1
|
Deng L, Gòdia M, Derks MFL, Harlizius B, Farhangi S, Tang Z, Groenen MAM, Madsen O. Comprehensive expression genome-wide association study of long non-coding RNAs in four porcine tissues. Genomics 2025; 117:111026. [PMID: 40049421 DOI: 10.1016/j.ygeno.2025.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of non-coding RNA molecules, are known to play critical regulatory roles in various biological processes. However, the functions of the majority of lncRNAs remain largely unknown, and little is understood about the regulation of lncRNA expression. In this study, high-throughput DNA genotyping and RNA sequencing were applied to investigate genomic regions associated with lncRNA expression, commonly referred to as lncRNA expression quantitative trait loci (eQTLs). We analyzed the liver, lung, spleen, and muscle transcriptomes of 100 three-way crossbred sows to identify lncRNA transcripts, explore genomic regions that might influence lncRNA expression, and identify potential regulators interacting with these regions. RESULT We identified 6380 lncRNA transcripts and 3733 lncRNA genes. Correlation tests between the expression of lncRNAs and protein-coding genes were performed. Subsequently, functional enrichment analyses were carried out on protein-coding genes highly correlated with lncRNAs. Our correlation results of these protein-coding genes uncovered terms that are related to tissue specific functions. Additionally, heatmaps of lncRNAs and protein-coding genes at different correlation levels revealed several distinct clusters. An expression genome-wide association study (eGWAS) was conducted using 535,896 genotypes and 1829, 1944, 2089, and 2074 expressed lncRNA genes for liver, spleen, lung, and muscle, respectively. This analysis identified 520,562 significant associations and 6654, 4525, 4842, and 7125 eQTLs for the respective tissues. Only a small portion of these eQTLs were classified as cis-eQTLs. Fifteen regions with the highest eQTL density were selected as eGWAS hotspots and potential mechanisms of lncRNA regulation in these hotspots were explored. However, we did not identify any interactions between the transcription factors or miRNAs in the hotspots and the lncRNAs, nor did we observe a significant enrichment of regulatory elements in these hotspots. While we could not pinpoint the key factors regulating lncRNA expression, our results suggest that the regulation of lncRNAs involves more complex mechanisms. CONCLUSION Our findings provide insights into several features and potential functions of lncRNAs in various tissues. However, the mechanisms by which lncRNA eQTLs regulate lncRNA expression remain unclear. Further research is needed to explore the regulation of lncRNA expression and the mechanisms underlying lncRNA interactions with small molecules and regulatory proteins.
Collapse
Affiliation(s)
- Liyan Deng
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands; Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Marta Gòdia
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands; Topigs Norsvin Research Center, 's-Hertogenbosch, the Netherlands
| | | | - Samin Farhangi
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Zhonglin Tang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Foshan 528226, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Ren F, Zhang Q, Jiang Y, Xie W, Qiao P, Hu J. Comprehensive analysis of long non-coding RNA and mRNA expression patterns during seminiferous tubules maturation in Guanzhong dairy goats. BMC Genomics 2025; 26:159. [PMID: 39966702 PMCID: PMC11834200 DOI: 10.1186/s12864-025-11320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play crucial roles in testicular development and spermatogenesis. The seminiferous tubule, the exclusive site of spermatogenesis, houses all types of male germ cells, regulated by both lncRNAs and mRNAs. However, the expression patterns and functions of these molecules across different developmental stages of dairy goat seminiferous tubules remain poorly understood. RESULTS In this study, we sequenced and identified lncRNAs and mRNAs expressed in the seminiferous tubules of Guanzhong dairy goats at two developmental stages: 45-day-old premature (G45) and 240-day-old mature (G240). Significant differences in testis index and seminiferous tubules morphology were observed between G45 and G240 (P < 0.05). Transcriptome analyses revealed 11,612 lncRNAs and 18,217 mRNAs, with 7,554 lncRNAs and 11,986 mRNAs showing significant differential expression between the two stages. Among these, 229 differentially expressed mRNAs related to spermatogenesis were identified. Key genes, such as Kit, Dmrt1, and Sox9, were down-regulated, whereas Ddx4, Sycp1, and Sycp3 were up-regulated after sexual maturity. Notably, signalling pathways including PI3K/Akt, MAPK, and Rap1 were implicated in the regulation of spermatogenesis. We constructed lncRNA-mRNA interaction networks, identifying specific lncRNAs and their target genes potentially critical for spermatogenesis. Additionally, single-cell transcriptome data validated the expression of key genes, revealing that Piwil4 and Dnmt3l were specifically expressed in spermatogonial clusters, whereas Piwil1, Piwil2, and Gtsf1 were predominantly expressed in spermatocyte clusters. CONCLUSIONS These findings highlight the essential roles of specific genes in the maturation of seminiferous tubules in dairy goats. This study provides comprehensive transcriptomic profiles and lncRNA-mRNA interaction networks between the G45 and G240 stages, offering valuable insights into spermatogenesis and seminiferous tubules development in Guanzhong dairy goats.
Collapse
Affiliation(s)
- Fa Ren
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, P.R. China.
| | - Que Zhang
- Department of Animal Science and Technology, Shandong Vocational Animal Science and Veterinary College, Weifang, Shandong Province, 261061, P.R. China
| | - Yu Jiang
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Wenling Xie
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province, P.R. China.
| | - Jianhong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, P.R. China.
| |
Collapse
|
3
|
Liu Y, Du M, Zhang L, Wang N, He Q, Cao J, Zhao B, Li X, Li B, Bou G, Zhao Y, Dugarjaviin M. Comparative Analysis of mRNA and lncRNA Expression Profiles in Testicular Tissue of Sexually Immature and Sexually Mature Mongolian Horses. Animals (Basel) 2024; 14:1717. [PMID: 38929336 PMCID: PMC11200857 DOI: 10.3390/ani14121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Testicular development and spermatogenesis are tightly regulated by both coding and non-coding genes, with mRNA and lncRNA playing crucial roles in post-transcriptional gene expression regulation. However, there are significant differences in regulatory mechanisms before and after sexual maturity. Nevertheless, the mRNAs and lncRNAs in the testes of Mongolian horses have not been systematically identified. In this study, we first identified the testicular tissues of sexually immature and sexually mature Mongolian horses at the tissue and protein levels, and comprehensively analyzed the expression profiles of mRNA and lncRNA in the testes of 1-year-old (12 months, n = 3) and 10-year-old (n = 3) Mongolian horses using RNA sequencing technology. Through gene expression analysis, we identified 16,582 mRNAs and 2128 unknown lncRNAs that are commonly expressed in both sexually immature and sexually mature Mongolian horses. Meanwhile, 9217 mRNAs (p < 0.05) and 2191 unknown lncRNAs (p < 0.05) were identified as differentially expressed between the two stages, which were further validated by real-time fluorescent quantitative PCR and analyzed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The analysis results showed that genes in the sexually immature stage were mainly enriched in terms related to cellular infrastructure, while genes in the sexually mature stage were enriched in terms associated with hormones, metabolism, and spermatogenesis. In summary, the findings of this study provide valuable resources for a deeper understanding of the molecular mechanisms underlying testicular development and spermatogenesis in Mongolian horses and offer new perspectives for future related research.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jialong Cao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bei Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Gerelchimeg Bou
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yiping Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (L.Z.); (N.W.); (Q.H.); (J.C.); (B.Z.); (X.L.); (B.L.); (G.B.); (Y.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
4
|
Piégu B, Lefort G, Douet C, Milhes M, Jacques A, Lareyre JJ, Monget P, Fouchécourt S. A first complete catalog of highly expressed genes in eight chicken tissues reveals uncharacterized gene families specific for the chicken testis. Physiol Genomics 2024; 56:445-456. [PMID: 38497118 DOI: 10.1152/physiolgenomics.00151.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Based on next-generation sequencing, we established a repertoire of differentially overexpressed genes (DoEGs) in eight adult chicken tissues: the testis, brain, lung, liver, kidney, muscle, heart, and intestine. With 4,499 DoEGs, the testis had the highest number and proportion of DoEGs compared with the seven somatic tissues. The testis DoEG set included the highest proportion of long noncoding RNAs (lncRNAs; 1,851, representing 32% of the lncRNA genes in the whole genome) and the highest proportion of protein-coding genes (2,648, representing 14.7% of the protein-coding genes in the whole genome). The main significantly enriched Gene Ontology terms related to the protein-coding genes were "reproductive process," "tubulin binding," and "microtubule cytoskeleton." Using real-time quantitative reverse transcription-polymerase chain reaction, we confirmed the overexpression of genes that encode proteins already described in chicken sperm [such as calcium binding tyrosine phosphorylation regulated (CABYR), spermatogenesis associated 18 (SPATA18), and CDK5 regulatory subunit associated protein (CDK5RAP2)] but whose testis origin had not been previously confirmed. Moreover, we demonstrated the overexpression of vertebrate orthologs of testis genes not yet described in the adult chicken testis [such as NIMA related kinase 2 (NEK2), adenylate kinase 7 (AK7), and CCNE2]. Using clustering according to primary sequence homology, we found that 1,737 of the 2,648 (67%) testis protein-coding genes were unique genes. This proportion was significantly higher than the somatic tissues except muscle. We clustered the other 911 testis protein-coding genes into 495 families, from which 47 had all paralogs overexpressed in the testis. Among these 47 testis-specific families, eight contained uncharacterized duplicated paralogs without orthologs in other metazoans except birds: these families are thus specific for chickens/birds.NEW & NOTEWORTHY Comparative next-generation sequencing analysis of eight chicken tissues showed that the testis has highest proportion of long noncoding RNA and protein-coding genes of the whole genome. We identified new genes in the chicken testis, including orthologs of known mammalian testicular genes. We also identified 47 gene families in which all the members were overexpressed, if not exclusive, in the testis. Eight families, organized in duplication clusters, were unknown, without orthologs in metazoans except birds, and are thus specific for chickens/birds.
Collapse
Affiliation(s)
- Benoît Piégu
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Gaëlle Lefort
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Cécile Douet
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Marine Milhes
- US 1426, GeT-PlaGe, Genotoul, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Castanet-Tolosan, France
| | - Aurore Jacques
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Jean-Jacques Lareyre
- UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Rennes, France
| | - Philippe Monget
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| | - Sophie Fouchécourt
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Université de Tours, PRC, Nouzilly, France
| |
Collapse
|
5
|
Wang X, Guo S, Xiong L, Wu X, Bao P, Kang Y, Cao M, Ding Z, Liang C, Pei J, Guo X. Complete characterization of the yak testicular development using accurate full-length transcriptome sequencing. Int J Biol Macromol 2024; 271:132400. [PMID: 38759851 DOI: 10.1016/j.ijbiomac.2024.132400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Xingdong Wang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Lin Xiong
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Yandong Kang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Mengli Cao
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China
| | - Jie Pei
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| | - Xian Guo
- Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, PR China.
| |
Collapse
|
6
|
Wang P, Liu Z, Zhang X, Huo H, Wang L, Dai H, Yang F, Zhao G, Huo J. Integrated analysis of lncRNA, miRNA and mRNA expression profiles reveals regulatory pathways associated with pig testis function. Genomics 2024; 116:110819. [PMID: 38432498 DOI: 10.1016/j.ygeno.2024.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Long noncoding RNA (lncRNA) and microRNA (miRNA) are known to play pivotal roles in mammalian testicular function and spermatogenesis. However, their impact on porcine male reproduction has yet to be well unraveled. Here, we sequenced and identified lncRNA and miRNA expressed in the testes of Chinese indigenous Banna mini-pig inbred line (BMI) and introduced Western Duroc (DU) and Large White (LW) pigs. By pairwise comparison (BMI vs DU, BMI vs LW, and DU vs LW), we found the gene expression differences in the testes between Chinese local pigs and introduced Western commercial breeds were more striking than those between introduced commercial breeds. Furthermore, we found 1622 co-differentially expressed genes (co-DEGs), 122 co-differentially expressed lncRNAs (co-DELs), 39 co-differentially expressed miRNAs (co-DEMs) in BMI vs introduced commercial breeds (DU and LW). Functional analysis revealed that these co-DEGs and co-DELs/co-DEMs target genes were enriched in male sexual function pathways, including MAPK, AMPK, TGF-β/Smad, Hippo, NF-kappa B, and PI3K/Akt signaling pathways. Additionally, we established 10,536 lncRNA-mRNA, 11,248 miRNA-mRNA pairs, and 62 ceRNA (lncRNA-miRNA-mRNA) networks. The ssc-miR-1343 had the most interactive factors in the ceRNA network, including 20 mRNAs and 3 lncRNAs, consisting of 56 ceRNA pairs. These factors played extremely important roles in the regulation of testis function as key nodes in the interactive regulatory network. Our results provide insight into the functional roles of lncRNAs and miRNAs in porcine testis and offer a valuable resource for understanding the differences between Chinese indigenous and introduced Western pigs.
Collapse
Affiliation(s)
- Pei Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhipeng Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Zhang
- College of Life Science, Lyuliang University, Lvliang 033001, China
| | - Hailong Huo
- Yunnan Open University, Kunming 650500, China
| | - Lina Wang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hongmei Dai
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Fuhua Yang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
7
|
Liu P, Shao Y, Liu C, Lv X, Afedo SY, Bao W. Special Staining and Protein Expression of VEGF/EGFR and P53/NF-κB in Cryptorchid Tissue of Erhualian Pigs. Life (Basel) 2024; 14:100. [PMID: 38255715 PMCID: PMC10817362 DOI: 10.3390/life14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Erhualian pigs exhibit one of the highest reproductive rates globally, and cryptorchidism is a crucial factor affecting reproductive abilities of boars. This investigation focused on cryptorchid tissues from Erhualian pigs, where the histological structure of cryptorchidism was observed using specialized staining. In addition, protein expression of P53/NF-κB in cryptorchid tissues was assessed using Western blot and immunohistochemistry. In comparison to normal Erhualian testes, Masson's trichrome staining indicated a reduction in collagen fibers in the connective tissue and around the basal membrane of the seminiferous tubules in cryptorchid testes. Moreover, collagen fiber distribution was observed to be disordered. Verhoeff Van Gieson (EVG) and argyrophilic staining demonstrated brownish-black granular nucleoli organized regions in mesenchymal cells and germ cells. When compared to normal testicles, the convoluted seminiferous tubules of cryptorchids exhibited a significantly reduced number and diameter (p < 0.01). Notably, VEGF/EGFR and P53/NF-κB expression in cryptorchidism significantly differed from that in normal testes. In particular, the expression of VEGF and P53 in cryptorchid tissues was significantly higher than that in normal testes tissues, whereas the expression of EGFR in cryptorchid tissues was significantly lower than that in normal testes tissues (all p < 0.01). NF-κB expressed no difference in both conditions. The expressions of VEGF and NF-κB were observed in the cytoplasm of testicular Leydig cells and spermatogenic cells, but they were weak in the nucleus. EGFR and P53 were more positively expressed in the cytoplasm of these cells, with no positive expression in the nucleus. Conclusion: There were changes in the tissue morphology and structure of the cryptorchid testis, coupled with abnormally high expression of VEGF and P53 proteins in Erhualian pigs. We speculate that this may be an important limiting factor to fecundity during cryptorchidism.
Collapse
Affiliation(s)
- Penggang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Yiming Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Caihong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Seth Yaw Afedo
- Department of Animal Science, School of Agriculture, University of Cape Coast, Cape Coast P.O. Box 5007, Ghana
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Danga AK, Rath PC. Molecular cloning, expression and cellular localization of two long noncoding RNAs (mLINC-RBE and mLINC-RSAS) in the mouse testis. Int J Biol Macromol 2024; 255:128106. [PMID: 37979740 DOI: 10.1016/j.ijbiomac.2023.128106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Long noncoding RNAs (lncRNAs) are transcribed in complex, overlapping, sense- and antisense orientations from intronic and intergenic regions of mammalian genomes. Transcription of genome in mammalian testis is more widespread compared to other organs. LncRNAs are involved in gene expression, chromatin regulation, mRNA stability and translation of proteins during diverse cellular functions. We report molecular cloning of two novel lncRNAs (mLINC-RBE and mLINC-RSAS) and their expression by RT-PCR as well as cellular localization by RNA in-situ hybridization in the mouse testes. mLINC-RBE is an intergenic lncRNA from chromosome 4, with 16.96 % repeat sequences, expressed as a sense transcript with piRNA sequences and its expression is localized into primary spermatocytes. mLINC-RSAS is an intergenic lncRNA from chromosome 2, with 49.7 % repeat sequences, expressed as both sense- and antisense transcripts with miRNA sequences and its expression is localized into different cell types, such as Sertoli cells, primary spermatocytes and round spermatids. The lncRNAs also contain sequences for some short peptides (micropeptides). This suggests that these two repeat sequence containing, intergenic genomic sense- and antisense transcripts expressed as lncRNAs with piRNAs, miRNAs, and showing cell-type specific, differential expression may regulate important functions in mammalian testes. Such functions may be regulated by RNA structures, RNA processing and RNA-protein complexes.
Collapse
Affiliation(s)
- Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Yang A, Yan S, Yin Y, Chen C, Tang X, Ran M, Chen B. FZD7, Regulated by Non-CpG Methylation, Plays an Important Role in Immature Porcine Sertoli Cell Proliferation. Int J Mol Sci 2023; 24:ijms24076179. [PMID: 37047150 PMCID: PMC10094452 DOI: 10.3390/ijms24076179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
The regulatory role of non-CpG methylation in mammals has been important in whole-genome bisulfite sequencing. It has also been suggested that non-CpG methylation regulates gene expression to affect the development and health of mammals. However, the dynamic regulatory mechanisms of genome-wide, non-CpG methylation during testicular development still require intensive study. In this study, we analyzed the dataset from the whole-genome bisulfite sequencing (WGBS) and the RNA-seq of precocious porcine testicular tissues across two developmental stages (1 and 75 days old) in order to explore the regulatory roles of non-CpG methylation. Our results showed that genes regulated by non-CpG methylation affect the development of testes in multiple pathways. Furthermore, several hub genes that are regulated by non-CpG methylation during testicular development-such as VEGFA, PECAM1, and FZD7-were also identified. We also found that the relative expression of FZD7 was downregulated by the zebularine-induced demethylation of the first exon of FZD7. This regulatory relationship was consistent with the results of the WGBS and RNA-seq analysis. The immature porcine Sertoli cells were transfected with RNAi to mimic the expression patterns of FZD7 during testicular development. The results of the simulation test showed that cell proliferation was significantly impeded and that cell cycle arrest at the G2 phase was caused by the siRNA-induced FZD7 inhibition. We also found that the percentage of early apoptotic Sertoli cells was decreased by transfecting them with the RNAi for FZD7. This indicates that FZD7 is an important factor in linking the proliferation and apoptosis of Sertoli cells. We further demonstrated that Sertoli cells that were treated with the medium collected from apoptotic cells could stimulate proliferation. These findings will contribute to the exploration of the regulatory mechanisms of non-CpG methylation in testicular development and of the relationship between the proliferation and apoptosis of normal somatic cells.
Collapse
Affiliation(s)
- Anqi Yang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Saina Yan
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Yanfei Yin
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Chujie Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Maoliang Ran
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
10
|
Hasi G, Sodnompil T, Na H, Liu H, Ji M, Xie W, Nasenochir N. Whole transcriptome sequencing reveals core genes related to spermatogenesis in Bactrian camels. J Anim Sci 2023; 101:skad115. [PMID: 37083698 PMCID: PMC10718809 DOI: 10.1093/jas/skad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/19/2023] [Indexed: 04/22/2023] Open
Abstract
Bactrian camels survive and reproduce better in extreme climatic conditions than other domestic animals can. However, the reproductive efficiency of camels under their natural pastoral conditions is low. Several factors affect mammalian reproductive performance, including testicular development, semen quality, libido, and mating ability. Testis is a main reproductive organ of the male and is responsible for producing spermatozoa and hormones. However, our understanding of the expression patterns of the genes in camel testis is minimal. Thus, we performed total RNA-sequencing to investigate the gene expression pattern. As a result, 1,538 differential expressed mRNAs (DEmRNAs), 702 differential expressed long non-coding RNAs (DElncRNAs), and 61 differential expressed microRNAs (DEmiRNAs) were identified between pubertal and adult Bactrian camel testes. Then the genomic features, length distribution, and other characteristics of the lncRNAs and mRNAs in the Bactrian camel testis were investigated. Target genes of the DEmiRNAs and DEmRNAs were further subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Genes, such as AMHR2, FGF1, ACTL7A, GATA4, WNT4, ID2, LAMA1, IGF1, INHBB, and TLR2, were mainly involved in the TGF-β, PI3K-AKT, Wnt, GnRH, and Hippo signaling pathways which relate to spermatogenesis. Some of the DEmiRNAs were predicted to be associated with numerous DElncRNAs and DEmRNAs through competing endogenous RNA (ceRNA) regulatory network. At last, the candidate genes were validated by RT-qPCR, dual fluorescent reporter gene, and a fluorescence in situ hybridization (FISH) assay. This research provides high-throughput RNA sequencing data of the testes of Bactrian camels across different developmental stages. It lays the foundation for further investigations on lncRNAs, miRNAs, and mRNAs that involved in Bactrian camel spermatogenesis.
Collapse
Affiliation(s)
- Gaowa Hasi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Tserennadmid Sodnompil
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Haya Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Hejie Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Musi Ji
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Wangwei Xie
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| | - Narenhua Nasenochir
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
| |
Collapse
|
11
|
Identification and characterization of unique and common lncRNAs and mRNAs in the pituitary, ovary, and uterus of Hu sheep with different prolificacy. Genomics 2022; 114:110511. [PMID: 36283658 DOI: 10.1016/j.ygeno.2022.110511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 01/15/2023]
Abstract
LncRNAs are regarded as regulators in various animal reproductive physiological processes. However, the regulation of lncRNAs in the reproductive organ development of Hu sheep with different prolificacy remains unknown. Herein, numerous tissue-unique and -common differentially expressed lncRNAs (DELs) and differentially expressed genes (DEGs), and fecundity-unique DELs and DEGs were identified among different comparison groups at horizontal and vertical levels. Moreover, the tissue-unique and -common, and fecundity-unique female reproduction-associated DEGs and DELs were screened, and the interaction networks were constructed. Furthermore, MSTRG.43442.1 was mainly present in the cytoplasm of tested cells. The key genes ADAMTS1 and DCN were mainly localized in the granulosa cells, pituitary cells and/or endometrial epithelial cells of ovary, pituitary and/or uterus. Overall, this study identified large numbers of unique and common DELs and DEGs in the female reproductive organs of Hu sheep with different prolificacy and provided new insights into understanding the regulation of Hu sheep fecundity.
Collapse
|
12
|
Anqi Y, Saina Y, Chujie C, Yanfei Y, Xiangwei T, Jiajia M, Jiaojiao X, Maoliang R, Bin C. Regulation of DNA methylation during the testicular development of Shaziling pigs. Genomics 2022; 114:110450. [PMID: 35995261 DOI: 10.1016/j.ygeno.2022.110450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
DNA methylation is one of the key epigenetic regulatory mechanisms in development and spermatogenesis. However, the dynamic regulatory mechanisms of genome-wide DNA methylation during testicular development remain largely unknown. Herein, we generated a single-base resolution DNA methylome and transcriptome atlas of precocious porcine testicular tissues across three developmental stages (1, 75, and 150 days old). The results showed that the dynamic methylation patterns were directly related to the expression of the DNMT3A gene. Conjoint analysis revealed a negative regulatory pattern between promoter methylation and the positive regulation of 3'-untranslated region (3'UTR) methylation. Mechanistically, the decrease in promoter methylation affected the upregulation of meiosis-related genes, such as HORMAD1, SPO11, and SYCE1. Demethylation in the 3'UTR induced the downregulation of the INHBA gene and knockdown of INHBA inhibited cell proliferation by reducing the synthesis of activin A. These findings contribute to exploring the regulatory mechanisms of DNA methylation in testicular development.
Collapse
Affiliation(s)
- Yang Anqi
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yan Saina
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Chen Chujie
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yin Yanfei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Tang Xiangwei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ma Jiajia
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xiang Jiaojiao
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ran Maoliang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| | - Chen Bin
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| |
Collapse
|
13
|
Wang S, Tian W, Pan D, Liu L, Xu C, Ma Y, Wang D, Jiang L. A Comprehensive Analysis of the Myocardial Transcriptome in ZBED6-Knockout Bama Xiang Pigs. Genes (Basel) 2022; 13:genes13081382. [PMID: 36011293 PMCID: PMC9407500 DOI: 10.3390/genes13081382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The ZBED6 gene is a transcription factor that regulates the expression of IGF2 and affects muscle growth and development. However, its effect on the growth and development of the heart is still unknown. Emerging evidence suggests that long noncoding RNAs (lncRNAs) can regulate genes at the epigenetic, transcriptional, and posttranscriptional levels and play an important role in the development of eukaryotes. To investigate the function of ZBED6 in the cardiac development of pigs, we constructed the expression profiles of mRNAs and lncRNAs in myocardial tissue obtained from Bama Xiang pigs in the ZBED6 knockout group (ZBED6-KO) and the wild-type group (ZBED6-WT). A total of 248 differentially expressed genes (DEGs) and 209 differentially expressed lncRNAs (DELs) were detected, and 105 potential cis target genes of DELs were identified. The functional annotation analysis based on the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases revealed two GO items related to muscle development by the cis target genes of DELs. Moreover, IGF2 was the direct target gene of ZBED6 by ChIP-PCR experiment. Our results explored the mechanism and expression profile of mRNAs and lncRNAs of ZBED6 gene knockout on myocardium tissue development, mining the key candidate genes in that process like IGF2.
Collapse
Affiliation(s)
- Shengnan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (S.W.); (C.X.); (Y.M.)
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
| | - Wenjie Tian
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Dengke Pan
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China;
| | - Ling Liu
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Cheng Xu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (S.W.); (C.X.); (Y.M.)
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (S.W.); (C.X.); (Y.M.)
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
| | - Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (S.W.); (C.X.); (Y.M.)
- Correspondence: (D.W.); (L.J.)
| | - Lin Jiang
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
- Correspondence: (D.W.); (L.J.)
| |
Collapse
|
14
|
He C, Wang K, Gao Y, Wang C, Li L, Liao Y, Hu K, Liang M. Roles of Noncoding RNA in Reproduction. Front Genet 2021; 12:777510. [PMID: 34956326 PMCID: PMC8695933 DOI: 10.3389/fgene.2021.777510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022] Open
Abstract
The World Health Organization predicts that infertility will be the third major health threat after cancer and cardiovascular disease, and will become a hot topic in medical research. Studies have shown that epigenetic changes are an important component of gametogenesis and related reproductive diseases. Epigenetic regulation of noncoding RNA (ncRNA) is appropriate and is a research hotspot in the biomedical field; these include long noncoding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA). As vital members of the intracellular gene regulatory network, they affect various life activities of cells. LncRNA functions as a molecular bait, molecular signal and molecular scaffold in the body through molecular guidance. miRNAs are critical regulators of gene expression; they mainly control the stability or translation of their target mRNA after transcription. piRNA functions mainly through silencing genomic transposable elements and the post-transcriptional regulation of mRNAs in animal germ cells. Current studies have shown that these ncRNAs also play significant roles in the reproductive system and are involved in the regulation of essential cellular events in spermatogenesis and follicular development. The abnormal expression of ncRNA is closely linked to testicular germ cell tumors, poly cystic ovary syndrome and other diseases. This paper briefly presents the research on the reproductive process and reproductive diseases involving ncRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, China
| |
Collapse
|
15
|
Liu YL, Huang FJ, Du PJ, Wang J, Guo F, Shao MW, Song Y, Liu YX, Qin GJ. Long noncoding RNA MIR22HG promotes Leydig cell apoptosis by acting as a competing endogenous RNA for microRNA-125a-5p that targets N-Myc downstream-regulated gene 2 in late-onset hypogonadism. J Transl Med 2021; 101:1484-1493. [PMID: 34446806 DOI: 10.1038/s41374-021-00645-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/09/2022] Open
Abstract
Leydig cells (LCs) apoptosis is responsible for the deficiency of serum testosterone in Late-onset hypogonadism (LOH), while its specific mechanism is still unknown. This study focuses on the role of long noncoding RNA (lncRNA) MIR22HG in LC apoptosis and aims to elaborate its regulatory mechanism. MIR22HG was up-regulated in the testicular tissues of mice with LOH and H2O2-treated TM3 cells (mouse Leydig cell line). Interference of MIR22HG ameliorated cell apoptosis and upregulated miR-125a-5p expression in H2O2-treated TM3 cells. Then, the interaction between MIR22HG and miR-125a-5p was confirmed with RIP and RNA pull-down assay. Further study showed that miR-125a-5p downregulated N-Myc downstream-regulated gene 2 (NDRG2) expression by targeting its 3'-UTR of mRNA. What's more, MIR22HG overexpression aggravated cell apoptosis and reduced testosterone production in TM3 cells via miR-125a-5p/NDRG2 pathway. MIR22HG knockdown elevated testosterone levels in LOH mice. In conclusion, MIR22HG up-regulated NDRG2 expression through targeting miR-125a-5p, thus promoting LC apoptosis in LOH.
Collapse
Affiliation(s)
- Yan-Ling Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Feng-Jiao Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Pei-Jie Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Ming-Wei Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Yan-Xia Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Gui-Jun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
16
|
circBTBD7 Promotes Immature Porcine Sertoli Cell Growth through Modulating miR-24-3p/ MAPK7 Axis to Inactivate p38 MAPK Signaling Pathway. Int J Mol Sci 2021; 22:ijms22179385. [PMID: 34502294 PMCID: PMC8431111 DOI: 10.3390/ijms22179385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Sertoli cells are the crucial coordinators to guarantee normal spermatogenesis and male fertility. Although circular RNAs (circRNAs) exhibit developmental-stage-specific expression in porcine testicular tissues and have been thought of as potential regulatory molecules in spermatogenesis, their functions and mechanisms of action remain largely unknown, especially in domestic animals. A novel circBTBD7 was identified from immature porcine Sertoli cells using reverse transcription PCR, Sanger sequencing, and fluorescence in situ hybridization assays. Functional assays illustrated that circBTBD7 overexpression promoted cell cycle progression and cell proliferation, as well as inhibited cell apoptosis in immature porcine Sertoli cells. Mechanistically, circBTBD7 acted as a sponge for the miR-24-3p and further facilitated its target mitogen-activated protein kinase 7 (MAPK7) gene. Overexpression of miR-24-3p impeded cell proliferation and induced cell apoptosis, which further attenuated the effects of circBTBD7 overexpression. siRNA-induced MAPK7 deficiency resulted in a similar effect to miR-24-3p overexpression, and further offset the effects of miR-24-3p inhibition. Both miR-24-3p overexpression and MAPK7 knockdown upregulated the p38 phosphorylation activity. The SB202190 induced the inhibition of p38 MAPK pathway and caused an opposite effect to that of miR-24-3p overexpression and MAPK7 knockdown. Collectively, circBTBD7 promotes immature porcine Sertoli cell growth through modulating the miR-24-3p/MAPK7 axis to inactivate the p38 MAPK signaling pathway. This study expanded our knowledge of noncoding RNAs in porcine normal spermatogenesis through deciding the fate of Sertoli cells.
Collapse
|
17
|
Chen H, Miao X, Xu J, Pu L, Li L, Han Y, Mao F, Ma Y. Alterations of mRNA and lncRNA profiles associated with the extracellular matrix and spermatogenesis in goats. Anim Biosci 2021; 35:544-555. [PMID: 34530511 PMCID: PMC8902208 DOI: 10.5713/ab.21.0259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
Objective Spermatozoa are produced within the seminiferous tubules after sexual maturity. The expression levels of mRNAs and lncRNAs in testicular tissues are different at each stage of testicular development and are closely related to formation of the extracellular matrix (ECM) and spermatogenesis. Therefore, we set out to study the expression of lncRNAs and mRNAs during the different developmental stages of the goat testis. Methods We constructed 12 RNA libraries using testicular tissues from goats aged 3, 6, and 12 months, and studied the functions of mRNAs and lncRNAs using the gene ontogeny (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Relationships between differentially expressed genes (DEGs) were analyzed by lncRNA-mRNA co-expression network and protein-protein interaction network (PPI). Finally, the protein expression levels of matrix metalloproteinase 2 (MMP2), insulin-like growth factor 2 (IGF2), and insulin-like growth factor-binding protein 6 (IGFBP6) were detected by western blotting. Results We found 23, 8, and 135 differentially expressed lncRNAs and 161, 12, and 665 differentially expressed mRNAs that were identified between 3 vs 6, 6 vs 12, and 3 vs 12 months, respectively. GO, KEGG, and PPI analyses showed that the differential genes were mainly related to the ECM. Moreover, MMP2 was a hub gene and co-expressed with the lncRNA TCONS-0002139 and TCONS-00093342. The results of quantitative reverse-transcription polymerase chain reaction verification were consistent with those of RNA-seq sequencing. The expression trends of MMP2, IGF2, and IGFBP6 protein were the same as that of mRNA, which all decreased with age. IGF2 and MMP2 were significantly different in the 3 vs 6-month-old group (p<0.05). Conclusion These results improve our understanding of the molecular mechanisms involved in sexual maturation of the goat testis.
Collapse
Affiliation(s)
- Haolin Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China.,Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Xiaomeng Miao
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Jinge Xu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Ling Pu
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Liang Li
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Yong Han
- Institute of Animal Husbandry and Veterinary, Guizhou Academy of Agricultural Sciences, Guizhou, 550000, China
| | - Fengxian Mao
- Guizhou Province Livestock and Poultry Genetic Resources Management Station, Guiyang, Guizhou, 550000, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730000, China
| |
Collapse
|
18
|
Qin F, Cao H, Feng C, Zhu T, Zhu B, Zhang J, Tong J, Pei H. Microarray profiling of LncRNA expression in the testis of pubertal mice following morning and evening exposure to 1800 MHz radiofrequency fields. Chronobiol Int 2021; 38:1745-1760. [PMID: 34369206 DOI: 10.1080/07420528.2021.1962902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this paper, the chronotoxicity of radiofrequency fields (RF) in the pubertal testis development and the involved molecular pathways were investigated by exposing four-week-old mice to RF (1800 MHz, SAR, 0.50 W/kg) in the morning and evening of each day for three weeks. Then, pathological changes and functional indices within the testis were determined. We also used a long non-coding RNA (lncRNA) microarray and GO/KEGG pathway analyses to determine lncRNA expression profiles and predict their potential functions. The cis and trans regulation of lncRNAs were investigated, and an interaction network was constructed using Cytoscape software. RF exposure led to a range of pathological changes in the testes of adolescent mice, as testicular weights and daily sperm productions decreased, and the testosterone secretion reduced. Furthermore, RF induced dysregulation in the expression of testicular lncRNAs. We identified 615 and 183 differentially expressed lncRNAs that were associated with morning and evening exposure to RF, respectively. From 15 differential expression lncRNAs both in morning RF group and evening RF group, we selected 6 lncRNAs to be validated by quantitative reverse transcription PCR (qRT-PCR). The differentially expressed lncRNAs induced by morning RF exposure were highly correlated with many different pathways, including Fanconi syndrome, metabolic processes, cell cycle, DNA damage, and DNA replication. Trans-regulation analyses further showed that differentially expressed lncRNAs were involved in multiple transcription factor-regulated pathways, such as TCFAP4, NFkB, HINFP, TFDP2, FoxN1, and PAX5. These transcription factors have all been shown to be involved in the modulation of testis development, cell cycle progression, and spermatogenesis. These findings suggest that the extent to which 1800 MHz RF induced toxicity in the testes and changed the expression of lncRNAs showed differences between morning exposure and evening exposure. These data indicate that differentially expressed lncRNAs play crucial roles in the RF exposure damage to the developing pubertal testis. Collectively, our findings provide a better understanding of the mechanisms underlying the toxic effects of RF exposure on testicular development.
Collapse
Affiliation(s)
- Fenju Qin
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China.,School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Honglong Cao
- School of Electronics & Information Engineering, Soochow University, Suzhou, China
| | - Chuhan Feng
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Tianyuan Zhu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Bingxu Zhu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, China
| | - Jie Zhang
- School of Public Health, Soochow University, Suzhou, China
| | - Jian Tong
- School of Public Health, Soochow University, Suzhou, China
| | - Hailong Pei
- School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Integrated Analysis of Long Non-Coding RNA and mRNA Expression Profiles in Testes of Calves and Sexually Mature Wandong Bulls ( Bos taurus). Animals (Basel) 2021; 11:ani11072006. [PMID: 34359134 PMCID: PMC8300165 DOI: 10.3390/ani11072006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The mRNAs and long non-coding RNAs axes are playing a vital role in the regulating of post-transcriptional gene expression. Thereby, elucidating the expression pattern of mRNAs and long non-coding RNAs underlying testis development is crucial. In this study, mRNA and long non-coding RNAs expression profiles were investigated in 3-month-old calves and 3-year-old mature bulls' testes by total RNA sequencing. Additionally, during the gene level analysis, 21,250 mRNAs and 20,533 long non-coding RNAs were identified. As a result, 7908 long non-coding RNAs (p-adjust < 0.05) and 5122 mRNAs (p-adjust < 0.05) were significantly differentially expressed between the distinct age groups. In addition, gene ontology and biological pathway analyses revealed that the predicted target genes are enriched in the lysine degradation, cell cycle, propanoate metabolism, adherens junction and cell adhesion molecules pathways. Correspondingly, the RT-qPCR validation results showed a strong consistency with the sequencing data. The source genes for the mRNAs (CCDC83, DMRTC2, HSPA2, IQCG, PACRG, SPO11, EHHADH, SPP1, NSD2 and ACTN4) and the long non-coding RNAs (COX7A2, COX6B2, TRIM37, PRM2, INHBA, ERBB4, SDHA, ATP6VOA2, FGF9 and TCF21) were found to be actively associated with bull sexual maturity and spermatogenesis. This study provided a comprehensive catalog of long non-coding RNAs in the bovine testes and also offered useful resources for understanding the differences in sexual development caused by the changes in the mRNA and long non-coding RNA interaction expressions between the immature and mature stages.
Collapse
|
20
|
Geisinger A, Rodríguez-Casuriaga R, Benavente R. Transcriptomics of Meiosis in the Male Mouse. Front Cell Dev Biol 2021; 9:626020. [PMID: 33748111 PMCID: PMC7973102 DOI: 10.3389/fcell.2021.626020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Molecular studies of meiosis in mammals have been long relegated due to some intrinsic obstacles, namely the impossibility to reproduce the process in vitro, and the difficulty to obtain highly pure isolated cells of the different meiotic stages. In the recent years, some technical advances, from the improvement of flow cytometry sorting protocols to single-cell RNAseq, are enabling to profile the transcriptome and its fluctuations along the meiotic process. In this mini-review we will outline the diverse methodological approaches that have been employed, and some of the main findings that have started to arise from these studies. As for practical reasons most studies have been carried out in males, and mostly using mouse as a model, our focus will be on murine male meiosis, although also including specific comments about humans. Particularly, we will center on the controversy about gene expression during early meiotic prophase; the widespread existing gap between transcription and translation in meiotic cells; the expression patterns and potential roles of meiotic long non-coding RNAs; and the visualization of meiotic sex chromosome inactivation from the RNAseq perspective.
Collapse
Affiliation(s)
- Adriana Geisinger
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Bo D, Jiang X, Liu G, Hu R, Chong Y. RNA-Seq Implies Divergent Regulation Patterns of LincRNA on Spermatogenesis and Testis Growth in Goats. Animals (Basel) 2021; 11:ani11030625. [PMID: 33653002 PMCID: PMC7996862 DOI: 10.3390/ani11030625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary Long intergenic non-coding RNAs (lincRNAs) can regulate testicular development by acting on protein-coding genes. Therefore, it is important to explore the expression patterns and roles of lincRNAs during the postnatal development of the goat testis. In this study, the testes of Yiling goats with average ages of 0, 30, 60, 90, 120, 150, and 180 days postnatal were used for RNA-seq. In total, 20,269 lincRNAs were identified, including 16,931 novel lincRNAs. Using weighted gene co-expression network analysis, seven time-specifically diverse lincRNA modules and six mRNA modules were identified. Dramatically, the down-regulation of growth-related lincRNAs was nearly one month earlier than the up-regulation of spermatogenesis-related lincRNAs, while the down-regulation of growth-related protein-coding genes and the correspondent up-regulation of spermatogenesis-related protein-coding genes occurred at the same age. Moreover, potential lincRNA target genes were predicted. Moreover, key lincRNAs in the process of testis development were predicted, such as ENSCHIT00000000777, ENSCHIT00000002069, and ENSCHIT00000005076. In the present study, the divergent regulation patterns of lincRNA on spermatogenesis and testis growth were discovered. This study can improve our understanding of the functions of lincRNAs in the regulation of testis development. Abstract Long intergenic non-coding RNAs (lincRNAs) regulate testicular development by acting on protein-coding genes. However, little is known about whether lincRNAs and protein-coding genes exhibit the same expression pattern in the same phase of postnatal testicular development in goats. Therefore, this study aimed to demonstrate the expression patterns and roles of lincRNAs during the postnatal development of the goat testis. Herein, the testes of Yiling goats with average ages of 0, 30, 60, 90, 120, 150, and 180 days postnatal (DP) were used for RNA-seq. In total, 20,269 lincRNAs were identified, including 16,931 novel lincRNAs. We identified seven time-specifically diverse lincRNA modules and six mRNA modules by weighted gene co-expression network analysis (WGCNA). Interestingly, the down-regulation of growth-related lincRNAs was nearly one month earlier than the up-regulation of spermatogenesis-related lincRNAs, while the down-regulation of growth-related protein-coding genes and the correspondent up-regulation of spermatogenesis-related protein-coding genes occurred at the same age. Then, potential lincRNA target genes were predicted. Moreover, the co-expression network of lincRNAs demonstrated that ENSCHIT00000000777, ENSCHIT00000002069, and ENSCHIT00000005076 were the key lincRNAs in the process of testis development. Our study discovered the divergent regulation patterns of lincRNA on spermatogenesis and testis growth, providing a fresh insight into age-biased changes in lincRNA expression in the goat testis.
Collapse
Affiliation(s)
- Dongdong Bo
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan 430070, China
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan 430070, China
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan 430070, China
- Correspondence: ; Tel.: +86-027-87585120
| | - Ruixue Hu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
| | - Yuqing Chong
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (D.B.); (X.J.); (R.H.); (Y.C.)
| |
Collapse
|
22
|
Rodríguez-Casuriaga R, Geisinger A. Contributions of Flow Cytometry to the Molecular Study of Spermatogenesis in Mammals. Int J Mol Sci 2021; 22:1151. [PMID: 33503798 PMCID: PMC7865295 DOI: 10.3390/ijms22031151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 12/18/2022] Open
Abstract
Mammalian testes are very heterogeneous organs, with a high number of different cell types. Testicular heterogeneity, together with the lack of reliable in vitro culture systems of spermatogenic cells, have been an obstacle for the characterization of the molecular bases of the unique events that take place along the different spermatogenic stages. In this context, flow cytometry has become an invaluable tool for the analysis of testicular heterogeneity, and for the purification of stage-specific spermatogenic cell populations, both for basic research and for clinical applications. In this review, we highlight the importance of flow cytometry for the advances on the knowledge of the molecular groundwork of spermatogenesis in mammals. Moreover, we provide examples of different approaches to the study of spermatogenesis that have benefited from flow cytometry, including the characterization of mutant phenotypes, transcriptomics, epigenetic and genome-wide chromatin studies, and the attempts to establish cell culture systems for research and/or clinical aims such as infertility treatment.
Collapse
Affiliation(s)
- Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11400 Montevideo, Uruguay
| |
Collapse
|
23
|
Luo H, Peng F, Weng B, Tang X, Chen Y, Yang A, Chen B, Ran M. miR-222 Suppresses Immature Porcine Sertoli Cell Growth by Targeting the GRB10 Gene Through Inactivating the PI3K/AKT Signaling Pathway. Front Genet 2020; 11:581593. [PMID: 33329720 PMCID: PMC7673446 DOI: 10.3389/fgene.2020.581593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/16/2020] [Indexed: 01/24/2023] Open
Abstract
Sertoli cells are central and essential coordinators of spermatogenesis. Accumulating evidence has demonstrated that miRNAs participate in the regulation of Sertoli cell growth. However, the functions and the regulatory mechanisms of miRNAs in Sertoli cells of domestic animals remain largely unknown. Here we report that miR-222 overexpression repressed cell cycle progression and proliferation and promoted the apoptosis of immature porcine Sertoli cells, whereas miR-222 inhibition resulted in the opposite result. miR-222 directly targeted the 3′-UTR of the GRB10 gene and inhibited its mRNA abundance. An siRNA-induced GRB10 knockdown showed similar effects as did miR-222 overexpression on cell proliferation and apoptosis and further attenuated the role of miR-222 inhibition. Furthermore, both miR-222 overexpression and GRB10 inhibition repressed the phosphorylation of PI3K and AKT, the key elements of the PI3K/AKT signaling pathway, whereas GRB10 inhibition offsets the effects of the miR-222 knockdown. Overall, we concluded that miR-222 suppresses immature porcine Sertoli cell growth by targeting the GRB10 gene through inactivation of the PI3K/AKT signaling pathway. This study provides novel insights into the epigenetic regulation of porcine spermatogenesis by determining the fate of Sertoli cells.
Collapse
Affiliation(s)
- Hui Luo
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Fuzhi Peng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Bo Weng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Yao Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Anqi Yang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Maoliang Ran
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| |
Collapse
|
24
|
Fraser L, Paukszto Ł, Mańkowska A, Brym P, Gilun P, Jastrzębski JP, Pareek CS, Kumar D, Pierzchała M. Regulatory Potential of Long Non-Coding RNAs (lncRNAs) in Boar Spermatozoa with Good and Poor Freezability. Life (Basel) 2020; 10:life10110300. [PMID: 33233438 PMCID: PMC7700223 DOI: 10.3390/life10110300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are suggested to play an important role in the sperm biological processes. We performed de novo transcriptome assembly to characterize lncRNAs in spermatozoa, and to investigate the role of the potential target genes of the differentially expressed lncRNAs (DElncRNAs) in sperm freezability. We detected approximately 4007 DElncRNAs, which were differentially expressed in spermatozoa from boars classified as having good and poor semen freezability (GSF and PSF, respectively). Most of the DElncRNAs were upregulated in boars of the PSF group and appeared to significantly affect the sperm's response to the cryopreservation conditions. Furthermore, we predicted that the potential target genes were regulated by DElncRNAs in cis or trans. It was found that DElncRNAs of both freezability groups had potential cis- and trans-regulatory effects on different protein-coding genes, such as COX7A2L, TXNDC8 and SOX-7. Gene Ontology (GO) enrichment revealed that the DElncRNA target genes are associated with numerous biological processes, including signal transduction, response to stress, cell death (apoptosis), motility and embryo development. Significant differences in the de novo assembled transcriptome expression profiles of the DElncRNAs between the freezability groups were confirmed by quantitative real-time PCR analysis. This study reveals the potential effects of protein-coding genes of DElncRNAs on sperm functions, which could contribute to further research on their relevance in semen freezability.
Collapse
Affiliation(s)
- Leyland Fraser
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Anna Mańkowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Paweł Brym
- Department of Animal Genetics, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Przemysław Gilun
- Department of Local Physiological Regulations, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Bydgoska 7, 10-243 Olsztyn, Poland;
| | - Jan P. Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Chandra S. Pareek
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus, University, 87-100 Toruń, Poland;
| | - Dibyendu Kumar
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA;
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| |
Collapse
|
25
|
Gao W, Zhang C, Jin K, Zhang Y, Zuo Q, Li B. Analysis of lncRNA Expression Profile during the Formation of Male Germ Cells in Chickens. Animals (Basel) 2020; 10:ani10101850. [PMID: 33050652 PMCID: PMC7599500 DOI: 10.3390/ani10101850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The differentiation of germ cells plays an important role in sex differentiation in poultry. Therefore, it is necessary for us to explore the potential regulators in the process of germ cell development. In this study, RNA-seq was used to detect the expression profile of long non-coding RNAs (lncRNAs) in chicken embryonic stem cells (ESCs), primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). The results showed that a total of 296, 280 and 357 differentially expressed lncRNAs (DELs) were screened in ESCs vs. PGCs, ESCs vs. SSCs and PGCs vs. SSCs, respectively. Functional analysis of the target genes of DELs showed that autophagy, Wnt/β-catenin, TGF-β, Notch and ErbB signaling pathways were involved in the differentiation process of male germ cells and, moreover, XLOC_612026, XLOC_612029, XLOC_240662, XLOC_362463, XLOC_023952, XLOC_674549, XLOC_160716, ALDBGALG0000001810, ALDBGALG0000002986, XLOC_657380674549, XLOC_022100 and XLOC_657380 were predicted to be the key lncRNAs in this process. Our findings could not only supply scientific data for constructing the gene regulatory network of germ cell development, but also provide new ideas for further optimizing the induction efficiency of germ cells in vitro. Abstract Germ cells have an irreplaceable role in transmitting genetic information from one generation to the next, and also play an important role in sex differentiation in poultry, while little is known about epigenetic factors that regulate germ cell differentiation. In this study, RNA-seq was used to detect the expression profiles of long non-coding RNAs (lncRNAs) during the differentiation of chicken embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs). The results showed that a total of 296, 280 and 357 differentially expressed lncRNAs (DELs) were screened in ESCs vs. PGCs, ESCs vs. SSCs and PGCs vs. SSCs, respectively. Gene Ontology (GO) and KEGG enrichment analysis showed that DELs in the three cell groups were mainly enriched in autophagy, Wnt/β-catenin, TGF-β, Notch and ErbB and signaling pathways. The co-expression network of 37 candidate DELs and their target genes enriched in the biological function of germ cell development showed that XLOC_612026, XLOC_612029, XLOC_240662, XLOC_362463, XLOC_023952, XLOC_674549, XLOC_160716, ALDBGALG0000001810, ALDBGALG0000002986, XLOC_657380674549, XLOC_022100 and XLOC_657380 were the key lncRNAs in the process of male germ cell formation and, moreover, the function of these DELs may be related to the interaction of their target genes. Our findings preliminarily excavated the key lncRNAs and signaling pathways in the process of male chicken germ cell formation, which could be helpful to construct the gene regulatory network of germ cell development, and also provide new ideas for further optimizing the induction efficiency of germ cells in vitro.
Collapse
Affiliation(s)
- Wen Gao
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chen Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yani Zhang
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (W.G.); (C.Z.); (K.J.); (Y.Z.); (Q.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87997207
| |
Collapse
|
26
|
Ding H, Liu M, Zhou C, You X, Su T, Yang Y, Xu D. Integrated analysis of miRNA and mRNA expression profiles in testes of Duroc and Meishan boars. BMC Genomics 2020; 21:686. [PMID: 33008286 PMCID: PMC7531090 DOI: 10.1186/s12864-020-07096-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs playing vital roles in regulating posttranscriptional gene expression. Elucidating the expression regulation of miRNAs underlying pig testis development will contribute to a better understanding of boar fertility and spermatogenesis. RESULTS In this study, miRNA expression profile was investigated in testes of Duroc and Meishan boars at 20, 75, and 270 days of age by high-throughput sequencing. Forty-five differentially expressed miRNAs were identified from testes of Duroc and Meishan boars before and after puberty. Integrated analysis of miRNA and mRNA profiles predicted many miRNA-mRNA pairs. Gene ontology and biological pathway analyses revealed that predicted target genes of ssc-mir-423-5p, ssc-mir-34c, ssc-mir-107, ssc-mir-196b-5p, ssc-mir-92a, ssc-mir-320, ssc-mir-10a-5p, and ssc-mir-181b were involved in sexual reproduction, male gamete generation, and spermatogenesis, and GnRH, Wnt, and MAPK signaling pathway. Four significantly differentially expressed miRNAs and their predicted target genes were validated by quantitative real-time polymerase chain reaction, and phospholipase C beta 1 (PLCβ1) gene was verified to be a target of ssc-mir-423-5p. CONCLUSIONS This study provides an insight into the functional roles of miRNAs in testis development and spermatogenesis and offers useful resources for understanding differences in sexual function development caused by the change in miRNAs expression between Duroc and Meishan boars.
Collapse
Affiliation(s)
- Haisheng Ding
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Min Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Changfan Zhou
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiangbin You
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Tao Su
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science & Technology, Luoyang, 471023, People's Republic of China
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
27
|
Luo H, Chen B, Weng B, Tang X, Chen Y, Yang A, Chu D, Zeng X, Ran M. miR-130a promotes immature porcine Sertoli cell growth by activating SMAD5 through the TGF-β-PI3K/AKT signaling pathway. FASEB J 2020; 34:15164-15179. [PMID: 32918760 DOI: 10.1096/fj.202001384r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023]
Abstract
Sertoli cells play vital roles in normal spermatogenesis, and microRNAs (miRNAs) participate in regulating Sertoli cell development. However, the functions and mechanisms of action of most identified miRNAs in porcine Sertoli cells remain largely unknown. Herein, we primarily explored the regulatory roles of miR-130a in immature porcine Sertoli cells using EdU-based high-content screening assay. The results demonstrated that 27 miRNAs have potential roles in the promotion of immature porcine Sertoli cell proliferation, and miR-130a was identified as a promising candidate. miR-130a promoted cell cycle progression and cell proliferation, whereas it impeded cell apoptosis in immature porcine Sertoli cells. It also contributed to Sertoli cell proliferation and testis development in vivo. A TMT-based proteomics approach revealed that miR-130a regulated the expression of 91 proteins and multiple pathways, including the TGF-β and PI3K/AKT signaling. miR-130a did not directly target the 3'-UTR of SMAD5; however, it increased SMAD5 phosphorylation. Moreover, miR-130a enhanced TGF-β signaling by activating SMAD5 protein, and TGF-β signaling further activated the PI3K/AKT signaling pathway to promote cell proliferation and inhibit cell apoptosis in porcine immature Sertoli cells. Collectively, miR-130a promoted immature porcine Sertoli cell growth by activating SMAD5 through the TGF-β-PI3K/AKT signaling pathway. This study, therefore, provides novel insights into the effects of miR-130a on porcine spermatogenesis through the regulation of immature Sertoli cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Hui Luo
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Bo Weng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Yao Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Anqi Yang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Dan Chu
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Xinyu Zeng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| | - Maoliang Ran
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Changsha, China
| |
Collapse
|
28
|
He L, He Q, Qiao L, Huang S, Dai Z, Yang T, Liu L, Zhao Z. LncWNT3‐IT affects the proliferation of Sertoli cells by regulating the expression of the WNT3 gene in goat testis. Reprod Domest Anim 2020; 55:1061-1071. [DOI: 10.1111/rda.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/28/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Lina He
- College of Animal Science and Technology Southwest University Chongqing China
| | - Qijie He
- College of Animal Science and Technology Southwest University Chongqing China
| | - Lei Qiao
- College of Animal Science and Technology Southwest University Chongqing China
| | - Siyi Huang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zinuo Dai
- College of Animal Science and Technology Southwest University Chongqing China
| | - Tianyuan Yang
- College of Animal Science and Technology Southwest University Chongqing China
| | - Lingbin Liu
- College of Animal Science and Technology Southwest University Chongqing China
| | - Zhongquan Zhao
- College of Animal Science and Technology Southwest University Chongqing China
| |
Collapse
|
29
|
Satoh Y, Takei N, Kawamura S, Takahashi N, Kotani T, Kimura AP. A novel testis-specific long noncoding RNA, Tesra, activates the Prss42/Tessp-2 gene during mouse spermatogenesis†. Biol Reprod 2020; 100:833-848. [PMID: 30379984 PMCID: PMC6437258 DOI: 10.1093/biolre/ioy230] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/06/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023] Open
Abstract
The progression of spermatogenesis is precisely controlled by meiotic stage-specific genes, but the molecular mechanism for activation of such genes is still elusive. Here we found a novel testis-specific long noncoding RNA (lncRNA), Tesra, that was specifically expressed in the mouse testis at the Prss/Tessp gene cluster on chromosome 9. Tesra was transcribed downstream of Prss44/Tessp-4, starting within the gene, as a 4435-nucleotide transcript and developmentally activated at a stage similar to that for Prss/Tessp genes. By in situ hybridization, Tesra was found to be localized in and around germ cells and Leydig cells, being consistent with biochemical data showing its existence in cytoplasmic, nuclear, and extracellular fractions. Based on the finding of more signals in nuclei of pachytene spermatocytes, we explored the possibility that Tesra plays a role in transcriptional activation of Prss/Tessp genes. By a ChIRP assay, the Tesra transcript was found to bind to the Prss42/Tessp-2 promoter region in testicular germ cells, and transient overexpression of Tesra significantly activated endogenous Prss42/Tessp-2 expression and increased Prss42/Tessp-2 promoter activity in a reporter construct. These findings suggest that Tesra activates the Prss42/Tessp-2 gene by binding to the promoter. Finally, we investigated whether Tesra co-functioned with enhancers adjacent to another lncRNA, lncRNA-HSVIII. In the Tet-on system, Tesra transcription significantly increased activity of one enhancer, but Tesra and the enhancer were not interdependent. Collectively, our results proposed a potential function of an lncRNA, Tesra, in transcriptional activation and suggest a novel relationship between an lncRNA and an enhancer.
Collapse
Affiliation(s)
- Yui Satoh
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Natsumi Takei
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shohei Kawamura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Nobuhiko Takahashi
- Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Japan
| | - Tomoya Kotani
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Atsushi P Kimura
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
30
|
Abstract
Less than 2% of mammalian genomes code for proteins, but 'the majority of its bases can be found in primary transcripts' - a phenomenon termed the pervasive transcription, which was first reported in 2007. Even though most of the transcripts do not code for proteins, they play a variety of biological functions, with regulation of gene expression appearing as the most common one. Those transcripts are divided into two groups based on their length: small non-coding RNAs, which are maximally 200 bp long, and long non-coding RNAs (lncRNAs), which are longer than 200 nucleotides. The advances in next-generation sequencing methods provided a new possibility of investigating the full set of RNA molecules in the cell. In this review, we summarized the current state of knowledge on lncRNAs in three major livestock species - Sus scrofa, Bos taurus and Gallus gallus, based on the literature and the content of biological databases. In the NONCODE database, the largest number of identified lncRNA transcripts is available for pigs, but cattle have the largest number of lncRNA genes. Poultry is represented by less than a half of records. Genomic annotation of lncRNAs showed that the majority of them are assigned to introns (pig, poultry) or intergenic (cattle). The comparison with well-annotated human and mouse genomes indicates that such annotation is a result of lack of proper lncRNA annotation data. Since lncRNAs play an important role in genomic studies, their characterization in farm animals' genomes is critical in bridging the gap between genotype and phenotype.
Collapse
|
31
|
Abstract
With the increasing incidence of male infertility, routine detection of semen is insufficient to accurately assess male fertility. Infertile men, who have lower odds of conceiving naturally, exhibit high levels of sperm DNA fragmentation (SDF). The mechanisms driving SDF include abnormal spermatogenesis, oxidative stress damage, and abnormal sperm apoptosis. As these factors can induce SDF and subsequent radical changes leading to male infertility, detection of the extent of SDF has become an efficient routine method for semen analysis. Although it is still debated, SDF detection has become a research hotspot in the field of reproductive medicine as a more accurate indicator for assessing sperm quality and male fertility. SDF may be involved in male infertility, reproductive assisted outcomes, and growth and development of offspring. The effective detection methods of SDF are sperm chromatin structure analysis (SCSA), terminal transferase-mediated dUTP end labeling (TUNEL) assay, single-cell gel electrophoresis (SCGE) assay, and sperm chromatin dispersion (SCD) test, and all of these methods are valuable for assisted reproductive techniques. Currently, the preferred method for detecting sperm DNA integrity is SCSA. However, the regulation network of SDF is very complex because the sperm DNA differs from the somatic cell DNA with its unique structure. A multitude of molecular factors, including coding genes, non-coding genes, or methylated DNA, participate in the complex physiological regulation activities associated with SDF. Studying SDF occurrence and the underlying mechanisms may effectively improve its clinical treatments. This review aimed to outline the research status of SDF mechanism and detection technology-related issues, as well as the effect of increased SDF rate, aiming to provide a basis for clinical male infertility diagnosis and treatment.
Collapse
Affiliation(s)
- Ying Qiu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Hua Yang
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Chunyuan Li
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| | - Changlong Xu
- The Reproductive Medical Center, Nanning Second People's Hospital, Nanning, Guangxi, China (mainland)
| |
Collapse
|
32
|
Ran M, Luo H, Gao H, Tang X, Chen Y, Zeng X, Weng B, Chen B. miR-362 knock-down promotes proliferation and inhibits apoptosis in porcine immature Sertoli cells by targeting the RMI1 gene. Reprod Domest Anim 2020; 55:547-558. [PMID: 31916301 DOI: 10.1111/rda.13626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/12/2019] [Accepted: 12/29/2019] [Indexed: 01/16/2023]
Abstract
Immature Sertoli cell proliferation determines the total number of mature Sertoli cells and further regulates normal spermatogenesis. Accumulating evidence demonstrates that microRNAs (miRNAs) play regulatory roles in immature Sertoli cell proliferation, while the functions and mechanisms of the Sertoli cells of domestic animals are poorly understood. In the present study, we aimed to investigate the roles of miR-362 in cell proliferation and apoptosis of porcine immature Sertoli cells. The results showed that miR-362 inhibition promoted the entrance of cells into the S phase and increased the expressions of cell cycle-related genes c-MYC, CNNE1, CCND1 and CDK4. Knock-down of miR-362 also promoted cell proliferation and inhibited apoptosis, which was demonstrated by the results from cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and Annexin V-FITC/PI staining assays. The recQ-mediated genome instability protein 1 (RMI1) gene was identified as a potential target gene of miR-362 via luciferase reporter assay, and miR-362 repressed the protein expression of RMI1 in porcine immature Sertoli cells. siRNA-induced RMI1 knock-down further abolished the effects of miR-362 inhibition on porcine immature Sertoli cells. Collectively, we concluded that miR-362 knock-down promotes proliferation and inhibits apoptosis in porcine immature Sertoli cells by targeting the RMI1 gene, which indicates that miR-362 determines the fate of immature Sertoli cells.
Collapse
Affiliation(s)
- Maoliang Ran
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animals, Hunan Agricultural University, Changsha, China
| | - Hui Luo
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animals, Hunan Agricultural University, Changsha, China
| | - Hu Gao
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animals, Hunan Agricultural University, Changsha, China
| | - Xiangwei Tang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animals, Hunan Agricultural University, Changsha, China
| | - Yao Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animals, Hunan Agricultural University, Changsha, China
| | - Xinyu Zeng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animals, Hunan Agricultural University, Changsha, China
| | - Bo Weng
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animals, Hunan Agricultural University, Changsha, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animals, Hunan Agricultural University, Changsha, China
| |
Collapse
|
33
|
Analysis of Long Noncoding RNA and mRNA Expression Profiles of Testes with High and Low Sperm Motility in Domestic Pigeons (Columba livia). Genes (Basel) 2020; 11:genes11040349. [PMID: 32218174 PMCID: PMC7230152 DOI: 10.3390/genes11040349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023] Open
Abstract
Sperm motility is one of the most important indicators in assessing semen quality, and it is used to evaluate poultry fertility. Many long noncoding RNAs (lncRNAs) and mRNAs are involved in regulating testis development and spermatogenesis. In this study, we employed RNA sequencing to analyse the testis transcriptome (lncRNA and mRNA) of ten pigeons with high and low sperm motility. In total, 46,117 mRNAs and 17,463 lncRNAs were identified, of which 2673 mRNAs and 229 lncRNAs (P < 0.05) were significantly differentially expressed (DE) between the high and low sperm motility groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis showed that target genes of DE lncRNAs and DE mRNAs were related to calcium ion binding, ATP binding, and spermatogenesis. Moreover, we found that UBB, a target gene of lncRNA MSTRG.7787.5, was involved in germ cell development. Our study provided a catalogue of lncRNAs and mRNAs associated with sperm motility, and they deserve further study to deepen the understanding of biological processes in the pigeon testis.
Collapse
|
34
|
Zhao Z, Qiao L, Dai Z, He Q, Lan X, Huang S, He L. LncNONO-AS regulates AR expression by mediating NONO. Theriogenology 2019; 145:198-206. [PMID: 31732162 DOI: 10.1016/j.theriogenology.2019.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022]
Abstract
Spermatogenesis and healthy testicular development are prerequisites for male reproductive function. Androgen receptor (AR), an important receptor in testicular sertoli cells, is involved in androgen specific response and its dysfunction will lead to abnormal sperm development, resulting in male infertility. NONO (non-POU-domain-containing octamer binding protein) can act as a coactivator to enhance the transcription of AR, while AR may be regulated by NONO in testicular sertoli cells. LncRNAs are involved in almost every step of spermatogenesis. However, there are few studies focus on the relationship between lncRNAs and spermatogenesis in goat testis. Therefore, in this research, high throughput sequencing and bioinformatics analysis were performed on testicular tissues of Dazu black goats at different stages of development to obtain the target NONO lncRNA. It's called lncNONO-AS. This study further explored the biological functions of lncRNA through RNA pull down, overexpression, interference, fluorescence quantification, Western blot and other techniques on the basis of in vitro culture of testis sertoli cells, and we got the following results: The gene expression levels of NONO and AR in lncNONO-AS overexpression group were significantly higher than that in the empty vector group (P < 0.01). Compared with the untreated negative control group, the expression of NONO decreased from 1.00 to 0.68 (P < 0.01), and the expression of AR decreased from 1.01 to 0.34 (P < 0.01). The results showed that lncNONO-AS could regulate the expression of AR by mediating the expression of NONO.
Collapse
Affiliation(s)
- Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Lei Qiao
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zinuo Dai
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qijie He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Siyi Huang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Lina He
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
35
|
Cai J, Li L, Song L, Xie L, Luo F, Sun S, Chakraborty T, Zhou L, Wang D. Effects of long term antiprogestine mifepristone (RU486) exposure on sexually dimorphic lncRNA expression and gonadal masculinization in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105289. [PMID: 31491707 DOI: 10.1016/j.aquatox.2019.105289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Mifepristone (RU486), a clinical abortion agent and potential endocrine disruptor, binds to progestin and glucocorticoid receptors and has multiple functional importance in reproductive physiology. A long-term exposure of RU486 resulted in masculinization of female fish, however, the epigenetic landscape remains elusive. Recent studies demonstrated that long non-coding RNAs (lncRNAs) might play potential roles in epigenetic modulation of sex differentiation, ovarian cancer and germline stem cell survival. To further understand the influence of RU486 exposure on epigenetic regulation, we performed a comparative investigation on sex-biased gonadal lncRNAs profiles using control XX/XY and RU486-induced sex reversed XX Nile tilapia (Oreochromis niloticus) by RNA-seq. In total, 962 sexually differentially expressed lncRNAs and their target genes were screened from the gonads of control and sex reversed fish. In comparison with the control XX group, sex reversal induced by RU486 treatment led to significant up-regulation of 757 lncRNAs and down-regulation of 221 lncRNAs. Hierarchical clustering analysis revealed that global lncRNA expression profiles in RU486-treated XX group clustered into the same branch with the control XY, whereas XX control group formed a separate branch. The KEGG pathway enrichment analysis showed that the cis-target genes between RU486-XX and control-XX were concentrated in NOD - like receptor signaling pathway, Cell adhesion molecules (CAMs) and Biosynthesis of amino acids. Real-time PCR and in situ hybridization experiments demonstrate that lncRNAs showing intense fluctuation during RU486 treatment are also sexually dimorphic during early sex differentiation, which further proves the intimate relationship between lncRNAs and sex differentiation and sexual transdifferentiation. Taken together, our data strongly indicates that a long-term exposure of RU486 resulted in sex reversal of XX female fish and the altered expression of sexually dimorphic lncRNAs might partially account for the sex reversal via epigenetic modification.
Collapse
Affiliation(s)
- Jing Cai
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China; High School of Tongnan, Tongnan, Chongqing, 402660, China
| | - Lu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lingyun Song
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lang Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China; Experimental High School of Fuling, Chongqing, 400800, China
| | - Shaohua Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Tapas Chakraborty
- South Ehime Fisheries Research Center, Ehime University, 798-4206, Japan.
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
36
|
Wang Z, Yang Y, Li S, Li K, Tang Z. Analysis and comparison of long non‐codingRNAs expressed in the ovaries of Meishan and Yorkshire pigs. Anim Genet 2019; 50:660-669. [DOI: 10.1111/age.12849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Z. Wang
- Genome Analysis Laboratory of the Ministry of Agriculture Agricultural Genome Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen 518124 China
- Department of Computer Science City University of Hong Kong Kowloon 999077 Hong Kong
| | - Y. Yang
- Genome Analysis Laboratory of the Ministry of Agriculture Agricultural Genome Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen 518124 China
- Research Centre for Nutriomics State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Shenzhen 10093 China
| | - S. Li
- Department of Computer Science City University of Hong Kong Kowloon 999077 Hong Kong
| | - K. Li
- Research Centre for Nutriomics State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Shenzhen 10093 China
| | - Z. Tang
- Genome Analysis Laboratory of the Ministry of Agriculture Agricultural Genome Institute at Shenzhen Chinese Academy of Agricultural Sciences Shenzhen 518124 China
- Research Centre for Nutriomics State Key Laboratory of Animal Nutrition Institute of Animal Sciences Chinese Academy of Agricultural Sciences Shenzhen 10093 China
| |
Collapse
|
37
|
Wang L, Yang X, Zhu Y, Zhan S, Chao Z, Zhong T, Guo J, Wang Y, Li L, Zhang H. Genome-Wide Identification and Characterization of Long Noncoding RNAs of Brown to White Adipose Tissue Transformation in Goats. Cells 2019; 8:E904. [PMID: 31443273 PMCID: PMC6721666 DOI: 10.3390/cells8080904] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play an important role in the thermogenesis and energy storage of brown adipose tissue (BAT). However, knowledge of the cellular transition from BAT to white adipose tissue (WAT) and the potential role of lncRNAs in goat adipose tissue remains largely unknown. In this study, we analyzed the transformation from BAT to WAT using histological and uncoupling protein 1 (UCP1) gene analyses. Brown adipose tissue mainly existed within the goat perirenal fat at 1 day and there was obviously a transition from BAT to WAT from 1 day to 1 year. The RNA libraries constructed from the perirenal adipose tissues of 1 day, 30 days, and 1 year goats were sequenced. A total number of 21,232 lncRNAs from perirenal fat were identified, including 5393 intronic-lncRNAs and 3546 antisense-lncRNAs. Furthermore, a total of 548 differentially expressed lncRNAs were detected across three stages (fold change ≥ 2.0, false discovery rate (FDR) < 0.05), and six lncRNAs were validated by qPCR. Furthermore, trans analysis found lncRNAs that were transcribed close to 890 protein-coding genes. Additionally, a coexpression network suggested that 4519 lncRNAs and 5212 mRNAs were potentially in trans-regulatory relationships (r > 0.95 or r < -0.95). In addition, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses showed that the targeted genes were involved in the biosynthesis of unsaturated fatty acids, fatty acid elongation and metabolism, the citrate cycle, oxidative phosphorylation, the mitochondrial respiratory chain complex, and AMP-activated protein kinase (AMPK) signaling pathways. The present study provides a comprehensive catalog of lncRNAs involved in the transformation from BAT to WAT and provides insight into understanding the role of lncRNAs in goat brown adipogenesis.
Collapse
Affiliation(s)
- Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xin Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yuehua Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, Hainan, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| |
Collapse
|
38
|
Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci Rep 2019; 9:8501. [PMID: 31186438 PMCID: PMC6559957 DOI: 10.1038/s41598-019-44600-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), >200 nt in length, are transcribed from mammalian genomes. They play important regulatory roles in various biological processes; However, the function and expression profile of lncRNAs involved in the development of hair follicles in the fetus, have been relatively under-explored area. To investigate the specific role of lncRNAs and mRNAs that regulate hair follicle development, we herein performed a comprehensive study on the lncRNA and mRNA expression profiles of sheep at multiple embryonic days (E65, E85, E105, and E135) and six lambs aged one week (D7) and one month (D30) using RNA-seq technology. The number of genes (471 lncRNAs and 12,812 mRNAs) differentially expressed and potential targets of differentially expressed lncRNAs were predicted. Differentially expressed lncRNAs were grouped into 10 clusters based on their expression pattern by K-means clustering. Moreover, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that some differentially expressed mRNAs, such as DKK1, DSG4, FOXE1, Hoxc13, SFRP1, SFRP2, and Wnt10A overlapped with lncRNAs targets, and enriched in important hair follicle developmental pathways, including Wnt, TNF, and MAPK signaling pathways. In addition, 9 differentially expressed lncRNAs and 4 differentially expressed mRNAs were validated using quantitative real-time PCR (qRT-PCR). This study helps enrich the Ovis lncRNA databases and provides a comprehensive lncRNA transcriptome profile of fetal and postnatal skin of sheep. Additionally, it provides a foundation for further experiments on the role of lncRNAs in the regulation of hair growth in sheep.
Collapse
|
39
|
Kumar H, Srikanth K, Park W, Lee SH, Choi BH, Kim H, Kim YM, Cho ES, Kim JH, Lee JH, Jung JY, Go GW, Lee KT, Kim JM, Lee J, Lim D, Park JE. Transcriptome analysis to identify long non coding RNA (lncRNA) and characterize their functional role in back fat tissue of pig. Gene 2019; 703:71-82. [PMID: 30954676 DOI: 10.1016/j.gene.2019.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
Long non coding RNAs (lncRNA) have been previously found to be involved in important cellular activities like epigenetics, implantation, cell growth etc. in pigs. However, comprehensive analysis of lncRNA in back fat tissues at different developmental stages in pigs is still lacking. In this study we conducted transcriptome analysis in the back fat tissue of a F1 crossbred Korean Native Pig (KNP) × Yorkshire Pig to identify lncRNA. We investigated their role in 16 pigs at two different growth stages; stage 1 (10 weeks, n = 8) and stage 2 (26 weeks, n = 8). After quality assessment of sequencing reads, we got a total of 1,641,165 assembled transcripts out of eight paired end read from each stage. Among them, 6808 lncRNA transcripts were identified by filtering on the basis of multiple parameters like read length ≥ 200 nucleotides, exon numbers ≥2, FPKM ≥0.5, coding potential score < 0 etc. PFAM and RFAM were used to filter out all possible protein coding genes and housekeeping RNAs respectively. A total of 103 lncRNAs and 1057 mRNAs were found to be differentially expressed (DE) between the two stages (|log2FC| > 2, q < 0.05). We also identified 306 genes located around 100 kb upstream and 234 genes downstream around these DE lncRNA transcripts. The expression of top eleven DE lncRNAs (COL4A6, LY7S, MYH2, OXCT1, SMPDL3A, TMEM182, TTC36, RFOOOO4, RFOOO15, RFOOO45, CADM2) had been validating by qRT-PCR. Pathway and GO terms analysis showed that, positive regulation of biosynthetic process, Wnt signaling pathway, cellular protein modification process, and positive regulation of nitrogen compound were differentially enriched. Our results suggested that, KEGG pathways such as protein digestion and absorption, Arrhythmogenic right ventricular cardiomyopathy (ARVC) to be significantly enriched in both DE lncRNAs as well as DE mRNAs and involved in back fat tissues development. It also suggests that, identified lncRNAs are involved in regulation of important adipose tissues development pathways.
Collapse
Affiliation(s)
- Himansu Kumar
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Woncheol Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Seung-Hoon Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Hana Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Yong-Min Kim
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Eun-Seok Cho
- Swine Science Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jin Hyoung Kim
- Animal Products Research and Development Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea
| | - Jang Hee Lee
- Department of Companion Animal, Seoul Hoseo Occupational Training College, Seoul 07583, Republic of Korea
| | - Ji Yeon Jung
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Tai Lee
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Jungjae Lee
- Jung P& C Institute, Inc., 1504 U-Tower, Yongin-si, Gyeonggi-do 16950, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea.
| |
Collapse
|
40
|
Fang M, Yang Y, Wang N, Wang A, He Y, Wang J, Jiang Y, Deng Z. Genome-wide analysis of long non-coding RNA expression profile in porcine circovirus 2-infected intestinal porcine epithelial cell line by RNA sequencing. PeerJ 2019; 7:e6577. [PMID: 30863688 PMCID: PMC6408913 DOI: 10.7717/peerj.6577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Porcine circovirus-associated disease (PCVAD), which is induced by porcine circovirus type 2 (PCV2), is responsible for severe economic losses. Recently, the role of noncoding RNAs, and in particular microRNAs, in PCV2 infection has received great attention. However, the role of long noncoding RNA (lncRNA) in PCV2 infection is unclear. Here, for the first time, we describe the expression profiles of lncRNAs in an intestinal porcine epithelial cell line (IPEC-J2) after PCV2 infection, and analyze the features of differently expressed lncRNAs and their potential target genes. After strict filtering of approximately 150 million reads, we identified 13,520 lncRNAs, including 199 lncRNAs that were differentially expressed in non-infected and PCV2-infected cells. Furthermore, trans analysis found lncRNA-regulated target genes enriched for specific Gene Ontology terms (P < 0.05), such as DNA binding, RNA binding, and transcription factor activity, which are closely associated with PCV2 infection. In addition, we analyzed the predicted target genes of differentially expressed lncRNAs, including SOD2, TNFAIP3, and ARG1, all of which are involved in infectious diseases. Our study identifies many candidate lncRNAs involved in PCV2 infection and provides new insight into the mechanisms underlying the pathogenesis of PCVAD.
Collapse
Affiliation(s)
- Manxin Fang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Yi Yang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Naidong Wang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Aibing Wang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Yanfeng He
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Jiaoshun Wang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - You Jiang
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| | - Zhibang Deng
- Hunan Agricultural University, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Changsha, Hunan, China
| |
Collapse
|
41
|
Liang G, Yang Y, Li H, Yu H, Li X, Tang Z, Li K. LncRNAnet: a comprehensive Sus scrofa
lncRNA database. Anim Genet 2018; 49:632-635. [DOI: 10.1111/age.12720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Affiliation(s)
- G. Liang
- College of Life Science; Foshan University; 1 Xianhu University Road Nanhai, Foshan Guangdong 528231 China
| | - Y. Yang
- College of Life Science; Foshan University; 1 Xianhu University Road Nanhai, Foshan Guangdong 528231 China
- Department of Pig Genomic Design and Breeding; Agricultural Genome Institute at Shenzhen; Chinese Academy of Agricultural Sciences; Shenzhen 518124 China
- Shenzhen Key Laboratory of Phenotype Analysis and Utilization of Agricultural Genome; Agricultural Genome Institute at Shenzhen; Chinese Academy of Agricultural Sciences; Shenzhen 518124 China
| | - H. Li
- College of Life Science; Foshan University; 1 Xianhu University Road Nanhai, Foshan Guangdong 528231 China
| | - H. Yu
- College of Life Science; Foshan University; 1 Xianhu University Road Nanhai, Foshan Guangdong 528231 China
| | - X. Li
- College of Life Science; Foshan University; 1 Xianhu University Road Nanhai, Foshan Guangdong 528231 China
- Department of Pig Genomic Design and Breeding; Agricultural Genome Institute at Shenzhen; Chinese Academy of Agricultural Sciences; Shenzhen 518124 China
- Shenzhen Key Laboratory of Phenotype Analysis and Utilization of Agricultural Genome; Agricultural Genome Institute at Shenzhen; Chinese Academy of Agricultural Sciences; Shenzhen 518124 China
| | - Z. Tang
- Department of Pig Genomic Design and Breeding; Agricultural Genome Institute at Shenzhen; Chinese Academy of Agricultural Sciences; Shenzhen 518124 China
- Shenzhen Key Laboratory of Phenotype Analysis and Utilization of Agricultural Genome; Agricultural Genome Institute at Shenzhen; Chinese Academy of Agricultural Sciences; Shenzhen 518124 China
| | - K. Li
- College of Life Science; Foshan University; 1 Xianhu University Road Nanhai, Foshan Guangdong 528231 China
- Department of Pig Genomic Design and Breeding; Agricultural Genome Institute at Shenzhen; Chinese Academy of Agricultural Sciences; Shenzhen 518124 China
- Shenzhen Key Laboratory of Phenotype Analysis and Utilization of Agricultural Genome; Agricultural Genome Institute at Shenzhen; Chinese Academy of Agricultural Sciences; Shenzhen 518124 China
| |
Collapse
|
42
|
Bie B, Wang Y, Li L, Fang H, Liu L, Sun J. Noncoding RNAs: Potential players in the self-renewal of mammalian spermatogonial stem cells. Mol Reprod Dev 2018; 85:720-728. [PMID: 29969526 DOI: 10.1002/mrd.23041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/30/2018] [Indexed: 12/11/2022]
Abstract
Spermatogonial stem cells (SSCs), a unique population of male germ cells with self-renewal ability, are the foundation for maintenance of spermatogenesis throughout the life of the male. Although many regulatory molecules essential for SSC self-renewal have been identified, the fundamental mechanism underlying how SSCs acquire and maintain their self-renewal activity remains largely to be elucidated. In recent years, many types of noncoding RNAs (ncRNAs) have been suggested to regulate the SSC self-renewal through multiple ways, indicating ncRNAs play crucial roles in SSC self-renewal. In this paper, we mainly focus on four types of ncRNAs including microRNA, long ncRNA, piwi-interacting RNA, as well as circular RNAs, and reviewed their potential roles in SSC self-renewal that discovered recently to help us gain a better understanding of molecular mechanisms by which ncRNAs perform their function in regulating SSC self-renewal.
Collapse
Affiliation(s)
- Beibei Bie
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Ya Wang
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Liang Li
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Huanle Fang
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Libing Liu
- Department of Pharmacy, Medical School, Xi'an Peihua University, Xi'an, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
Ran M, Weng B, Cao R, Li Z, Peng F, Luo H, Gao H, Chen B. miR-26a inhibits proliferation and promotes apoptosis in porcine immature Sertoli cells by targeting the PAK2 gene. Reprod Domest Anim 2018; 53:1375-1385. [PMID: 30024056 DOI: 10.1111/rda.13254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/16/2018] [Indexed: 12/18/2022]
Abstract
Accumulating reports have demonstrated that microRNAs (miRNAs) participate in regulating the complex processes of animal testis development and spermatogenesis; yet, the mechanisms by which miRNAs regulate spermatogenesis are poorly understood. miR-26a was identified as a miRNA that is differentially expressed among different pig testicular tissue developmental stages in our previous study. In this study, p21 activated kinase 2 (PAK2) gene was determined as one target gene of miR-26a by luciferase reporter assay, and miR-26a repressed the PAK2 mRNA abundance in porcine Sertoli cells. The Cell Counting Kit-8 (CCK8) assay, 5-Ethynyl-2'-deoxyuridine (EdU) assay and annexin V-FITC/PI staining assay results showed that miR-26a overexpression inhibited proliferation and promoted apoptosis in porcine Sertoli cells. These phenomena were similar to the siRNA-mediated knockdown of the PAK2 gene. Taken together, our results demonstrate that miR-26a inhibits proliferation and promotes apoptosis in porcine Sertoli cells by targeting the PAK2 gene, which may be a regulator of porcine spermatogenesis.
Collapse
Affiliation(s)
- Maoliang Ran
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Bo Weng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Rong Cao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhi Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Fuzhi Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Hui Luo
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Hu Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Bin Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| |
Collapse
|
44
|
Chen D, Chen W, Xu Y, Zhu M, Xiao Y, Shen Y, Zhu S, Cao C, Xu X. Upregulated immune checkpoint HHLA2 in clear cell renal cell carcinoma: a novel prognostic biomarker and potential therapeutic target. J Med Genet 2018; 56:43-49. [PMID: 29967134 DOI: 10.1136/jmedgenet-2018-105454] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a malignant urogenital cancer with high mortality; however, current progress in understanding its molecular mechanism and predicting clinical treatment outcome is limited. Therefore, this study is to evaluate the clinical significance of immune inhibitory molecular human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) in ccRCC prognosis and transcriptional regulatory network. METHODS Expression of HHLA2 in ccRCC was examined by an online database platform ONCOMINE. The ONCOMINE result was independently validated by qRT-PCR and immunohistochemistry. Kaplan-Meier survival was generated using IBM SPSS Statistics V.22. ccRCC tissues cells with high HHLA2 were sorted and subjected to microarray transcriptional profiling and analysis. RESULTS It was shown that expression of HHLA2 was statistically significantly increased in ccRCC tissues compared with normal renal tissues at both transcriptional and protein level. Moreover, the expression of HHLA2 was closely correlated with multiple clinicopathological features including tumour size, clinical stage and histological grade. High HHLA2 expression was associated with poor overall survival and clinical outcome. Comprehensive microarray analysis further identified thousands of HHLA2 targets including mRNA, long non-coding RNA and circular RNA that might function in various biological processes, especially, immune response. CONCLUSION Increased HHLA2 expression was observed in ccRCC tumour tissue, which leads to a remarkable shorter overall survival and poorer prognosis. Together with other molecular evidence, we have demonstrated that HHLA2 could be a potential prognostic biomarker for ccRCC.
Collapse
Affiliation(s)
- Dongming Chen
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Chen
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Xu
- Department of Nephrology, Huai'an Second People's Hospital and the Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Meng Zhu
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Xiao
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhao Shen
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Xianlin Xu
- Department of Urology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Ran M, Li Z, Cao R, Weng B, Peng F, He C, Chen B. miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2. Reprod Domest Anim 2018; 53:864-871. [PMID: 29761550 DOI: 10.1111/rda.13177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/24/2018] [Indexed: 12/28/2022]
Abstract
A large number of microRNAs (miRNAs) have been detected from porcine testicular tissues thanks to the development of high-throughput sequencing technology. However, the regulatory roles of most identified miRNAs in swine testicular development or spermatogenesis are poorly understood. In our previous study, ULK2 (uncoordinated-51-like kinase 2) was predicted as a target gene of miR-26a. In this study, we aimed to investigate the role of miR-26a in swine Sertoli cell autophagy. The relative expression of miR-26a and ULK2 levels has a significant negative correlation (R2 = .5964, p ≤ .01) in nine developmental stages of swine testicular tissue. Dual-luciferase reporter assay results show that miR-26a directly targets the 3'UTR of the ULK2 gene (position 618-624). In addition, both the mRNA and protein expression of ULK2 were downregulated by miR-26a in swine Sertoli cells. These results indicate that miR-26a targets the ULK2 gene and downregulates its expression in swine Sertoli cells. Based on the expression of marker genes (LC3, p62 and Beclin-1), overexpression of miR-26a or knock-down of ULK2 inhibits swine Sertoli cell autophagy. Taken together, these findings demonstrate that miR-26a suppresses autophagy in swine Sertoli cells by targeting ULK2.
Collapse
Affiliation(s)
- M Ran
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - Z Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - R Cao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - B Weng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - F Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - C He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| | - B Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha, China
| |
Collapse
|