. What do warming waters mean for fish physiology and fisheries? JOURNAL OF FISH BIOLOGY 2020; 97:328-340. [PMID: 32441327 DOI: 10.1111/jfb.14402] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental signals act primarily on physiological systems, which then influence higher-level functions such as movement patterns and population dynamics. Increases in average temperature and temperature variability associated with global climate change are likely to have strong effects on fish physiology and thereby on populations and fisheries. Here we review the principal mechanisms that transduce temperature signals and the physiological responses to those signals in fish. Temperature has a direct, thermodynamic effect on biochemical reaction rates. Nonetheless, plastic responses to longer-term thermal signals mean that fishes can modulate their acute thermal responses to compensate at least partially for thermodynamic effects. Energetics are particularly relevant for growth and movement, and therefore for fisheries, and temperature can have pronounced effects on energy metabolism. All energy (ATP) production is ultimately linked to mitochondria, and temperature has pronounced effects on mitochondrial efficiency and maximal capacities. Mitochondria are dependent on oxygen as the ultimate electron acceptor so that cardiovascular function and oxygen delivery link environmental inputs with energy metabolism. Growth efficiency, that is the conversion of food into tissue, changes with temperature, and there are indications that warmer water leads to decreased conversion efficiencies. Moreover, movement and migration of fish relies on muscle function, which is partially dependent on ATP production but also on intracellular calcium cycling within the myocyte. Neuroendocrine processes link environmental signals to regulated responses at the level of different tissues, including muscle. These physiological processes within individuals can scale up to population responses to climate change. A mechanistic understanding of thermal responses is essential to predict the vulnerability of species and populations to climate change.
Collapse
Affiliation(s)
| | - Isabella Loughland
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Park K, Han EJ, Ahn G, Kwak IS. Effects of combined stressors to cadmium and high temperature on antioxidant defense, apoptotic cell death, and DNA methylation in zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137130. [PMID: 32045767 DOI: 10.1016/j.scitotenv.2020.137130] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 05/12/2023]
Abstract
Fish are frequently affected by environmental stressors, such as temperature changes and heavy metal exposure, in aquatic ecosystems. In this study, we evaluated the combined effects of cadmium (Cd) toxicity and temperature (rearing temperature of 26 °C and heat stress at 34 °C) on zebrafish (Danio rerio) embryos. The survival and heart rates of zebrafish embryos decreased at relatively high Cd concentrations of 0.07 and 0.1 mg L-1. Abnormal morphology was induced by exposure to a combination of Cd toxicity and heat stress. The yolk sac edema size was not significantly different between the control- and Cd-treated groups. Cd exposure induced reactive oxygen species (ROS) production and cell death in the live zebrafish. High temperature (34 °C) triggered Cd-induced cell death and intracellular ROS production to a greater extent than the rearing temperature of 26 °C. Transcriptional levels of six genes-CAT, SOD, p53, BAX, Dnmt1, and Dnmt3b-were investigated. The mRNA expression of CAT and SOD, molecular indicators of oxidative stress, was increased significantly at 34 °C after Cd exposure. The mRNA expression of CAT was more sensitive to temperature than that of SOD in Cd-treated zebrafish. p53 and BAX, apoptosis-related genes, were upregulated upon combined exposure to high temperature and Cd. In addition, at 34 °C, the expression of Dnmt1 and Dnmt3b transcripts, markers of DNA methylation, was increased upon exposure of zebrafish to all concentrations of Cd. Overall, these results suggest that high temperature facilitates the potential role of Cd toxicity in the transcriptional regulation of genes involved in the antioxidant system, apoptosis, and DNA methylation.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Eui Jeong Han
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ginnae Ahn
- Department of Marine Bio-food Science, College of Fisheries and Ocean Sciences, Chonnam National University, 500-749, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|
11
|
Latest developments in polyphenol recovery and purification from plant by-products: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Lema SC. Hormones, developmental plasticity, and adaptive evolution: Endocrine flexibility as a catalyst for 'plasticity-first' phenotypic divergence. Mol Cell Endocrinol 2020; 502:110678. [PMID: 31830511 DOI: 10.1016/j.mce.2019.110678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Explaining how populations adapt to environments is among the foremost objectives of evolutionary theory. Over generations, natural selection impels the phenotypic distribution of a population based on individual variation in phenotype and fitness. However, environmental conditions can also shape how individuals develop within their lifetime to influence which phenotypes are expressed in a population. It has been proposed that such environmentally-initiated phenotypic variation - also termed developmental plasticity - may enable adaptive evolution under some scenarios. As dynamic regulators of development and phenotypic expression, hormones are important physiological mediators of developmental plasticity. Patterns of hormone secretion, hormone transport, and the sensitivity of tissues to hormones can each be altered by environmental conditions, and understanding how endocrine regulation shapes phenotypic development in an ecologically-relevant context has much to contribute toward clarifying the role of plasticity in evolutionary adaptation. This article explores how the environmental sensitivity of endocrine regulation may facilitate 'plasticity-first' evolution by generating phenotypic variants that precede adaptation to altered or novel environments. Predictions arising from 'plasticity-first' evolution are examined in the context of thyroid hormone mediation of morphological plasticity in Cyprinodon pupfishes from the Death Valley region of California and Nevada, USA. This clade of extremophile fishes diversified morphologically over the last ~20,000 years, and observations that some populations experienced contemporary phenotypic differentiation under recent habitat change provide evidence that hormone-mediate plasticity preceded genetic assimilation of morphology in one of the region's species: the Devils Hole pupfish, Cyprinodon diabolis. This example illustrates how conceptualizing hormones not only as regulators of homeostasis, but also as developmental intermediaries between environment conditions and phenotypic variation at the individual-, population-, and species-levels can enrich our understanding of endocrine regulation both as a facilitator of phenotypic change under shifting environments, and as important proximate mechanisms that may initiate 'plasticity-first' evolutionary adaptation.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
13
|
Apraku A, Huang X, Yusuf A, Cornel A, Ayisi CL, Asiedu B. Impact of dietary oil replacement on muscle and liver enzymes activity, histomorphology and growth-related genes on Nile tilapia. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:15-25. [PMID: 31059784 DOI: 10.1016/j.cbpc.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/25/2022]
Abstract
This study evaluated the efficacy of replacing dietary fish oil (FO) with vegetable oils (virgin coconut and corn oil) on enzyme activities (glycolytic, oxidative and lipid metabolites), mRNA expression of lipid metabolic genes and histomorphology of liver and intestine in O. niloticus. O. niloticus (6.07 ± 0.07 g) was fed six experimental diets where fish oil (FO) served as the control diet, and then was supplemented by dietary oils; virgin coconut oil (VCO) {3%FO + 3%VCO; 3FVCO}, and corn oil (CO) {3%FO + 3%CO; 3FCO}, 6%VCO (VCO), 6%CO (CO) and 6%VO {3%VCO + 3%CO; VO}. Growth performances measured indicated fish fed diet 3FCO had higher weight gain (WG) and specific growth rate (SGR). Fish fed diet 3FCO recorded the highest activities in lactate dehydrogenase (LDH), pyruvate kinase (PK), citrate synthase (CS), cytochrome coxidase (COX), malic enzymes (ME) and lipoprotein lipase (LPL) respectively. Stearoyl-CoA desaturase (SCD1) was upregulated in groups fed diets 3FVCO and 3FCO. Also, groups fed diet VCO and CO expressed highly in LPL, whereas, elongase of very long-chain fatty acids (ELOVL-5) was not influenced by the lipid sources. Histological representations in the liver were highly impacted in vegetable diets where lipid accumulation was higher except those fed VCO. However, in the digestive tract from distal to middle and posterior, the same group (VCO) exhibited altered morphological structure as those fed diet 3FCO were similar to FO. The study shows that, corn oil in diets relates positively to growth and enzymatic activities which becomes evident in their depositions in liver and functional intestinal tracts. This study indicates dietary alternatives may cause alterations in lipid metabolic pathways (LPL and SCD1) involved in fatty acid transport. As such, polyunsaturated fatty acid (PUFA) rich diets (CO) based on this study results increases metabolic activities involving especially the production, distribution and consumption of adenosine triphosphate (ATP) in O. niloticus.
Collapse
Affiliation(s)
- Andrews Apraku
- College of Fisheries and Life Sciences, Center for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xuxiong Huang
- College of Fisheries and Life Sciences, Center for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Abdullateef Yusuf
- College of Fisheries and Life Sciences, Center for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Angela Cornel
- College of Fisheries and Life Sciences, Center for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China
| | - Christian L Ayisi
- University for Development Studies, Faculty of Natural Resources and Environment, Department of Fisheries and Aquatic Resources Management, Tamale, Ghana
| | - Berchie Asiedu
- University of Energy and Natural Resources, School of Natural Resources, Department of Fisheries and Water Resources, Sunyani, Ghana
| |
Collapse
|