1
|
Jafari N, Habashi MS, Hashemi A, Shirazi R, Tanideh N, Tamadon A. Application of bioactive glasses in various dental fields. Biomater Res 2022; 26:31. [PMID: 35794665 PMCID: PMC9258189 DOI: 10.1186/s40824-022-00274-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractBioactive glasses are a group of bioceramic materials that have extensive clinical applications. Their properties such as high biocompatibility, antimicrobial features, and bioactivity in the internal environment of the body have made them useful biomaterials in various fields of medicine and dentistry. There is a great variation in the main composition of these glasses and some of them whose medical usage has been approved by the US Food and Drug Administration (FDA) are called Bioglass. Bioactive glasses have appropriate biocompatibility with the body and they are similar to bone hydroxyapatite in terms of calcium and phosphate contents. Bioactive glasses are applied in different branches of dentistry like periodontics, orthodontics, endodontics, oral and maxillofacial surgery, esthetic and restorative dentistry. Also, some dental and oral care products have bioactive glasses in their compositions. Bioactive glasses have been used as dental implants in the human body in order to repair and replace damaged bones. Other applications of bioactive glasses in dentistry include their usage in periodontal disease, root canal treatments, maxillofacial surgeries, dental restorations, air abrasions, dental adhesives, enamel remineralization, and dentin hypersensitivity. Since the use of bioactive glasses in dentistry is widespread, there is a need to find methods and extensive resources to supply the required bioactive glasses. Various techniques have been identified for the production of bioactive glasses, and marine sponges have recently been considered as a rich source of it. Marine sponges are widely available and many species have been identified around the world, including the Persian Gulf. Marine sponges, as the simplest group of animals, produce different bioactive compounds that are used in a wide range of medical sciences. Numerous studies have shown the anti-tumor, anti-viral, anti-inflammatory, and antibiotic effects of these compounds. Furthermore, some species of marine sponges due to the mineral contents of their structural skeletons, which are made of biosilica, have been used for extracting bioactive glasses.
Collapse
|
2
|
Funayama N. Produce, carry/position, and connect: morphogenesis using rigid materials. Curr Opin Genet Dev 2019; 57:91-97. [PMID: 31546193 DOI: 10.1016/j.gde.2019.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
Abstract
Animal morphogenesis can be summarized as a reconfiguration of a mass of cells. Although extracellular matrices that include rigid skeletal elements, such as cartilage/bones and exoskeletons, have important roles in morphogenesis, they are also secreted in situ by accumulated cells or epithelial cells. In contrast, recent studies of the skeleton construction of sponges (Porifera) illuminate a conceptually different mechanism of morphogenesis in which cells manipulate rather fine rigid materials (spicules) to form larger structures. Here, two different types of sponge skeleton formation using calcareous spicules or siliceous spicules are compared with regard to the concept of the production of rigid materials and their use in skeletons. The comparison highlights the advantages of their different strategies of forming sponge skeletons.
Collapse
Affiliation(s)
- Noriko Funayama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
3
|
Schröder HC, Grebenjuk VA, Wang X, Müller WEG. Hierarchical architecture of sponge spicules: biocatalytic and structure-directing activity of silicatein proteins as model for bioinspired applications. BIOINSPIRATION & BIOMIMETICS 2016; 11:041002. [PMID: 27452043 DOI: 10.1088/1748-3190/11/4/041002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Since the first description of the silicateins, a group of enzymes that mediate the formation of the amorphous, hydrated biosilica of the skeleton of the siliceous sponges, much progress has been achieved in the understanding of this biomineralization process. These discoveries include, beside the proof of the enzymatic nature of the sponge biosilica formation, the dual property of the enzyme, to act both as a structure-forming and structure-guiding protein, and the demonstration that the initial product of silicatein is a soft, gel-like material that has to undergo a maturation process during which it achieves its favorable physical-chemical properties allowing the development of various technological or medical applications. This process comprises the hardening of the material by the removal of water and ions, its cast-molding to specific morphologies, as well as the fusion of the biosilica nanoparticles through a biosintering mechanism. The discovery that the enzymatically formed biosilica is morphogenetically active and printable also opens new applications in rapid prototyping and three-dimensional bioprinting of customized scaffolds/implants for biomedical use.
Collapse
Affiliation(s)
- Heinz C Schröder
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | | | | | | |
Collapse
|
4
|
Granito RN, Custódio MR, Rennó ACM. Natural marine sponges for bone tissue engineering: The state of art and future perspectives. J Biomed Mater Res B Appl Biomater 2016; 105:1717-1727. [PMID: 27163295 DOI: 10.1002/jbm.b.33706] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/24/2016] [Accepted: 04/21/2016] [Indexed: 12/19/2022]
Abstract
Marine life and its rich biodiversity provide a plentiful resource of potential new products for the society. Remarkably, marine organisms still remain a largely unexploited resource for biotechnology applications. Among them, marine sponges are sessile animals from the phylum Porifera dated at least from 580 million years ago. It is known that molecules from marine sponges present a huge therapeutic potential in a wide range of applications mainly due to its antitumor, antiviral, anti-inflammatory, and antibiotic effects. In this context, this article reviews all the information available in the literature about the potential of the use of marine sponges for bone tissue engineering applications. First, one of the properties that make sponges interesting as bone substitutes is their structural characteristics. Most species have an efficient interconnected porous architecture, which allows them to process a significant amount of water and facilitates the flow of fluids, mimicking an ideal bone scaffold. Second, sponges have an organic component, the spongin, which is analogous to vertebral collagen, the most widely used natural polymer for tissue regeneration. Last, osteogenic properties of marine sponges is also highlighted by their mineral content, such as biosilica and other compounds, that are able to support cell growth and to stimulate bone formation and mineralization. This review focuses on recent studies concerning these interesting properties, as well as on some challenges to be overcome in the bone tissue engineering field. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1717-1727, 2017.
Collapse
Affiliation(s)
- Renata Neves Granito
- Federal University of São Paulo (UNIFESP), Department of Biosciences, Santos - SP, Brazil
| | - Márcio Reis Custódio
- University of São Paulo (USP), Institute of Biosciences (IB/USP), São Paulo - SP, Brazil
| | | |
Collapse
|
5
|
Self-assembly and photocatalytic activity of branched silicatein/silintaphin filaments decorated with silicatein-synthesized TiO2 nanoparticles. Bioprocess Biosyst Eng 2016; 39:1477-86. [DOI: 10.1007/s00449-016-1619-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/26/2016] [Indexed: 12/18/2022]
|
6
|
Pozzolini M, Mussino F, Cerrano C, Scarfì S, Giovine M. Sponge cell cultivation: Optimization of the model Petrosia ficiformis (Poiret 1789). JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2014; 454:70-77. [DOI: 10.1016/j.jembe.2014.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
7
|
Biogenic Inorganic Polysilicates (Biosilica): Formation and Biomedical Applications. BIOMEDICAL INORGANIC POLYMERS 2013; 54:197-234. [DOI: 10.1007/978-3-642-41004-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Abstract
Knowledge of the functioning, health state, and capacity for recovery of marine benthic organisms and assemblages has become essential to adequately manage and preserve marine biodiversity. Molecular tools have allowed an entirely new way to tackle old and new questions in conservation biology and ecology, and sponge science is following this lead. In this review, we discuss the biological and ecological studies of sponges that have used molecular markers during the past 20 years and present an outlook for expected trends in the molecular ecology of sponges in the near future. We go from (1) the interface between inter- and intraspecies studies, to (2) phylogeography and population level analyses, (3) intra-population features such as clonality and chimerism, and (4) environmentally modulated gene expression. A range of molecular markers has been assayed with contrasting success to reveal cryptic species and to assess the genetic diversity and connectivity of sponge populations, as well as their capacity to respond to environmental changes. We discuss the pros and cons of the molecular gene partitions used to date and the prospects of a plentiful supply of new markers for sponge ecological studies in the near future, in light of recently available molecular technologies. We predict that molecular ecology studies of sponges will move from genetics (the use of one or some genes) to genomics (extensive genome or transcriptome sequencing) in the forthcoming years and that sponge ecologists will take advantage of this research trend to answer ecological and biological questions that would have been impossible to address a few years ago.
Collapse
Affiliation(s)
- Maria J Uriz
- Department of Marine Ecology, Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Blanes, Girona, Spain.
| | | |
Collapse
|
9
|
Veremeichik GN, Shkryl YN, Bulgakov VP, Shedko SV, Kozhemyako VB, Kovalchuk SN, Krasokhin VB, Zhuravlev YN, Kulchin YN. Occurrence of a silicatein gene in glass sponges (Hexactinellida: Porifera). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:810-819. [PMID: 21181423 DOI: 10.1007/s10126-010-9343-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 10/03/2010] [Indexed: 05/30/2023]
Abstract
Silicatein genes are involved in spicule formation in demosponges (Demospongiae: Porifera). However, numerous attempts to isolate silicatein genes from glass sponges (Hexactinellida: Porifera) resulted in a limited success. In the present investigation, we performed analysis of potential silicatein/cathepsin transcripts in three different species of glass sponges (Pheronema raphanus, Aulosaccus schulzei, and Bathydorus levis). In total, 472 clones of such transcripts have been analyzed. Most of them represent cathepsin transcripts and only three clones have been found to represent transcripts, which can be related to silicateins. Silicatein transcripts were identified in A. schulzei (Hexactinellida; Lyssacinosida; Rosselidae), and the corresponding gene was called AuSil-Hexa. Expression of AuSil-Hexa in A. schulzei was confirmed by real-time PCR. Comparative sequence analysis indicates high sequence identity of the A. schulzei silicatein with demosponge silicateins described previously. A phylogenetic analysis indicates that the AuSil-Hexa protein belongs to silicateins. However, the AuSil-Hexa protein contains a catalytic cysteine instead of the conventional serine.
Collapse
Affiliation(s)
- Galina N Veremeichik
- Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pozzolini M, Valisano L, Cerrano C, Menta M, Schiaparelli S, Bavestrello G, Benatti U, Giovine M. Influence of rocky substrata on three-dimensional sponge cells model development. In Vitro Cell Dev Biol Anim 2011; 46:140-7. [PMID: 19915931 DOI: 10.1007/s11626-009-9253-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/07/2009] [Indexed: 11/25/2022]
Abstract
Many marine and freshwater organisms are rocky bottom dwellers, and the mineralogical composition of the substratum is known to potentially condition their biology and ecology. In this work, we propose the use of 3D sponge cellular aggregates, called primmorphs, as suitable models for a multidisciplinary study of the mechanisms which regulate the biological responses triggered by the contact with different inorganic substrata. In our experiments, primmorphs obtained from the marine sponge Petrosia ficiformis (Poiret, 1789) were reared on calcium carbonate or on quartzitic substrata, respectively, and their morphological development was described. In parallel, the quantitative expression levels of two genes, silicatein and heat shock protein 70 (HSP70), were evaluated. The first gene is strictly correlated to spiculogenesis and sponge growth, while the second is an important indicator of stress. The results achieved with this in vitro model clearly demonstrate that quartzitic substrata determine the increase of silicatein gene expression, a lower expression of HSP70 gene, and a remarkable difference in primmorphs morphology compared to the analogous samples grown on marble.
Collapse
Affiliation(s)
- Marina Pozzolini
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Voznesenskiy SS, Kul’chin YN, Galkina AN. Biomineralization: A natural mechanism of nanotechnologies. ACTA ACUST UNITED AC 2011. [DOI: 10.1134/s1995078011010137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Schröder HC, Wiens M, Wang X, Schloßmacher U, Müller WEG. Biosilica-based strategies for treatment of osteoporosis and other bone diseases. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:283-312. [PMID: 21877270 DOI: 10.1007/978-3-642-21230-7_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a common disease in later life, which has become a growing public health problem. This degenerative bone disease primarily affects postmenopausal women, but also men may suffer from reduced bone mineral density. The development of prophylactic treatments and medications of osteoporosis has become an urgent issue due to the increasing proportion of the elderly in the population. Apart from medical/hormonal treatments, current strategies for prophylaxis of osteoporosis are primarily based on calcium supplementation as a main constituent of bone hydroxyapatite mineral. Despite previous reports suggesting an essential role in skeletal growth and development, the significance of the trace element silicon in human bone formation has attracted major scientific interest only rather recently. The interest in silicon has been further increased by the latest discoveries in the field of biosilicification, the formation of the inorganic silica skeleton of the oldest still extant animals on Earth, the sponges, which revealed new insights in the biological function of this element. Sponges make use of silicon to build up their inorganic skeleton which consists of biogenously formed polymeric silica (biosilica). The formation of biosilica is mediated by specific enzymes, silicateins, which have been isolated, characterized, and expressed in a recombinant way. Epidemiological studies revealed that dietary silicon reduces the risk of osteoporosis and other bone diseases. Recent results allowed for the first time to understand the molecular mechanism underlying the protective effect of silicic acid/biosilica against osteoporosis. Biosilica was shown to modulate the ratio of expression of two cytokines involved in bone formation-RANKL and osteoprotegerin. Hence, biosilica has been proposed to have a potential in prophylaxis and therapy of osteoporosis and related bone diseases.
Collapse
Affiliation(s)
- Heinz C Schröder
- ERC Advanced Grant Research Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128, Mainz, Germany,
| | | | | | | | | |
Collapse
|
13
|
Armirotti A, Damonte G, Pozzolini M, Mussino F, Cerrano C, Salis A, Benatti U, Giovine M. Primary Structure and Post-Translational Modifications of Silicatein Beta from the Marine Sponge Petrosia ficiformis (Poiret, 1789). J Proteome Res 2009; 8:3995-4004. [DOI: 10.1021/pr900342y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Armirotti
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Gianluca Damonte
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Marina Pozzolini
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Francesca Mussino
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Carlo Cerrano
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Annalisa Salis
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Umberto Benatti
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| | - Marco Giovine
- Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 10, 16132 Genova, Italy, Center of Excellence for Biomedical Research, Viale Benedetto XV, 7 16132 Genova, Italy, Dipartimento per lo Studio del Territorio e delle sue Risorse, Corso Europa 26, 16132 Genova, Italy, Dipartimento di Medicina Sperimentale, Sezione di Biochimica, Viale Benedetto XV, 1 16132 Genova, Italy, and Dipartimento di Biologia, Università degli Studi di Genova, Via Pastore 3, 16132 Genova, Italy
| |
Collapse
|
14
|
Symbiotic interaction between dinoflagellates and the demosponge Lubomirskia baicalensis: aquaporin-mediated glycerol transport. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 47:145-70. [PMID: 19198776 DOI: 10.1007/978-3-540-88552-8_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lake Baikal is rich in endemic sponge species, among them the arborescently growing species Lubomirskia baicalensis. During winter when the lake is covered by ice, this species reproduces sexually, reflecting a high metabolic activity. Throughout the year, L. baicalensis lives in association with dinoflagellates, which - according to the data presented herein - are symbiotic. The dinoflagellates have been determined on the basis of their rDNA/ITS characteristics and were found to display high sequence similarity to Gymnodinium sanguineum. The dinoflagellates give the sponge its characteristic green color, reflecting the high chlorophyll content (chlorophyll-a content in March and September of 3.2 +/- 0.6 microg/g and 1.9 +/- 0.5 microg/g of protein, respectively). With the in vitro cell culture system for sponges, the primmorphs, it could be demonstrated that [(14)C] glycerol is readily taken up by sponge cells; this process can be inhibited by phloretin, an aquaporin channel blocker. In order to prove the effect of cholesterol on the intermediate metabolism of the sponge cells, molecule probes, cDNAs for key enzymes in gluconeogenesis, glycolysis, and citric acid, have been applied in Northern blot studies. The data revealed that the genes coding for the enzymes citrate synthase and fructose-1,6-bisphosphatase are strongly upregulated after exposure of primmorphs to glycerol. This effect is abolished by phloretin. The genes encoding the phosphoglucose isomerase and pyruvate dehydrogenase do not respond to glycerol supply, suggesting that their expression is not under genetic control in L. baicalensis. To prove the assumption that the aquaporin channel is involved in the influx of glycerol in sponge cells, this cDNA was cloned and applied for in situ hybridization studies. The results obtained show that cells surrounding the dinoflagellates become brightly stained after hybridization with the aquaporin this probe. This demonstrates that L. baicalensis cells respond to glycerol, a metabolite which might be supplied by the dinoflagellates and imported via the aquaporin channel into the sponge cells.
Collapse
|
15
|
Silicatein: Nanobiotechnological and Biomedical Applications. BIOSILICA IN EVOLUTION, MORPHOGENESIS, AND NANOBIOTECHNOLOGY 2009; 47:251-73. [DOI: 10.1007/978-3-540-88552-8_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Mohri K, Nakatsukasa M, Masuda Y, Agata K, Funayama N. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis. Dev Dyn 2008; 237:3024-39. [PMID: 18816843 DOI: 10.1002/dvdy.21708] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Siliceous spicules of sponges are morphologically diverse and provide good models for understanding the morphogenesis of biomineralized products. The silica deposition enzyme silicatein is a component of siliceous spicules of sponges and is thought to be the key molecule determining the morphology of spicules. Here, we focused on the silicateins of the freshwater sponge Ephydatia fluviatilis, which has two types of morphologically and functionally different spicules, called megascleres and gemmoscleres. We isolated six isoforms of silicateins and examined their mRNA expression in the cells producing megascleres and gemmoscleres. The spicule-type-specific mRNA expression of these isoforms and differential expression during spicule development suggest that the characteristic morphology of spicules is due to the specific properties and combinatory functions of silicatein isoforms.
Collapse
Affiliation(s)
- Kurato Mohri
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku Kyoto, Japan
| | | | | | | | | |
Collapse
|
17
|
Dickerson MB, Sandhage KH, Naik RR. Protein- and Peptide-Directed Syntheses of Inorganic Materials. Chem Rev 2008; 108:4935-78. [PMID: 18973389 DOI: 10.1021/cr8002328] [Citation(s) in RCA: 655] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Matthew B. Dickerson
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702; School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245; and School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0245
| | - Kenneth H. Sandhage
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702; School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245; and School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0245
| | - Rajesh R. Naik
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7702; School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, Georgia 30332-0245; and School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0245
| |
Collapse
|
18
|
Matsunaga S, Sakai R, Jimbo M, Kamiya H. Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. Chembiochem 2008; 8:1729-35. [PMID: 17683052 DOI: 10.1002/cbic.200700305] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two distinct marine organisms, diatoms and sponges, deposit dissolved silicates to construct highly architectural and species-specific body supports. Several factors such as proteins, long-chain polyamines (LCPAs), or polypeptides modified with LCPAs are known to be involved in this process. The LCPAs contained in the silica walls of diatoms are thought to play pivotal roles in the silica deposition. In sponges, however, a protein called silicatein and several other proteins have been reported to be the factors involved in the silica deposition. However, no other factors involved in this process have been reported. We have identified the LCPAs from the marine sponge Axinyssa aculeata and present here some evidence that sponge-derived LCPAs can deposit silica and that the LCPA derivatives are associated with spicules. The results indicate a common chemistry between sponges and diatoms, the two major players in the biological circulation of silicon in the marine environment. A wide variety of organisms are known to utilize silica in their biological processes. Polyamines or other functional molecules might be involved, in combination with proteins, in their biosilicification process.
Collapse
Affiliation(s)
- Satoko Matsunaga
- Kitasato University School of Fisheries Sciences, Sanriku-cho, Ofunato, Iwate 022-0101, Japan
| | | | | | | |
Collapse
|
19
|
Schröder HC, Wang X, Tremel W, Ushijima H, Müller WEG. Biofabrication of biosilica-glass by living organisms. Nat Prod Rep 2008; 25:455-74. [DOI: 10.1039/b612515h] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
|
21
|
Schröder HC, Brandt D, Schlossmacher U, Wang X, Tahir MN, Tremel W, Belikov SI, Müller WEG. Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften 2007; 94:339-59. [PMID: 17216430 DOI: 10.1007/s00114-006-0192-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/17/2006] [Accepted: 10/29/2006] [Indexed: 10/23/2022]
Abstract
Biomineralization, biosilicification in particular (i.e. the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches following "nature as model". Siliceous sponges are unique among silica forming organisms in their ability to catalyze silica formation using a specific enzyme termed silicatein. In this study, we review the present state of knowledge on silicatein-mediated "biosilica" formation in marine sponges, the involvement of further molecules in silica metabolism and their potential application in nanobiotechnology and medicine.
Collapse
Affiliation(s)
- Heinz C Schröder
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wiens M, Belikov SI, Kaluzhnaya OV, Krasko A, Schröder HC, Perovic-Ottstadt S, Müller WEG. Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Dev Genes Evol 2006; 216:229-42. [PMID: 16380844 DOI: 10.1007/s00427-005-0047-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Accepted: 11/21/2005] [Indexed: 10/25/2022]
Abstract
The freshwater sponge Lubomirskia baicalensis (from Lake Baikal) is characterized by a body plan composed of serial modules which are arranged along an apical-basal axis. In shallow water, the sponge occurs only encrusting, while in deeper environment (>3 m), this species forms branches and grows in an arborescent manner. Each module is stabilized by bundles of spined oxeas (amphioxeae spicules). The spicules are surrounded by an organic matrix. cDNAs for structural proteins (silicatein and mannose-binding lectin (MBL)) as well as for one regulatory protein (mago nashi) were isolated from L. baicalensis. Surprisingly the silicatein alpha molecule exists in several, at least four, isoforms (a1 to a4). Expression studies revealed that the steady-state levels of transcripts for the silicateins, the mannose-binding lectin, and mago nashi are highest at the top of the branches, while only very low levels are found in cells at the base. Based on in situ hybridization studies, evidence is presented that the spicule formation (1) starts and is completed inside of the bundles, and (2) occurs together with the mannose-binding lectin from the surfaces of the bundles. The data suggest that the modules are sequentially formed. It is speculated that the expression of the silicateins and the mannose-binding lectin might be (partially) controlled by mago nashi.
Collapse
Affiliation(s)
- Matthias Wiens
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Sponges secrete a variety of mineral skeletons consisting of calcite, aragonite, and (or) amorphous silica that confer strength and protect them from physical perturbations. Calcification takes place in a solution of bicarbonate and calcium ions, which is supersaturated with respect to both calcite and aragonite. In contrast, siliceous spicules are formed from an environment that is undersaturated with respect to silicon. Silification is the predominant process of biomineralization in extant sponges (92% of the species). The number of axes of symmetry in the large skeletal elements (megasclere spicules) is the main skeletal difference between the classes Hexactinellida (monaxons and triaxons) and Demospongiae (monaxons and tetraxons). Hypersilification occurs in both lithistid demosponges and hexactinellids, which are mostly confined to silicon-rich environments. Both siliceous and calcareous sponge skeletons are deposited within a well-defined restricted space by the so-called matrix-mediated mineralization. Both processes require organic molecules, which are secreted by a particular cell type (sclerocytes) and guide spicule formation. In most siliceous sponges, these molecules form a discrete filament, which is mainly triangular or quadrangular in cross section in demosponges and hexactinellids, respectively. No discrete axial filament has been reported for calcareous sponges. Silica polycondensation produces nanospheres to microspheres, which are arranged in concentric layers to form the spicules. The potential number of siliceous spicule types in a sponge species appears to be fixed genetically, but the environmental conditions (specifically the availability of silicon) may determine whether a genetically determined spicule type is finally expressed. In this study I review the current knowledge on sponge skeletogenesis, from molecular, cellular, and structural points of view. The contribution of environment variables, as well as the proliferation and decay of the main skeleton types in the past, are also considered.
Collapse
|