1
|
Kumar TP, Gireesh-Babu P, Vasudevan D, Pavan-Kumar A, Chaudhari A. Characterization of Kiss/Kissr system and expression profiling through developmental stages indicate kiss1 to be the active isotype in Clarias magur. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1353-1373. [PMID: 38647980 DOI: 10.1007/s10695-024-01343-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Kisspeptin (Kiss) and kisspeptin receptor (Kissr) system is a key regulator of GnRH expression in several vertebrates. The Indian catfish, Clarias magur, is popular in the Indian sub-continent, and a neo-type of the Asian catfish, C. batrachus. Catfish breeding is constrained as males do not release milt captivity with/without stimulation. Magur Kiss/Kissr system comprising of kiss1, kiss2, kissr1, and kissr2 genes was characterized for the first time. Full-length mRNA was sequenced using RACE PCR. Neighbor-joining tree of predicted proteins shows one clade of teleost orthologs. Magur whole genome (NCBI GenBank) has single copies of each gene, though yet unannotated/misannotated. Anomalies in the nomenclature of earlier sequences in GenBank were noted. Relative gene expression was profiled during various ontogenic stages, in six tissues including brain and gonads at maturity, and also in brains and gonads of premature and spent fish. Expression of gnrh1, gnrhr1, and gnrhr2 was estimated concomitantly. The kiss1 was the first to be twofold upregulated (P < 0.05) at 12 h post fertilization. Kiss/Kissr genes expressed primarily in the brain, ovary, and testis. Though kiss2 was 10 times higher than kiss1, only kiss1 showed significant modulation across stages and appears to be the active isotype that regulates GnRH in magur.
Collapse
Affiliation(s)
- Thushar P Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - Dileep Vasudevan
- RGCB-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Annam Pavan-Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India.
| |
Collapse
|
2
|
Wang H, Qu M, Tang W, Liu S, Ding S. Transcriptome Profiling and Expression Localization of Key Sex-Related Genes in a Socially-Controlled Hermaphroditic Clownfish, Amphiprion clarkii. Int J Mol Sci 2022; 23:ijms23169085. [PMID: 36012348 PMCID: PMC9409170 DOI: 10.3390/ijms23169085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Clownfish can be an excellent research model for investigating the socially-controlled sexual development of sequential hermaphrodite teleosts. However, the molecular cascades underlying the social cues that orchestrate the sexual development process remain poorly understood. Here, we performed a comparative transcriptomic analysis of gonads from females, males, and nonbreeders of Amphiprion clarkii, which constitute a complete social group, allowing us to investigate the molecular regulatory network under social control. Our analysis highlighted that the gonads of nonbreeders and males exhibited high similarities but were far from females, both in global transcriptomic profiles and histological characteristics, and identified numerous candidate genes involved in sexual development, some well-known and some novel. Significant upregulation of cyp19a1a, foxl2, nr5a1a, wnt4a, hsd3b7, and pgr in females provides strong evidence for the importance of steroidogenesis in ovarian development and maintenance, with cyp19a1a playing a central role. Amh and sox8 are two potential key factors that may regulate testicular tissue development in early and late stages, respectively, as they are expressed at higher levels in males than in females, but with slightly different expression timings. Unlike previous descriptions in other fishes, the unique expression pattern of dmrt1 in A. clarkii implied its potential function in both male and female gonads, and we speculated that it might play promoting roles in the early development of both testicular and ovarian tissues.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Qu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou 511458, China
| | - Wei Tang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (S.D.)
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Correspondence: (S.L.); (S.D.)
| |
Collapse
|
3
|
Zhao C, Wang B, Liu Y, Feng C, Xu S, Wang W, Liu Q, Li J. New Evidence for the Existence of Two Kiss/Kissr Systems in a Flatfish Species, the Turbot ( Scophthalmus maximus), and Stimulatory Effects on Gonadotropin Gene Expression. Front Endocrinol (Lausanne) 2022; 13:883608. [PMID: 35784551 PMCID: PMC9240279 DOI: 10.3389/fendo.2022.883608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Seasonal reproduction is generally controlled by the hypothalamus-pituitary-gonadal (HPG) axis in fish. Previous studies have demonstrated that the kisspeptin (Kiss)/kisspeptin receptor (Kissr) system, a positive regulator of the HPG axis, mediates the responses to environmental cues. Turbot (Scophthalmus maximus), a representative species of Pleuronectiformes, is one of the most commercially important fish species cultured in Europe and North China. However, the mechanisms by which the Kiss/Kissr system regulates the reproductive axis of turbot according to seasonal changes, especially photoperiod, have not been clearly characterized. In the current study, the cDNA sequences of kiss2/kissr2, along with kiss1/kissr3 which was thought to be lost in flatfish species, were cloned and functionally characterized. The kiss1, kiss2, and kissr3 transcripts were highly detected in the brain and gonad, while kissr2 mRNA was only abundantly expressed in the brain. Moreover, kiss/kissr mRNAs were further examined in various brain areas of both sexes. The kiss1, kissr2, kissr3 mRNAs were highly expressed in the mesencephalon, while a substantial degree of kiss2 transcripts were observed in the hypothalamus. During annual reproductive cycle, both kiss and kissr transcript levels declined significantly from the immature to mature stages and increased at the degeneration stage in the brains of both sexes, especially in the mesencephalon and hypothalamus. The ovarian kiss1, kiss2, and kissr2 mRNA levels were highest at the vitellogenic stage (mature stage), while expression of kissr3 was highest at the immature stage. The testicular kiss and kissr transcripts were highest in the immature and degeneration stages, and lowest at the mature stage. In addition, intraperitoneal injection of Kiss1-10 and Kiss2-10 significantly stimulated mRNA levels of pituitary lhβ, fhsβ, and gthα. In summary, two Kiss/Kissr systems were firstly proven in a flatfish species of turbot, and it has a positive involvement in controlling the reproduction of the Kiss/Kissr system in turbot. The results will provide preliminary information regarding how the Kiss/Kissr system controls seasonal reproduction in turbot broodstock.
Collapse
Affiliation(s)
- Chunyan Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yifan Liu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, China
| | - Chengcheng Feng
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shihong Xu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenqi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Qinghua Liu
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Jun Li,
| |
Collapse
|
4
|
Zhong Z, Ao L, Wang Y, Wang S, Zhao L, Ma S, Jiang Y. Comparison of differential expression genes in ovaries and testes of Pearlscale angelfish Centropyge vrolikii based on RNA-Seq analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1565-1583. [PMID: 34415453 DOI: 10.1007/s10695-021-00977-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Pearlscale angelfish Centropyge vrolikii is a kind of protogynous hermaphrodite fish with a natural sexual reversion. Under appropriate social conditions, a female fish can transform into a male fish spontaneously. It is an important prerequisite for artificial breeding to understand the process of its gonadal development and sexual reversion. Gonadal development is regulated by many sex-related genes. In this study, we used unreferenced RNA-Seq technology to sequence the ovary at the perinucleolus stage (OII), ovary at the yolk vesicle stage (OIV),IV and testis (T), respectively; screened the gonadal differential expression genes (DEGs); and analyzed the expression of these genes in different developmental stages of ovary and different sex gonads. The results showed that a total of 142,589 all-unigene samples were assembled, and gene annotation was performed by COG, GO, KEGG, KOG, Pfam, Swissprot, eggNOG, and NR functional database. Comparative analysis revealed that there were 1919 genes that were up-regulated and 1289 genes were down-regulated in comparison to OIV vs OII, while there were 3653 genes that were up-regulated and 2874 genes were down-regulated in comparison of OIV vs T, there were 3345 genes that were up-regulated and 2995 genes were down-regulated in comparison of the OII vs the T. At the same time, the results verified by RT-qPCR were consistent with the variation trend of transcriptome data. Among the results, amh, sox9b, dmrt1, dmrt2, cyp11a, cyp17a, and cyp19a were significantly expressed in the testes, while sox3, sox4, sox11, sox17, and hsd3b7 were significantly expressed in the ovaries. And, the expression of the amh, sox9b, dmrt2, and dmrt1 were low in the OII and OIV, while significantly increased during the ovotestis in the hermaphroditic period (OT), and finally reached the highest level in pure testis after sex reversal. The expression of sox3, sox4, hsd3b7, sox11, and sox17 was significantly reduced during the hermaphroditic period (OT). These results suggested that these genes may play an important role in the process of sex reversal. This study is helpful to further understand the molecular regulation mechanism of gonadal development and sexual reversion in Pearlscale angelfish and also provide important clues for future studies.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lulu Ao
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Shuhong Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Liping Zhao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Senwei Ma
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China.
| |
Collapse
|
5
|
Li W, Hu J, Sun C, Dong J, Liu Z, Yuan J, Tian Y, Zhao J, Ye X. Characterization of kiss2/kissr2 system in largemouth bass (Micropterus salmoides) and Kiss2-10 peptide regulation of the hypothalamic-pituitary-gonadal axis. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110671. [PMID: 34450276 DOI: 10.1016/j.cbpb.2021.110671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The kisspeptin system, which lies upstream of the hypothalamic-pituitary-gonadal (HPG) axis, is believed to function as a regulator of reproduction in teleosts. In this study, we isolated and characterized kiss2 and its receptor kissr2 in largemouth bass (Micropterus salmoides). The complete coding sequences of kiss2 and kissr2 were 375 and 1134 bp long and encoded precursor proteins 124 and 377 amino acid long, respectively. Real-time PCR showed that kiss2 and kissr2 were primarily expressed in the HPG axis. The expression profile of kiss2 and kissr2 varied with gonadal development, with the highest and lowest expression levels being detected during the immature and final maturation stages, respectively. Intraperitoneal injection of exogenous Kiss2-10 peptide increased the transcript levels of gnrh3, kissr2, fshβ, lhβ, ar, and er2 within 24 h (p < 0.05), as well as plasma levels of 17β-estradiol and testosterone. Histological analysis indicated that chronic administration of exogenous Kiss2-10 peptide accelerated vitellogenesis in females and spermatogenesis in males. Further, in situ hybridization revealed that kiss2 is expressed in the ooplasm and vitelline envelope of oocytes and the spermatocytes of testes. In addition, experiments using gonad tissue primary cell cultures indicated that exogenous Kiss2-10 peptide stimulates the expression of reproduction-related genes. Collectively, our findings indicate that the kiss2/kissr2 system in largemouth bass is involved in regulating gonadal development through the HPG axis.
Collapse
Affiliation(s)
- Wuhui Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China
| | - Jie Hu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Chengfei Sun
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Junjian Dong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Ju Yuan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Jinliang Zhao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Gayashani Sandamalika WM, Kwon H, Lim C, Yang H, Lee J. The possible role of catalase in innate immunity and diminution of cellular oxidative stress: Insights into its molecular characteristics, antioxidant activity, DNA protection, and transcriptional regulation in response to immune stimuli in yellowtail clownfish (Amphiprion clarkii). FISH & SHELLFISH IMMUNOLOGY 2021; 113:106-117. [PMID: 33826938 DOI: 10.1016/j.fsi.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Catalase, a key enzyme in the antioxidant defense grid of organisms, scavenges free radicals to curtail their harmful effects on the host, supporting proper immune function. Herein, we report the identification and characterization of a catalase homolog from Amphiprion clarkii (ClCat), followed by its functional characterization. An open reading frame was identified in the cDNA sequence of ClCat at 1581 bp, which encodes a protein of 527 amino acids (aa) with a molecular mass of 60 kDa. In silico analyses of ClCat revealed characteristic features of the catalase family and a lack of a signal peptide. Multiple sequence alignment of ClCat indicated the conservation of functionally important residues among its homologs. According to phylogenetic analysis, ClCat was of vertebrate origin, positioned within the teleost clade. During native conditions, ClCat mRNA was highly expressed in blood, followed by the liver and kidney. Moreover, significant changes in ClCat transcription were observed after stimulation with LPS, poly I:C, and Vibrio harveyi, in a time-dependent manner. Recombinant ClCat (rClCat) was characterized, and its peroxidase activity was determined. Furthermore, the optimum temperature and pH for rClCat were determined to be 30-40 °C and pH 7, respectively. Oxidative stress tolerance and chromatin condensation assays indicated enhanced cell survival and reduced apoptosis, resulting from reactive oxygen species scavenging by rClCat. The DNA-protective function of rClCat was further confirmed via a metal-catalyzed oxidation assay. Taken together, our findings propose that rClCat plays an essential role in maintaining cellular oxidative homeostasis and host immune protection.
Collapse
Affiliation(s)
- W M Gayashani Sandamalika
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|