1
|
Li L, Cao L, Li J, Zhang Z, Liu J, Ren Z, Zhang J, Wang R, Miao Y, Yu S, Li W. Identification and functional analysis of Wall-Associated Kinase genes in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2025; 16:1543437. [PMID: 39974729 PMCID: PMC11835679 DOI: 10.3389/fpls.2025.1543437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Introduction Wall-associated kinases (WAKs) are pivotal in linking plant cell walls to intracellular signaling networks, thereby playing essential roles in plant growth, development, and stress responses. Methods The bioinformatics analysis was employed to identify WAK genes in tobacco. The expression levels of NtWAK genes were assessed by qRT-PCR. The subcellular localization of WAK proteins was observed in tobacco cells and Arabidopsis protoplasts. Kinase activity of the WAK proteins was evaluated through in vitro assays. Results We conducted a comprehensive genome-wide identification and analysis of the WAK gene family in tobacco (Nicotiana tabacum). A total of 44 WAK genes were identified in the tobacco genome, which were further classified into three distinct groups. Phylogenetic analysis comparing tobacco WAKs (NtWAKs) with Arabidopsis WAKs (AtWAKs) revealed species-specific expansion of these genes. The WAK proteins within each group displayed similar gene structures and conserved motif distributions. Promoter region analysis indicated that cis-elements of NtWAK genes are primarily involved in regulating plant growth and development, phytohormone signaling, and stress responses. Expression profiling under NaCl, PEG, and ABA treatments suggested that certain NtWAK genes may play key roles in modulating responses to abiotic stress. Three-dimensional structural predictions and subcellular localization analysis showed that NtWAK proteins from the three subgroups exhibit high cytoplasmic similarity and are primarily located to the plasma membrane. Kinase activity assay confirmed that they possess phosphorylation activity. Discussion This study represents the first genome-wide analysis of the WAK gene family in N. tabacum, laying the groundwork for future functional investigations.
Collapse
Affiliation(s)
- Ling Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Linggai Cao
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jintao Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiqiang Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jie Liu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jie Zhang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Rengang Wang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Yangfan Miao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shizhou Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Wei Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
2
|
Yao X, Humphries J, Johnson KL, Chen J, Ma Y. Function of WAKs in Regulating Cell Wall Development and Responses to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:343. [PMID: 39942905 PMCID: PMC11820136 DOI: 10.3390/plants14030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
Receptor-like kinases (RLKs) are instrumental in regulating plant cell surface sensing and vascular tissue differentiation. Wall-associated kinases (WAKs) are a unique group of RLKs that have been identified as key cell wall integrity (CWI) sensors. WAK signaling is suggested to be activated during growth in response to cell expansion or when the cell wall is damaged, for example, during pathogen attack. WAKs are proposed to interact with pectins or pectin fragments that are enriched in primary walls. Secondary walls have low levels of pectins, yet recent studies have shown important functions of WAKs during secondary wall development. Several wak mutants show defects in secondary wall thickening of the xylem vessels and fibers or the development of vascular bundles. This review will discuss the recent advances in our understanding of WAK functions during plant development and responses to abiotic stresses and the regulation of vascular tissue secondary wall development.
Collapse
Affiliation(s)
- Xiaocui Yao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, International Joint Laboratory on Forest Genetics and Germplasm Innovation, Nanjing Forestry University, Nanjing 210037, China; (X.Y.); (J.C.)
| | - John Humphries
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Kim L. Johnson
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia;
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, International Joint Laboratory on Forest Genetics and Germplasm Innovation, Nanjing Forestry University, Nanjing 210037, China; (X.Y.); (J.C.)
| | - Yingxuan Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, International Joint Laboratory on Forest Genetics and Germplasm Innovation, Nanjing Forestry University, Nanjing 210037, China; (X.Y.); (J.C.)
| |
Collapse
|
3
|
Li X, Qi S, Meng L, Su P, Sun Y, Li N, Wang D, Fan Y, Song Y. Genome-wide identification of the wall-associated kinase gene family and their expression patterns under various abiotic stresses in soybean ( Glycine max (L.) Merr). FRONTIERS IN PLANT SCIENCE 2025; 15:1511681. [PMID: 39886685 PMCID: PMC11779729 DOI: 10.3389/fpls.2024.1511681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 02/01/2025]
Abstract
The wall-associated kinase (WAK) gene family encodes functional cell wall-related proteins. These genes are widely presented in plants and serve as the receptors of plant cell membranes, which perceive the external environment changes and activate signaling pathways to participate in plant growth, development, defense, and stress response. However, the WAK gene family and the encoded proteins in soybean (Glycine max (L.) Merr) have not been systematically investigated. In this study, the soybean WAK genes (GmWAK) were identified based on genome-wide sequence information, the basic characteristics, chromosome location, gene replication, expression pattern, and responses to stress were comprehensively analyzed. A total of 74 GmWAK genes were identified and mapped to 19 different chromosomes in the soybean genome. Seventy-four GmWAK genes were divided into four groups, and GmWAK genes in the same group shared similar gene structures and conserved motifs. Thirty-seven duplicate pairs were identified in 74 GmWAK genes. Segmental duplication (SD) was critical in soybean WAK gene family expansion, and purification selection occurred during evolution. The promoter cis-element analysis displayed many hormone- and stress-related response elements in the promoter regions of GmWAK genes. GmWAK genes were diversely expressed in different organs and tissues, with most actively responding to cold, heat, salt, drought, and heavy metal stresses, suggesting that GmWAK genes could exhibit relevant roles in various bioprocesses.
Collapse
Affiliation(s)
- Xiangnan Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Sifei Qi
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Lingzhi Meng
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Peisen Su
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yongwang Sun
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Nan Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Dan Wang
- Economic Crop Research Institute, Puyang Academy of Agriculture and Forestry Sciences, Puyang, China
| | - Yinglun Fan
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Yong Song
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Zhang Z, Ma W, Wang H, Ren Z, Liu Y, He K, Zhang F, Ye W, Huo W, Li W, Ma X, Yang D. Characterization of the wall-associated kinase (WAK) gene family in Gossypium barbadense reveals the positive role of GbWAK5 in salt tolerance. PLANT CELL REPORTS 2024; 44:18. [PMID: 39738693 DOI: 10.1007/s00299-024-03407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/15/2024] [Indexed: 01/02/2025]
Abstract
KEY MESSAGE We characterized the WAK gene family in Gossypium barbadense and revealed the potential function of GbWAK5 in regulating salt tolerance by modulating ion homeostasis. Soil salinization is one of the main factors restricting cotton production. Although the role of the wall-associated kinases (WAKs) in plants has been extensively studied, its response to salt stress in sea-island cotton (Gossypium barbadense L.) has not been reported. Here, we conducted a whole-genome analysis of the WAK gene family in G. barbadense, identifying a total of 70 GbWAK genes, which were classified into five clades. Segmental and tandem duplication events have contributed to the expansion of the GbWAK gene family. A large number of cis-acting elements were predicted in the GbWAK promoter region. Through RNA sequencing, 37 GbWAKs that potentially play a role in cotton's response to salt stress were screened out, among which 10 genes with sustained up-regulated expression were confirmed by quantitative real-time PCR (qRT-PCR). GbWAK5, a member of Clade II, was significantly up-regulated following NaCl treatment and exhibited a typical WAK structure. Subcellular localization indicated that GbWAK5 is localized on the plasma membrane. Virus-induced gene silencing (VIGS) experiments revealed that the knockdown of GbWAK5 resulted in more severe dehydration and wilting in plants compared to the control under NaCl treatment. RNA-seq analysis revealed that several ion transport-related genes were down-regulated in TRV:GbWAK5 plants under salt stress, while TRV:GbWAK5 plants accumulated more Na+ and exhibited a higher Na+/K+ ratio compared to TRV:00 plants. These results offer a comprehensive analysis of the G. barbadense WAK gene family for the first time, and conclude that GbWAK5 is a promising gene for improving cotton's resistance to salt stress.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Wenyu Ma
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Weinan Vocational and Technical College, Weinan, 714026, China
| | - Haijuan Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Xinjiang Production and Construction Corps Seventh Division Agricultural Research Institute, Kuitun, 833200, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Yangai Liu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Kunlun He
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Fei Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqi Huo
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Li
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Daigang Yang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
5
|
Wu Q, Jiao X, Liu D, Sun M, Tong W, Ruan X, Wang L, Ding Y, Zhang Z, Wang W, Xia E. CsWAK12, a novel cell wall-associated receptor kinase gene from Camellia sinensis, promotes growth but reduces cold tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1420431. [PMID: 39670271 PMCID: PMC11634587 DOI: 10.3389/fpls.2024.1420431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024]
Abstract
Cold significantly impacts the growth and development of tea plants, thereby affecting their economic value. Receptor-like kinases (RLKs) are thought to play a pivotal role in signaling the plant's response to cold and regulating cold tolerance. Among the RLK subfamilies, wall-associated receptor-like kinases (WAKs) have been investigated across various plant species and have been shown to regulate cell growth and stress responses. However, the function of WAK genes in response to cold stress in tea has yet to be studied. In a previous investigation, we identified the WAK gene family from Camellia sinensis and isolated a specific WAK gene, CsWAK12, which is induced by abiotic stresses. Here, we demonstrate that CsWAK12 is involved in the regulation of cold tolerance in tea plants. CsWAK12 was rapidly induced by cold, peaking at 3 hours after treatment at 4°C (10-fold increase). Heterologous overexpression of CsWAK12 (35S:CsWAK12) in Arabidopsis promoted plant growth by enhancing root length and seed size under normal conditions, although it reduced cold resistance compared to the wild type. Under cold stress, the transgenic plants exhibited a lower survival rate and significantly altered levels of superoxide dismutase (SOD) activity and malondialdehyde (MDA) content compared to the wild type (WT). Furthermore, the expression of C-repeat/dehydration-responsive element binding factor (CBF) genes was diminished in CsWAK12-overexpressing transgenic Arabidopsis plants following cold treatment. Transcriptome analysis revealed that genes associated with the CBF pathway, such as transcription factor genes (ERF53, ERF54, and DREB2A) were markedly reduced in the overexpression line. These data suggest that CsWAK12 acts as a negative regulator, reducing the cold tolerance of transgenic Arabidopsis by mediating the CBF pathway. Therefore, CsWAK12 may serve as a candidate gene for the molecular breeding of cold resistance in tea plants.
Collapse
Affiliation(s)
- Qiong Wu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Xiaoyu Jiao
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Dandan Liu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Minghui Sun
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xu Ruan
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Leigang Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yong Ding
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Zhengzhu Zhang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Wenjie Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Harvey A, van den Berg N, Swart V. Describing and characterizing the WAK/WAKL gene family across plant species: a systematic review. FRONTIERS IN PLANT SCIENCE 2024; 15:1467148. [PMID: 39600901 PMCID: PMC11588464 DOI: 10.3389/fpls.2024.1467148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Wall-associated kinases (WAKs) and WAK-likes (WAKLs) are transmembrane pectin receptors which have seen rising interest in recent years due to their roles in stress responses and developmental pathways. Consequently, the genes encoding these proteins are continuously identified, described and characterised across a wide variety of plant species. The primary goal of characterizing these genes is to classify, describe and infer cellular function, mostly through in silico methods. However, inconsistencies across characterizations have led to discrepancies in WAK/WAKL definitions resulting in sequences being classified as a WAK in one study but as a WAKL or not identified in another. The methods of characterization range widely with different combinations of analyses being conducted, to similar analyses but with varying inputs and parameters which are impacting the outputs. This review collates current knowledge about WAK/WAKL genes and the recent characterizations of this family and suggests a more robust strategy for increased consistency among the different gene members, as well as the characterizations thereof.
Collapse
Affiliation(s)
| | | | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry & Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology (BGM), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
7
|
Ni J, Dong Z, Qiao F, Zhou W, Cao A, Xing L. Phylogenetic Analysis of Wall-Associated Kinase Genes in Triticum Species and Characterization of TaWAK7 Involved in Wheat Powdery Mildew Resistance. PLANT DISEASE 2024; 108:1223-1235. [PMID: 37923976 DOI: 10.1094/pdis-06-23-1090-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Wall-associated kinases (WAKs), a group of receptor-like kinases, have been found to play important roles in defending against pathogens and in various developmental processes. However, the importance of this family in wheat remains largely unknown. Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt), which initiates infection on the cell surface and forms haustoria inside the cell; therefore, the defense to Bgt involves extracellular and subsequently intracellular signals. In this study, WAKs were identified genome-wide and analyzed phylogenetically, and then a transmembrane WAK gene that putatively participated in pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to Bgt was functionally and evolutionarily investigated. In total, 1,193 WAKs were identified from wheat and its Gramineae relatives. Phylogenetic analysis indicated that WAKs expanded through tandem duplication or segment duplication. TaWAK7, from chromosome 2A, was identified as a Bgt-inducible gene both in susceptible and resistant materials, but it showed distinct responsive patterns. Functional analysis showed that TaWAK7 was involved in both the basal and resistance gene-mediated resistances. The specific gene structures and protein characteristics of TaWAK7, along with its orthologs, were characterized both in subgenomes of Triticum spp. and in the A genome of multiple wheat accessions, which revealed that TaWAK7 orthologs underwent complex evolution with frequent gene fusion and domain deletion. In addition, three cytoplasmic proteins interacting with TaWAK7 were indicated by yeast two-hybrid and bimolecular fluorescence complementation assays. Binding of TaWAK7 with these proteins could change its subcellular localization from the plasma membrane to the cytoplasm. This study provides a better understanding of the evolution of WAKs at the genomic level and TaWAK7 at the gene level and provides useful clues for further investigation of how WAKs transmit the extracellular signals to the cytoplasm to activate defense responses.
Collapse
Affiliation(s)
- Jiayao Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Zhenjie Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Fangyuan Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Weihao Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
| | - Aizhong Cao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Liping Xing
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| |
Collapse
|
8
|
Mehtab-Singh, Tripathi RK, Bekele WA, Tinker NA, Singh J. Differential expression and global analysis of miR156/SQUAMOSA promoter binding-like proteins (SPL) module in oat. Sci Rep 2024; 14:9928. [PMID: 38688976 PMCID: PMC11061197 DOI: 10.1038/s41598-024-60739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
SQUAMOSA promoter binding-like proteins (SPLs) are important transcription factors that influence growth phase transition and reproduction in plants. SPLs are targeted by miR156 but the SPL/miR156 module is completely unknown in oat. We identified 28 oat SPL genes (AsSPLs) distributed across all 21 oat chromosomes except for 4C and 6D. The oat- SPL gene family represented six of eight SPL phylogenetic groups, with no AsSPLs in groups 3 and 7. A novel oat miR156 (AsmiR156) family with 21 precursors divided into 7 groups was characterized. A total of 16 AsSPLs were found to be targeted by AsmiR156. Intriguingly, AsSPL3s showed high transcript abundance during early inflorescence (GS-54), as compared to the lower abundance of AsmiR156, indicating their role in reproductive development. Unravelling the SPL/miR156 regulatory hub and alterations in expression patterns of AsSPLs could provide an essential toolbox for genetic improvement in the cultivated oat.
Collapse
Affiliation(s)
- Mehtab-Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Montreal, QC, H9X 3V9, Canada
| | - Rajiv K Tripathi
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Montreal, QC, H9X 3V9, Canada
| | - Wubishet A Bekele
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Nicholas A Tinker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Jaswinder Singh
- Plant Science Department, McGill University, 21111 Rue Lakeshore, Montreal, QC, H9X 3V9, Canada.
| |
Collapse
|
9
|
Hussain M, Javed MM, Sami A, Shafiq M, Ali Q, Mazhar HSUD, Tabassum J, Javed MA, Haider MZ, Hussain M, Sabir IA, Ali D. Genome-wide analysis of plant specific YABBY transcription factor gene family in carrot (Dacus carota) and its comparison with Arabidopsis. BMC Genom Data 2024; 25:26. [PMID: 38443818 PMCID: PMC10916311 DOI: 10.1186/s12863-024-01210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
YABBY gene family is a plant-specific transcription factor with DNA binding domain involved in various functions i.e. regulation of style, length of flowers, and polarity development of lateral organs in flowering plants. Computational methods were utilized to identify members of the YABBY gene family, with Carrot (Daucus carota) 's genome as a foundational reference. The structure of genes, location of the chromosomes, protein motifs and phylogenetic investigation, syntony and transcriptomic analysis, and miRNA targets were analyzed to unmask the hidden structural and functional characteristics YABBY gene family in Carrots. In the following research, it has been concluded that 11 specific YABBY genes irregularly dispersed on all 9 chromosomes and proteins assembled into five subgroups i.e. AtINO, AtCRC, AtYAB5, AtAFO, and AtYAB2, which were created on the well-known classification of Arabidopsis. The wide ranges of YABBY genes in carrots were dispersed due to segmental duplication, which was detected as prevalent when equated to tandem duplication. Transcriptomic analysis showed that one of the DcYABBY genes was highly expressed during anthocyanin pigmentation in carrot taproots. The cis-regulatory elements (CREs) analysis unveiled elements that particularly respond to light, cell cycle regulation, drought induce ability, ABA hormone, seed, and meristem expression. Furthermore, a relative study among Carrot and Arabidopsis genes of the YABBY family indicated 5 sub-families sharing common characteristics. The comprehensive evaluation of YABBY genes in the genome provides a direction for the cloning and understanding of their functional properties in carrots. Our investigations revealed genome-wide distribution and role of YABBY genes in the carrots with best-fit comparison to Arabidopsis thaliana.
Collapse
Affiliation(s)
- Mujahid Hussain
- Department of Horticulture, Faculty of Agriculture Sciences, University of the Punjab, Lahore P. O BOX, Lahore, 54590, Pakistan
| | - Muhammad Mubashar Javed
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Adnan Sami
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agriculture Sciences, University of the Punjab, Lahore P. O BOX, Lahore, 54590, Pakistan
| | - Qurban Ali
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan.
| | - Hafiz Sabah-Ud-Din Mazhar
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Javaria Tabassum
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Zeeshan Haider
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, P.O BOX, Lahore, 54590, Pakistan
| | - Muhammad Hussain
- Department of Horticulture, Faculty of Agriculture Sciences, University of the Punjab, Lahore P. O BOX, Lahore, 54590, Pakistan
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Ahmed J, Sajjad Y, Latif A, Lodhi MS, Huzafa M, Situ C, Ahmad R, Shah MM, Hassan A. Genome-wide identification and characterization of wall-associated kinases, molecular docking and polysaccharide elicitation of monoterpenoid indole alkaloids in micro-propagated Catharanthus roseus. JOURNAL OF PLANT RESEARCH 2024; 137:125-142. [PMID: 37962734 DOI: 10.1007/s10265-023-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023]
Abstract
Wall-associated kinases (WAKs) are a unique family of proteins that are predominantly localized on the plasma membrane and simultaneously bound to the cell wall. WAKs play a pivotal role in signal transduction to regulate growth, defense, and response to environmental stimuli in plants. These kinases have been identified and characterized in various plant species, however, similar information for Catharanthus roseus is scarce. C. roseus is an evergreen ornamental plant that produces a repertoire of biologically active compounds. The plant is best characterized for the production of antineoplastic monoterpenoid indole alkaloids (MIAs) namely vinblastine and vincristine. Owing to the diverse composition of phytochemicals, C. roseus is known as a "model non-model" plant for secondary metabolite research. Genome analyses showed 37 putative CrWAK genes present in C. roseus, largely localized on the plasma membrane. Phylogenetic analysis revealed six clusters of CrWAKs. Diverse cis-acting elements, including those involved in defense responses, were identified on the promotor regions of CrWAK genes. The highest binding affinity (- 12.6 kcal/mol) was noted for CrWAK-22 against tri-galacturonic acid. Tri-galacturonic acid stimulated 2.5-fold higher production of vinblastine, sixfold upregulation of the expression of ORCA3 transcription factor, and 6.14-fold upregulation of CrWAK-22 expression. Based on these results it was concluded that the expression of CrWAK genes induced by biotic elicitors may have an important role in the production of MIAs. The current findings may serve as a basis for functional characterization and mechanistic explanation of the role of CrWAK genes in the biosynthesis of MIAs upon elicitation.
Collapse
Affiliation(s)
- Jawad Ahmed
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Yasar Sajjad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Aasia Latif
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Mohammad Saeed Lodhi
- Department of Management Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Huzafa
- Department of Plant Sciences, Quaid-e-Azam University Islamabad, Islamabad, Pakistan
| | - Chen Situ
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, BT9 5DL, UK
| | - Raza Ahmad
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Maroof Shah
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Amjad Hassan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
| |
Collapse
|
11
|
Hu K, Dai Q, Ajayo BS, Wang H, Hu Y, Li Y, Huang H, Liu H, Liu Y, Wang Y, Gao L, Xie Y. Insights into ZmWAKL in maize kernel development: genome-wide investigation and GA-mediated transcription. BMC Genomics 2023; 24:760. [PMID: 38082218 PMCID: PMC10712088 DOI: 10.1186/s12864-023-09849-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The functional roles of the Wall Associated Kinase (WAK) and Wall Associated Kinase Like (WAKL) families in cellular expansion and developmental processes have been well-established. However, the molecular regulation of these kinases in maize development is limited due to the absence of comprehensive genome-wide studies. RESULTS Through an in-depth analysis, we identified 58 maize WAKL genes, and classified them into three distinct phylogenetic clusters. Moreover, structural prediction analysis showed functional conservation among WAKLs across maize. Promoter analysis uncovered the existence of cis-acting elements associated with the transcriptional regulation of ZmWAKL genes by Gibberellic acid (GA). To further elucidate the role of WAKL genes in maize kernels, we focused on three highly expressed genes, viz ZmWAKL38, ZmWAKL42 and ZmWAKL52. Co-expression analyses revealed that their expression patterns exhibited a remarkable correlation with GA-responsive transcription factors (TF) TF5, TF6, and TF8, which displayed preferential expression in kernels. RT-qPCR analysis validated the upregulation of ZmWAKL38, ZmWAKL42, ZmWAKL52, TF5, TF6, and TF8 following GA treatment. Additionally, ZmWAKL52 showed significant increase of transcription in the present of TF8, with ZmWAKL52 localizing in both the plasma membrane and cell wall. TF5 positively regulated ZmWAKL38, while TF6 positively regulated ZmWAKL42. CONCLUSIONS Collectively, these findings provide novel insights into the characterization and regulatory mechanisms of specific ZmWAKL genes involved in maize kernel development, offering prospects for their utilization in maize breeding programs.
Collapse
Affiliation(s)
- Kun Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Sinograin Chengdu Storage Research Institute Co.Ltd, Chengdu, 610091, China
| | - Qiao Dai
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Babatope Samuel Ajayo
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Wang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yangping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanhuan Huang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hanmei Liu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yinghong Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yayun Wang
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lei Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Xie
- National Demonstration Center for Experimental Crop Science Education, College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
12
|
Gandhi A, Oelmüller R. Emerging Roles of Receptor-like Protein Kinases in Plant Response to Abiotic Stresses. Int J Mol Sci 2023; 24:14762. [PMID: 37834209 PMCID: PMC10573068 DOI: 10.3390/ijms241914762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The productivity of plants is hindered by unfavorable conditions. To perceive stress signals and to transduce these signals to intracellular responses, plants rely on membrane-bound receptor-like kinases (RLKs). These play a pivotal role in signaling events governing growth, reproduction, hormone perception, and defense responses against biotic stresses; however, their involvement in abiotic stress responses is poorly documented. Plant RLKs harbor an N-terminal extracellular domain, a transmembrane domain, and a C-terminal intracellular kinase domain. The ectodomains of these RLKs are quite diverse, aiding their responses to various stimuli. We summarize here the sub-classes of RLKs based on their domain structure and discuss the available information on their specific role in abiotic stress adaptation. Furthermore, the current state of knowledge on RLKs and their significance in abiotic stress responses is highlighted in this review, shedding light on their role in influencing plant-environment interactions and opening up possibilities for novel approaches to engineer stress-tolerant crop varieties.
Collapse
Affiliation(s)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany;
| |
Collapse
|
13
|
Li X, Ou M, Li L, Li Y, Feng Y, Huang X, Baluška F, Shabala S, Yu M, Shi W, Wu F. The wall-associated kinase gene family in pea (Pisum sativum) and its function in response to B deficiency and Al toxicity. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154045. [PMID: 37356321 DOI: 10.1016/j.jplph.2023.154045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/18/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Plant cell walls are embedded in a pectin matrix which is physically linked with the wall-associated kinases (WAKs), a subfamily of receptor-like kinases that participate in the cell wall integrity (CWI) sensing. Since cell walls are also the main binding sites for boron (B) and aluminum (Al), WAK may be potentially associated with the regulation of plant responses to Al toxicity and B deficiency. Using pea as a model species, we have identified a total of 28 WAK genes in the genome and named them according to its chromosomal location. All the PsWAKs were phylogenetically grouped into three clades. Phylogenetic relationship and synteny analysis showed that the PsWAKs in pea and Glycine max or Medicago truncatula shared a relatively conserved evolutionary history. Protein domain, motif, and transmembrane analysis indicated that all PsWAK proteins were predicted to be localized to the plasma membrane, and most PsWAKs shared a similar structure to their homologs. The RNA-seq data showed that the expression pattern of WAK genes in response to B deficiency was similar to that of Al toxicity, with most of PsWAKs being up-regulated. The qRT-PCR results further confirmed that PsWAK5, PsWAK9 and PsWAK14 were more specific for both B-deficiency and Al toxicity, and the expression levels of PsWAK5, PsWAK9 and PsWAK14 were significantly higher in the Al-sensitive cultivar Hyogo than in the Al-resistant cultivar Alaska under Al toxicity. This study provided an important basis for the functional and evolutionary analysis of PsWAKs and linked them to responses to cell wall damage induced by B-deficiency and Al toxicity, suggesting that PsWAKs may play a key role in the perception of cell wall integrity under Al toxicity or B-deficiency, as well as in the regulation of Al tolerance in pea.
Collapse
Affiliation(s)
- Xuewen Li
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Meiyin Ou
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Li Li
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Yalin Li
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Yingming Feng
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Xin Huang
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115, Bonn, Germany
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China; School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
| | - Min Yu
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China
| | - Weiming Shi
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Feihua Wu
- International Research Centre for Environmental Membrane Biology& Department of Horticulture, Foshan University, 528000, China.
| |
Collapse
|
14
|
Wang Z, Ma Y, Chen M, Da L, Su Z, Zhang Z, Liu X. Comparative genomics analysis of WAK/WAKL family in Rosaceae identify candidate WAKs involved in the resistance to Botrytis cinerea. BMC Genomics 2023; 24:337. [PMID: 37337162 DOI: 10.1186/s12864-023-09371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Wall associated kinase (WAK) and WAK-like (WAKL) are typical pattern recognition receptors act as the first sentry of plant defense. But little of WAK/WAKL family is known in Rosaceae. RESULTS In this study, 131 WAK/WAKL genes from apple, peach and strawberry were identified using a bioinformatics approach. Together with 68 RcWAK/RcWAKL in rose, we performed a comparative analysis of 199 WAK/WAKL in four Rosaceae crops. The phylogenetic analysis divided all the WAK/WAKL into five clades. Among them, the cis-elements of Clade II and Clade V promoters were enriched in jasmonic acid (JA) signaling and abiotic stress, respectively. And this can also be verified by the rose transcriptome responding to different hormone treatments. WAK/WAKL families have experienced a considerable proportion of purifying selection during evolution, but still 26 amino acid sites evolved under positive selection, which focused on extracellular conserved domains. WAK/WAKL genes presented collinearity relationship within and between crops, throughout four crops we mined four orthologous groups (OGs). The WAK/WAKL genes in OG1 and OG4 were speculated to involve in plant-Botrytis cinerea interaction, which were validated in rose via VIGS as well as strawberry by qRT-PCR. CONCLUSIONS These results not only provide genetic resources and valuable information for the evolutionary relationship of WAK/WAKL gene family, but also offer a reference for future in-depth studies of Rosaceae WAK/WAKL genes.
Collapse
Affiliation(s)
- Zicheng Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meng Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lingling Da
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China.
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
15
|
Kong W, Shi J, Yang B, Yu S, Zhao P, Guo Z, Zhu H. Genome-Wide Analysis of the Wall-Associated Kinase ( WAK) Genes in Medicago truncatula and Functional Characterization of MtWAK24 in Response to Pathogen Infection. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091849. [PMID: 37176907 PMCID: PMC10180995 DOI: 10.3390/plants12091849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
The wall-associated kinases (WAKs) can perceive and transmit extracellular signals as one kind of unique receptor-like kinases (RLKs) involved in the regulation of cell expansion, pathogen resistance and abiotic stress tolerance. To understand their potential roles and screen some key candidates in Medicago truncatula (M. truncatula), genome-wide identification and characterization of MtWAKs were conducted in this study. A total of 54 MtWAK genes were identified and classified into four groups based on their protein domains. They were distributed on all chromosomes, while most of them were clustered on chromosome 1 and 3. The synteny analysis showed that 11 orthologous pairs were identified between M. truncatula and Arabidopsis thaliana (A. thaliana) and 31 pairs between M. truncatula and Glycine max (G. max). The phylogenetic analysis showed that WAK-RLKs were classified into five clades, and they exhibited a species-specific expansion. Most MtWAK-RLKs had similar exon-intron organization and motif distribution. Multiple cis-acting elements responsive to phytohormones, stresses, growth and development were observed in the promoter regions of MtWAK-RLKs. In addition, the expression patterns of MtWAK-RLKs varied with different plant tissues, developmental stages and biotic and abiotic stresses. Interestingly, plasm membrane localized MtWAK24 significantly inhibited Phytophthora infection in tobacco. The study provides valuable information for characterizing the molecular functions of MtWAKs in regulation of plant growth, development and stress tolerance in legume plants.
Collapse
Affiliation(s)
- Weiyi Kong
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Jia Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuhan Yu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengcheng Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Zhu
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Oelmüller R, Tseng YH, Gandhi A. Signals and Their Perception for Remodelling, Adjustment and Repair of the Plant Cell Wall. Int J Mol Sci 2023; 24:ijms24087417. [PMID: 37108585 PMCID: PMC10139151 DOI: 10.3390/ijms24087417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The integrity of the cell wall is important for plant cells. Mechanical or chemical distortions, tension, pH changes in the apoplast, disturbance of the ion homeostasis, leakage of cell compounds into the apoplastic space or breakdown of cell wall polysaccharides activate cellular responses which often occur via plasma membrane-localized receptors. Breakdown products of the cell wall polysaccharides function as damage-associated molecular patterns and derive from cellulose (cello-oligomers), hemicelluloses (mainly xyloglucans and mixed-linkage glucans as well as glucuronoarabinoglucans in Poaceae) and pectins (oligogalacturonides). In addition, several types of channels participate in mechanosensing and convert physical into chemical signals. To establish a proper response, the cell has to integrate information about apoplastic alterations and disturbance of its wall with cell-internal programs which require modifications in the wall architecture due to growth, differentiation or cell division. We summarize recent progress in pattern recognition receptors for plant-derived oligosaccharides, with a focus on malectin domain-containing receptor kinases and their crosstalk with other perception systems and intracellular signaling events.
Collapse
Affiliation(s)
- Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Yu-Heng Tseng
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Akanksha Gandhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Department of Plant Physiology, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
17
|
Das S, Singh D, Meena HS, Jha SK, Kumari J, Chinnusamy V, Sathee L. Long term nitrogen deficiency alters expression of miRNAs and alters nitrogen metabolism and root architecture in Indian dwarf wheat (Triticum sphaerococcum Perc.) genotypes. Sci Rep 2023; 13:5002. [PMID: 36973317 PMCID: PMC10043004 DOI: 10.1038/s41598-023-31278-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
The important roles of plant microRNAs (miRNAs) in adaptation to nitrogen (N) deficiency in different crop species especially cereals (rice, wheat, maize) have been under discussion since last decade with little focus on potential wild relatives and landraces. Indian dwarf wheat (Triticum sphaerococcum Percival) is an important landrace native to the Indian subcontinent. Several unique features, especially high protein content and resistance to drought and yellow rust, make it a very potent landrace for breeding. Our aim in this study is to identify the contrasting Indian dwarf wheat genotypes based on nitrogen use efficiency (NUE) and nitrogen deficiency tolerance (NDT) traits and the associated miRNAs differentially expressed under N deficiency in selected genotypes. Eleven Indian dwarf wheat genotypes and a high NUE bread wheat genotype (for comparison) were evaluated for NUE under control and N deficit field conditions. Based on NUE, selected genotypes were further evaluated under hydroponics and miRNome was compared by miRNAseq under control and N deficit conditions. Among the identified, differentially expressed miRNAs in control and N starved seedlings, the target gene functions were associated with N metabolism, root development, secondary metabolism and cell-cycle associated pathways. The key findings on miRNA expression, changes in root architecture, root auxin abundance and changes in N metabolism reveal new information on the N deficiency response of Indian dwarf wheat and targets for genetic improvement of NUE.
Collapse
Affiliation(s)
- Samrat Das
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | - Hari S Meena
- Division of Plant Physiology, ICAR-IARI, New Delhi, India
| | | | - Jyoti Kumari
- Division of Germplasm Evaluation, ICAR-NBPGR, New Delhi, India
| | | | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-IARI, New Delhi, India.
| |
Collapse
|
18
|
Zhong X, Li J, Yang L, Wu X, Xu H, Hu T, Wang Y, Wang Y, Wang Z. Genome-wide identification and expression analysis of wall-associated kinase (WAK) and WAK-like kinase gene family in response to tomato yellow leaf curl virus infection in Nicotiana benthamiana. BMC PLANT BIOLOGY 2023; 23:146. [PMID: 36927306 PMCID: PMC10021985 DOI: 10.1186/s12870-023-04112-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Tomato yellow leaf curl virus (TYLCV) is a major monopartite virus in the family Geminiviridae and has caused severe yield losses in tomato and tobacco planting areas worldwide. Wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) are a subfamily of the receptor-like kinase family implicated in cell wall signaling and transmitting extracellular signals to the cytoplasm, thereby regulating plant growth and development and resistance to abiotic and biotic stresses. Recently, many studies on WAK/WAKL family genes have been performed in various plants under different stresses; however, identification and functional survey of the WAK/WAKL gene family of Nicotiana benthamiana have not yet been performed, even though its genome has been sequenced for several years. Therefore, in this study, we aimed to identify the WAK/WAKL gene family in N. benthamiana and explore their possible functions in response to TYLCV infection. RESULTS Thirty-eight putative WAK/WAKL genes were identified and named according to their locations in N. benthamiana. Phylogenetic analysis showed that NbWAK/WAKLs are clustered into five groups. The protein motifs and gene structure compositions of NbWAK/WAKLs appear to be highly conserved among the phylogenetic groups. Numerous cis-acting elements involved in phytohormone and/or stress responses were detected in the promoter regions of NbWAK/WAKLs. Moreover, gene expression analysis revealed that most of the NbWAK/WAKLs are expressed in at least one of the examined tissues, suggesting their possible roles in regulating the growth and development of plants. Virus-induced gene silencing and quantitative PCR analyses demonstrated that NbWAK/WAKLs are implicated in regulating the response of N. benthamiana to TYLCV, ten of which were dramatically upregulated in locally or systemically infected leaves of N. benthamiana following TYLCV infection. CONCLUSIONS Our study lays an essential base for the further exploration of the potential functions of NbWAK/WAKLs in plant growth and development and response to viral infections in N. benthamiana.
Collapse
Affiliation(s)
- Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Jiapeng Li
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Xiaoyin Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Hong Xu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yajun Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| |
Collapse
|
19
|
A Novel Wall-Associated Kinase TaWAK-5D600 Positively Participates in Defense against Sharp Eyespot and Fusarium Crown Rot in Wheat. Int J Mol Sci 2023; 24:ijms24055060. [PMID: 36902488 PMCID: PMC10003040 DOI: 10.3390/ijms24055060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Sharp eyespot and Fusarium crown rot, mainly caused by soil-borne fungi Rhizoctonia cerealis and Fusarium pseudograminearum, are destructive diseases of major cereal crops including wheat (Triticum aestivum). However, the mechanisms underlying wheat-resistant responses to the two pathogens are largely elusive. In this study, we performed a genome-wide analysis of wall-associated kinase (WAK) family in wheat. As a result, a total of 140 TaWAK (not TaWAKL) candidate genes were identified from the wheat genome, each of which contains an N-terminal signal peptide, a galacturonan binding domain, an EGF-like domain, a calcium binding EGF domain (EGF-Ca), a transmembrane domain, and an intracellular Serine/Threonine protein kinase domain. By analyzing the RNA-sequencing data of wheat inoculated with R. cerealis and F. pseudograminearum, we found that transcript abundance of TaWAK-5D600 (TraesCS5D02G268600) on chromosome 5D was significantly upregulated, and that its upregulated transcript levels in response to both pathogens were higher compared with other TaWAK genes. Importantly, knock-down of TaWAK-5D600 transcript impaired wheat resistance against the fungal pathogens R. cerealis and F. pseudograminearum, and significantly repressed expression of defense-related genes in wheat, TaSERK1, TaMPK3, TaPR1, TaChitinase3, and TaChitinase4. Thus, this study proposes TaWAK-5D600 as a promising gene for improving wheat broad resistance to sharp eyespot and Fusarium crown rot (FCR) in wheat.
Collapse
|
20
|
Wang D, Qin L, Wu M, Zou W, Zang S, Zhao Z, Lin P, Guo J, Wang H, Que Y. Identification and characterization of WAK gene family in Saccharum and the negative roles of ScWAK1 under the pathogen stress. Int J Biol Macromol 2022; 224:1-19. [PMID: 36481328 DOI: 10.1016/j.ijbiomac.2022.11.300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Wall-associated kinase (WAK) is widely involved in signal transduction, reproductive growth, responses to pathogen infection and metal ion stress in plants. In this study, 19, 12, and 37 SsWAK genes were identified in Saccharum spontaneum, Saccharum hybrid and Sorghum bicolor, respectively. Phylogenetic tree showed that they could be divided into three groups. These WAK genes contained multiple cis-acting elements related to stress, growth and hormone response. RNA-seq analysis demonstrated that SsWAK genes were constitutively expressed in different sugarcane tissues and involved in response to smut pathogen (Sporisorium scitamineum) stress. Additionally, ScWAK1 (GenBank Accession No. OP479864), was then isolated from sugarcane cultivar ROC22. It was highly expressed in leaves and roots and its expression could be induced under SA and MeJA stress. Besides, ScWAK1 was significantly downregulated in both smut-resistant and susceptible sugarcane cultivars in response to S. scitamineum infection. ScWAK1 was a membrane protein without self-activating activity. Furthermore, transient expression of ScWAK1 in Nicotiana benthamiana enhanced the susceptibility of tobacco to the inoculation of Ralstonia solanacearum and Fusarium solani var. coeruleum, suggesting its negative role in disease resistance. The present study reveals the origin, distribution and evolution of WAK gene family and provides potential gene resources for sugarcane molecular breeding.
Collapse
Affiliation(s)
- Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Liqian Qin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Mingxing Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhennan Zhao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jinlong Guo
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hengbo Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
21
|
Akbari M, Sabouri H, Sajadi SJ, Yarahmadi S, Ahangar L, Abedi A, Katouzi M. Mega Meta-QTLs: A Strategy for the Production of Golden Barley (Hordeum vulgare L.) Tolerant to Abiotic Stresses. Genes (Basel) 2022; 13:genes13112087. [PMID: 36360327 PMCID: PMC9690463 DOI: 10.3390/genes13112087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Abiotic stresses cause a significant decrease in productivity and growth in agricultural products, especially barley. Breeding has been considered to create resistance against abiotic stresses. Pyramiding genes for tolerance to abiotic stresses through selection based on molecular markers connected to Mega MQTLs of abiotic tolerance can be one of the ways to reach Golden Barley. In this study, 1162 original QTLs controlling 116 traits tolerant to abiotic stresses were gathered from previous research and mapped from various populations. A consensus genetic map was made, including AFLP, SSR, RFLP, RAPD, SAP, DArT, EST, CAPS, STS, RGA, IFLP, and SNP markers based on two genetic linkage maps and 26 individual linkage maps. Individual genetic maps were created by integrating individual QTL studies into the pre-consensus map. The consensus map covered a total length of 2124.43 cM with an average distance of 0.25 cM between markers. In this study, 585 QTLs and 191 effective genes related to tolerance to abiotic stresses were identified in MQTLs. The most overlapping QTLs related to tolerance to abiotic stresses were observed in MQTL6.3. Furthermore, three MegaMQTL were identified, which explained more than 30% of the phenotypic variation. MQTLs, candidate genes, and linked molecular markers identified are essential in barley breeding and breeding programs to develop produce cultivars resistant to abiotic stresses.
Collapse
Affiliation(s)
- Mahjoubeh Akbari
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Hossein Sabouri
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| | - Sayed Javad Sajadi
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Saeed Yarahmadi
- Horticulture-Crops Reseaech Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan 4969186951, Iran
| | - Leila Ahangar
- Department of Plant Production, Collage of Agriculture Science and Natural Resource, Gonbad Kavous University, Gonbad-e Kavus 4971799151, Iran
| | - Amin Abedi
- Department of Plant Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht 4199613776, Iran
| | - Mahnaz Katouzi
- Crop Génome Dynamics Group, Agroscope Changins, 1260 Nyon, Switzerland
- Correspondence: (H.S.); (M.K.); Tel.: +98-9111438917 (H.S.); +41-779660486 (M.K.)
| |
Collapse
|
22
|
Sipahi H, Whyte TD, Ma G, Berkowitz G. Genome-Wide Identification and Expression Analysis of Wall-Associated Kinase (WAK) Gene Family in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2022; 11:2703. [PMID: 36297727 PMCID: PMC9609219 DOI: 10.3390/plants11202703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Wall-associated kinases (WAKs) are receptors that bind pectin or small pectic fragments in the cell wall and play roles in cell elongation and pathogen response. In the Cannabis sativa (Cs) genome, 53 CsWAK/CsWAKL (WAK-like) protein family members were identified and characterized; their amino acid lengths and molecular weights varied from 582 to 983, and from 65.6 to 108.8 kDa, respectively. They were classified into four main groups by a phylogenetic tree. Out of the 53 identified CsWAK/CsWAKL genes, 23 CsWAK/CsWAKL genes were unevenly distributed among six chromosomes. Two pairs of genes on chromosomes 4 and 7 have undergone duplication. The number of introns and exons among CsWAK/CsWAKL genes ranged from 1 to 6 and from 2 to 7, respectively. The promoter regions of 23 CsWAKs/CsWAKLs possessed diverse cis-regulatory elements that are involved in light, development, environmental stress, and hormone responsiveness. The expression profiles indicated that our candidate genes (CsWAK1, CsWAK4, CsWAK7, CsWAKL1, and CsWAKL7) are expressed in leaf tissue. These genes exhibit different expression patterns than their homologs in other plant species. These initial findings are useful resources for further research work on the potential roles of CsWAK/CsWAKL in cellular signalling during development, environmental stress conditions, and hormone treatments.
Collapse
Affiliation(s)
- Hülya Sipahi
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Eskişehir Osmangazi, Eskişehir 26160, Türkiye
| | - Terik Djabeng Whyte
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Eskişehir Osmangazi, Eskişehir 26160, Türkiye
| | - Gang Ma
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Gerald Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
23
|
McCombe CL, Greenwood JR, Solomon PS, Williams SJ. Molecular plant immunity against biotrophic, hemibiotrophic, and necrotrophic fungi. Essays Biochem 2022; 66:581-593. [PMID: 35587147 PMCID: PMC9528087 DOI: 10.1042/ebc20210073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Pathogenic fungi use diverse infection strategies to obtain nutrients from plants. Biotrophic fungi feed only on living plant tissue, whereas necrotrophic fungi kill host cells to extract nutrients. To prevent disease, plants need to distinguish between pathogens with different life cycles, as a successful defense against a biotroph, which often involves programmed cell-death around the site of infection, is not an appropriate response to some necrotrophs. Plants utilize a vast collection of extracellular and intracellular receptors to detect the signatures of pathogen attack. In turn, pathogens are under strong selection to mask or avoid certain receptor responses while enhancing or manipulating other receptor responses to promote virulence. In this review, we focus on the plant receptors involved in resistance responses to fungal pathogens and highlight, with examples, how the infection strategy of fungal pathogens can determine if recognition responses are effective at preventing disease.
Collapse
Affiliation(s)
- Carl L McCombe
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Peter S Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
24
|
Qin T, Kazim A, Wang Y, Richard D, Yao P, Bi Z, Liu Y, Sun C, Bai J. Root-Related Genes in Crops and Their Application under Drought Stress Resistance—A Review. Int J Mol Sci 2022; 23:ijms231911477. [PMID: 36232779 PMCID: PMC9569943 DOI: 10.3390/ijms231911477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crop growth and development are frequently affected by biotic and abiotic stresses. The adaptation of crops to stress is mostly achieved by regulating specific genes. The root system is the primary organ for nutrient and water uptake, and has an important role in drought stress response. The improvement of stress tolerance to increase crop yield potential and yield stability is a traditional goal of breeders in cultivar development using integrated breeding methods. An improved understanding of genes that control root development will enable the formulation of strategies to incorporate stress-tolerant genes into breeding for complex agronomic traits and provide opportunities for developing stress-tolerant germplasm. We screened the genes associated with root growth and development from diverse plants including Arabidopsis, rice, maize, pepper and tomato. This paper provides a theoretical basis for the application of root-related genes in molecular breeding to achieve crop drought tolerance by the improvement of root architecture.
Collapse
Affiliation(s)
- Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ali Kazim
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Dormatey Richard
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (C.S.); (J.B.); Tel.: +86-189-9319-8496 (C.S.); +86-181-0942-4020 (J.B.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (C.S.); (J.B.); Tel.: +86-189-9319-8496 (C.S.); +86-181-0942-4020 (J.B.)
| |
Collapse
|
25
|
Baez LA, Tichá T, Hamann T. Cell wall integrity regulation across plant species. PLANT MOLECULAR BIOLOGY 2022; 109:483-504. [PMID: 35674976 PMCID: PMC9213367 DOI: 10.1007/s11103-022-01284-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/05/2022] [Indexed: 05/05/2023]
Abstract
Plant cell walls are highly dynamic and chemically complex structures surrounding all plant cells. They provide structural support, protection from both abiotic and biotic stress as well as ensure containment of turgor. Recently evidence has accumulated that a dedicated mechanism exists in plants, which is monitoring the functional integrity of cell walls and initiates adaptive responses to maintain integrity in case it is impaired during growth, development or exposure to biotic and abiotic stress. The available evidence indicates that detection of impairment involves mechano-perception, while reactive oxygen species and phytohormone-based signaling processes play key roles in translating signals generated and regulating adaptive responses. More recently it has also become obvious that the mechanisms mediating cell wall integrity maintenance and pattern triggered immunity are interacting with each other to modulate the adaptive responses to biotic stress and cell wall integrity impairment. Here we will review initially our current knowledge regarding the mode of action of the maintenance mechanism, discuss mechanisms mediating responses to biotic stresses and highlight how both mechanisms may modulate adaptive responses. This first part will be focused on Arabidopsis thaliana since most of the relevant knowledge derives from this model organism. We will then proceed to provide perspective to what extent the relevant molecular mechanisms are conserved in other plant species and close by discussing current knowledge of the transcriptional machinery responsible for controlling the adaptive responses using selected examples.
Collapse
Affiliation(s)
- Luis Alonso Baez
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Tereza Tichá
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
26
|
Xia X, Zhang X, Zhang Y, Wang L, An Q, Tu Q, Wu L, Jiang P, Zhang P, Yu L, Li G, He Y. Characterization of the WAK Gene Family Reveals Genes for FHB Resistance in Bread Wheat (Triticum aestivum L.). Int J Mol Sci 2022; 23:ijms23137157. [PMID: 35806165 PMCID: PMC9266398 DOI: 10.3390/ijms23137157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Wall-associated kinases (WAKs) are important receptor-like proteins that play major roles in plant defense against pathogens. Fusarium head blight (FHB), one of the most widespread and devastating crop diseases, reduces wheat yield and leads to quality deterioration. Although WAK gene families have been studied in many plants, systematic research on bread wheat (Triticum aestivum) and its role in FHB resistance, in particular, is lacking. In this study, we identified and characterized 320 genes of the TaWAK family in wheat distributed across all chromosomes except 4B and divided them into three phylogenetic groups. Duplication and synteny analyses provided valuable information on the evolutionary characteristics of the TaWAK genes. The gene expression pattern analysis suggested that TaWAK genes play diverse roles in plant biological processes and that at least 30 genes may be involved in the response to Fusarium infection in wheat spikes, with most of the genes contributing to pectin- and chitin-induced defense pathways. Furthermore, 45 TaWAK genes were identified within 17 hcmQTLs that are related to wheat FHB resistance. Our findings provide potential candidate genes for improving FHB resistance and insights into the future functional analysis of TaWAK genes in wheat.
Collapse
Affiliation(s)
- Xiaobo Xia
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Yicong Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lirong Wang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qi An
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiang Tu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Wu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Peng Jiang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Peng Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Lixuan Yu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
| | - Gang Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (G.L.); (Y.H.)
| | - Yi He
- CIMMYT-JAAS Joint Center for Wheat Diseases, Key Laboratory of Germplasm Innovation in Downstream of Huaihe River (Nanjing), Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (X.X.); (X.Z.); (Y.Z.); (L.W.); (Q.A.); (Q.T.); (L.W.); (P.J.); (P.Z.); (L.Y.)
- Correspondence: (G.L.); (Y.H.)
| |
Collapse
|
27
|
Guo S, Zhou G, Wang J, Lu X, Zhao H, Zhang M, Guo X, Zhang Y. High-Throughput Phenotyping Accelerates the Dissection of the Phenotypic Variation and Genetic Architecture of Shank Vascular Bundles in Maize (Zea mays L.). PLANTS 2022; 11:plants11101339. [PMID: 35631765 PMCID: PMC9145235 DOI: 10.3390/plants11101339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022]
Abstract
The vascular bundle of the shank is an important ‘flow’ organ for transforming maize biological yield to grain yield, and its microscopic phenotypic characteristics and genetic analysis are of great significance for promoting the breeding of new varieties with high yield and good quality. In this study, shank CT images were obtained using the standard process for stem micro-CT data acquisition at resolutions up to 13.5 μm. Moreover, five categories and 36 phenotypic traits of the shank including related to the cross-section, epidermis zone, periphery zone, inner zone and vascular bundle were analyzed through an automatic CT image process pipeline based on the functional zones. Next, we analyzed the phenotypic variations in vascular bundles at the base of the shank among a group of 202 inbred lines based on comprehensive phenotypic information for two environments. It was found that the number of vascular bundles in the inner zone (IZ_VB_N) and the area of the inner zone (IZ_A) varied the most among the different subgroups. Combined with genome-wide association studies (GWAS), 806 significant single nucleotide polymorphisms (SNPs) were identified, and 1245 unique candidate genes for 30 key traits were detected, including the total area of vascular bundles (VB_A), the total number of vascular bundles (VB_N), the density of the vascular bundles (VB_D), etc. These candidate genes encode proteins involved in lignin, cellulose synthesis, transcription factors, material transportation and plant development. The results presented here will improve the understanding of the phenotypic traits of maize shank and provide an important phenotypic basis for high-throughput identification of vascular bundle functional genes of maize shank and promoting the breeding of new varieties with high yield and good quality.
Collapse
Affiliation(s)
- Shangjing Guo
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
| | - Guoliang Zhou
- College of Agronomy, Liaocheng University, Liaocheng 252059, China; (S.G.); (G.Z.)
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Jinglu Wang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Huan Zhao
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Minggang Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| | - Ying Zhang
- Beijing Key Lab of Digital Plant, Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.W.); (X.L.); (H.Z.); (M.Z.)
- Correspondence: (X.G.); (Y.Z.)
| |
Collapse
|
28
|
Toward the development of Ac/Ds transposon-mediated gene tagging system for functional genomics in oat (Avena sativa L.). Funct Integr Genomics 2022; 22:669-681. [PMID: 35467221 DOI: 10.1007/s10142-022-00861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/04/2022]
Abstract
Cultivated oat (Avena sativa L.) is an important cereal grown worldwide due to its multifunctional uses for animal feed and human food. Oat has lagged behind other cereals in the genetic and genomic studies attributed to its large and complex genomes. Transposon-based genome characterization has been utilized successfully for identifying and determining gene function in large genome cereals. To develop gene tagging and gene-editing resources for oat, maize Activator (Ac) and Dissociation (Ds) transposons were introduced into the oat genome using the biolistic delivery system. A total of 2035 oat calli were bombarded and twenty-four independent, stable transgenic events were obtained. Transformation frequencies were up to 19.0%, and 1.9% for bialaphos and hygromycin selection, respectively. Re-mobilization of the non-autonomous Ds element, by introducing Ac transposase source, led to a transposition frequency up to 16.8%. The properties of ten unique flanking sequences have been characterized to reveal the Ds-tagged sites in the oat genome. Genes at Ds insertion sites showed homology to gibberellin 20-oxidase 3, (1,3;1,4)-beta-D-glucan synthase, and aspartate kinase. This Ac/Ds transposon-based gene tagging system could facilitate and expedite functional genomic studies in oat.
Collapse
|
29
|
Nadeem M, Wu J, Ghaffari H, Kedir AJ, Saleem S, Mollier A, Singh J, Cheema M. Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. FRONTIERS IN PLANT SCIENCE 2022; 13:804058. [PMID: 35371179 PMCID: PMC8965363 DOI: 10.3389/fpls.2022.804058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Being a macronutrient, phosphorus (P) is the backbone to complete the growth cycle of plants. However, because of low mobility and high fixation, P becomes the least available nutrient in podzolic soils; hence, enhancing phosphorus use efficiency (PUE) can play an important role in different cropping systems/crop production practices to meet ever-increasing demands in food, fiber, and fuel. Additionally, the rapidly decreasing mineral phosphate rocks/stocks forced to explore alternative resources and methods to enhance PUE either through improved seed P reserves and their remobilization, P acquisition efficiency (PAE), or plant's internal P utilization efficiency (IPUE) or both for sustainable P management strategies. The objective of this review article is to explore and document important domains to enhance PUE in crop plants grown on Podzol in a boreal agroecosystem. We have discussed P availabilities in podzolic soils, root architecture and morphology, root exudates, phosphate transporters and their role in P uptake, different contributors to enhance PAE and IPUE, and strategies to improve plant PUE in crops grown on podzolic soils deficient in P and acidic in nature.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Jiaxu Wu
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | | | - Amana Jemal Kedir
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
- Environmental Science Program, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shamila Saleem
- Department of Agriculture Extension, Government of Punjab, Khanewal, Pakistan
| | - Alain Mollier
- INRAE, UMR 1391 ISPA, Bordeaux Science Agro, Villenave d'Ornon, France
| | - Jaswinder Singh
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL, Canada
| |
Collapse
|
30
|
Role of Wheat Phosphorus Starvation Tolerance 1 Genes in Phosphorus Acquisition and Root Architecture. Genes (Basel) 2022; 13:genes13030487. [PMID: 35328041 PMCID: PMC8950872 DOI: 10.3390/genes13030487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
The wheat plant requires elevated phosphorus levels for its normal growth and yield, but continuously depleting non-renewable phosphorus reserves in the soil is one of the biggest challenges in agricultural production worldwide. The Phosphorus Starvation Tolerance 1 (PSTOL1) gene has been reported to play a key role in efficient P uptake, deeper rooting, and high yield in rice. However, the function of the PSTOL1 gene in wheat is still unclear. In this study, a total of 22 PSTOL1 orthologs were identified in the wheat genome, and found that wheat PSTOL1 orthologs are unevenly distributed on chromosomes, and these genes were under strong purifying selection. Under different phosphorus regimes, wheat PSTOL1 genes showed differential expression patterns in different tissues. These results strengthen the classification of Pakistan-13 as a P-efficient cultivar and Shafaq-06 as a P-inefficient cultivar. Phenotypic characterization demonstrated that Pakistan-13 wheat cultivar has significantly increased P uptake, root length, root volume, and root surface area compared to Shafaq-06. Some wheat PSTOL1 orthologs are co-localized with phosphorus starvation’s related quantitative trait loci (QTLs), suggesting their potential role in phosphorus use efficiency. Altogether, these results highlight the role of the wheat PSTOL1 genes in wheat P uptake, root architecture, and efficient plant growth. This comprehensive study will be helpful for devising sustainable strategies for wheat crop production and adaptation to phosphorus insufficiency.
Collapse
|
31
|
Li M, Ma J, Liu H, Ou M, Ye H, Zhao P. Identification and Characterization of Wall-Associated Kinase (WAK) and WAK-like (WAKL) Gene Family in Juglans regia and Its Wild Related Species Juglans mandshurica. Genes (Basel) 2022; 13:genes13010134. [PMID: 35052474 PMCID: PMC8775259 DOI: 10.3390/genes13010134] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 12/10/2022] Open
Abstract
Wall-associated kinase (WAK) and WAK-like kinase (WAKL) are receptor-like kinases (RLKs), which play important roles in signal transduction between the cell wall and the cytoplasm in plants. WAK/WAKLs have been studied in many plants, but were rarely studied in the important economic walnut tree. In this study, 27 and 14 WAK/WAKL genes were identified in Juglans regia and its wild related species Juglans mandshurica, respectively. We found tandem duplication might play a critical role in the expansion of WAK/WAKL gene family in J. regia, and most of the WAK/WAKL homologous pairs underwent purified selection during evolution. All WAK/WAKL proteins have the extracellular WAK domain and the cytoplasmic protein kinase domain, and the latter was more conserved than the former. Cis-acting elements analysis showed that WAK/WAKL might be involved in plant growth and development, plant response to abiotic stress and hormones. Gene expression pattern analysis further indicated that most WAK/WAKL genes in J. regia might play a role in the development of leaves and be involved in plant response to biotic stress. Our study provides a new perspective for the evolutionary analysis of gene families in tree species and also provides potential candidate genes for studying WAK/WAKL gene function in walnuts.
Collapse
|
32
|
Stephens C, Hammond-Kosack KE, Kanyuka K. WAKsing plant immunity, waning diseases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:22-37. [PMID: 34520537 DOI: 10.1093/jxb/erab422] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/11/2021] [Indexed: 05/02/2023]
Abstract
With the requirement to breed more productive crop plants in order to feed a growing global population, compounded by increasingly widespread resistance to pesticides exhibited by pathogens, plant immunity is becoming an increasingly important area of research. Of the genes that contribute to disease resistance, the wall-associated receptor-like kinases (WAKs) are increasingly shown to play a major role, in addition to their contribution to plant growth and development or tolerance to abiotic stresses. Being transmembrane proteins, WAKs form a central pillar of a plant cell's ability to monitor and interact with the extracellular environment. Found in both dicots and monocots, WAKs have been implicated in defence against pathogens with diverse lifestyles and contribute to plant immunity in a variety of ways. Whilst some act as cell surface-localized immune receptors recognizing either pathogen- or plant-derived invasion molecules (e.g. effectors or damage-associated molecular patterns, respectively), others promote innate immunity through cell wall modification and strengthening, thus limiting pathogen intrusion. The ability of some WAKs to provide both durable resistance against pathogens and other agronomic benefits makes this gene family important targets in the development of future crop ideotypes and important to a greater understanding of the complexity and robustness of plant immunity.
Collapse
Affiliation(s)
- Christopher Stephens
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kim E Hammond-Kosack
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
| |
Collapse
|
33
|
Kadoll SK, Zhou Z, Dhindsa R, Lemaux P, Buchanan BB, Singh J. Interplay of starch debranching enzyme and its inhibitor is mediated by Redox-Activated SPL transcription factor. Comput Struct Biotechnol J 2022; 20:5342-5349. [PMID: 36212539 PMCID: PMC9522876 DOI: 10.1016/j.csbj.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
We have first time described that pullulanase inhibitor is under control of SPL transcriptional factor in barley. SPL3 mediated transcriptional regulation of pullulanase inhibitor is redox-dependent. Antagonistic relationship between pullulanase and its inhibitors is epigenetically guided via miR156 targeted SPL3.
The germination process is of central importance across the cultivated species involving several key enzymes for mobilization of stored food reserves. Pullulanase (PUL), a starch-debranching enzyme, plays an important role in mobilizing stored endosperm food reserves during germination. Pullulanase inhibitor (PULI) hinders PUL’s activity through an unknown mechanism. Barley has one PUL and two PULI genes. During the time-dependent processes of seed germination, only PULI-1 expression shows an antagonistic relationship with that of PUL. Our data have indicated that the expression of PULI-1 is modulated by SPL (Squamosa-promoter-binding Protein Like) transcription factors, known to be targeted by miR156. We show that the binding of recombinant HvSPL3 protein to the PULI-1 promoter occurs under reducing, but not under oxidizing conditions. Replacement of Cys residues with threonine in HvSPL3 abolishes the binding, indicating an essential role of the redox state in the expression of PULI. Our findings may have important implications for the industrial use of starch.
Collapse
Affiliation(s)
- Sukhjiwan K. Kadoll
- Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Zhou Zhou
- Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Rajinder Dhindsa
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Peggy Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Bob B. Buchanan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Jaswinder Singh
- Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
- Corresponding author.
| |
Collapse
|
34
|
Liu X, Wang Z, Tian Y, Zhang S, Li D, Dong W, Zhang C, Zhang Z. Characterization of wall-associated kinase/wall-associated kinase-like (WAK/WAKL) family in rose (Rosa chinensis) reveals the role of RcWAK4 in Botrytis resistance. BMC PLANT BIOLOGY 2021; 21:526. [PMID: 34758750 PMCID: PMC8582219 DOI: 10.1186/s12870-021-03307-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Wall-associated kinase (WAK)/WAK-like (WAKL) is one of the subfamily of receptor like kinases (RLK). Although previous studies reported that WAK/WAKL played an important role in plant cell elongation, response to biotic and abiotic stresses, there are no systematic studies on RcWAK/RcWAKL in rose. RESULTS In this study, we identified a total of 68 RcWAK/RcWAKL gene family members within rose (Rosa chinensis) genome. The RcWAKs contained the extracellular galacturonan-binding domain and calcium-binding epidermal growth factor (EGF)-like domain, as well as an intracellular kinase domains. The RcWAKLs are missing either calcium-binding EGF-like domain or the galacturonan-binding domain in their extracellular region. The phylogenetic analysis showed the RcWAK/RcWAKL gene family has been divided into five groups, and these RcWAK/RcWAKL genes were unevenly distributed on the 7 chromosomes of rose. 12 of RcWAK/RcWAKL genes were significantly up-regulated by Botrytis cinerea-inoculated rose petals, where RcWAK4 was the most strongly expressed. Virus induced gene silencing of RcWAK4 increased the rose petal sensitivity to B. cinerea. The results indicated RcWAK4 is involved in the resistance of rose petal against B. cinerea. CONCLUSION Our study provides useful information to further investigate the function of the RcWAK/RcWAKL gene family and breeding research for resistance to B. cinerea in rose.
Collapse
Affiliation(s)
- Xintong Liu
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Zicheng Wang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Yu Tian
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Shiya Zhang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Dandan Li
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Wenqi Dong
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China
| | - Changqing Zhang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China.
| | - Zhao Zhang
- Department of Ornamental Horticulture, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Yuanmingyuan Xilu 2, Beijing, 100193, China.
| |
Collapse
|
35
|
Zhang Z, Ma W, Ren Z, Wang X, Zhao J, Pei X, Liu Y, He K, Zhang F, Huo W, Li W, Yang D, Ma X. Characterization and expression analysis of wall-associated kinase (WAK) and WAK-like family in cotton. Int J Biol Macromol 2021; 187:867-879. [PMID: 34339786 DOI: 10.1016/j.ijbiomac.2021.07.163] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
The wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) form a group of receptor-like kinases (RLKs) with extracellular domains tightly linked to the cell wall. The WAKs/WAKLs have been known to be involved in plant growth, development, and stress responses. However, the functions of WAKs/WAKLs are less well known in cotton. In this study, 58, 66, and 99 WAK/WAKL genes were identified in Gossypium arboreum, G. raimondii, and G. hirsutum, respectively. Phylogenetic analysis showed they were classified into five groups, with two groups specific to cotton. Collinearity analysis revealed that segmental and tandem duplications resulted in expansion of the WAK/WAKL gene family in cotton. Moreover, the Ka/Ks ratios indicated this family was exposed to purifying selection pressure during evolution. The structures of the GhWAK/WAKL genes and encoded proteins suggested the functions of WAKs/WAKLs in cotton were conserved. Transient expression of four WAK/WAKL-GFP fusion constructs in Arabidopsis protoplasts indicated that they were localized on the plasma membrane. The cis-elements in the GhWAK/WAKL promoters were responsive to multiple phytohormones and abiotic stresses. Expression profiling showed that GhWAK/WAKL genes were induced by various abiotic stresses. This study provides insights into the evolution of WAK/WAKL genes and presents fundamental information for further analysis in cotton.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenyu Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenqi Huo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton of the Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
36
|
Zhang H, Li H, Zhang X, Yan W, Deng P, Zhang Y, Peng S, Wang Y, Wang C, Ji W. Wall-associated Receptor Kinase and The Expression Profiles in Wheat Responding to Fungal Stress.. [PMID: 0 DOI: 10.1101/2021.07.11.451968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
AbstractCell wall-associated kinases (WAKs), which are encoded by conserved gene families in plants, are crucial for development and responses to diverse stresses. However, the wheat (Triticum aestivum L.) WAKs have not been systematically classified, especially those involved in protecting plants from disease. Here, we classified 129 WAK proteins (encoded by 232 genes) and 75 WAK-Like proteins (WAKLs; encoded by 109 genes) into four groups, via a phylogenetic analysis. An examination of protein sequence alignment revealed diversity in the GUB-domain of WAKs structural organization, but it was usually characterized by a PYPFG motif followed by CxGxGCC motifs, while the EGF-domain was usually initiated with a YAC motif, and eight cysteine residues were spliced by GNPY motif. The expression profiles of WAK-encoding homologous genes varied in response to Blumeria graminis f. sp. tritici (Bgt), Puccinia striiformis f. sp. tritici (Pst) and Puccinia triticina (Pt) stress. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis proved that TaWAK75 and TaWAK76b were involved in wheat resistance to Bgt. This study revealed the structure of the WAK-encoding genes in wheat, which may be useful for future functional elucidation of wheat WAKs responses to fungal infections.
Collapse
|
37
|
Wu X, Bacic A, Johnson KL, Humphries J. The Role of Brachypodium distachyon Wall-Associated Kinases (WAKs) in Cell Expansion and Stress Responses. Cells 2020; 9:E2478. [PMID: 33202612 PMCID: PMC7698158 DOI: 10.3390/cells9112478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The plant cell wall plays a critical role in signaling responses to environmental and developmental cues, acting as both the sensing interface and regulator of plant cell integrity. Wall-associated kinases (WAKs) are plant receptor-like kinases located at the wall-plasma membrane-cytoplasmic interface and implicated in cell wall integrity sensing. WAKs in Arabidopsis thaliana have been shown to bind pectins in different forms under various conditions, such as oligogalacturonides (OG)s in stress response, and native pectin during cell expansion. The mechanism(s) WAKs use for sensing in grasses, which contain relatively low amounts of pectin, remains unclear. WAK genes from the model monocot plant, Brachypodium distachyon were identified. Expression profiling during early seedling development and in response to sodium salicylate and salt treatment was undertaken to identify WAKs involved in cell expansion and response to external stimuli. The BdWAK2 gene displayed increased expression during cell expansion and stress response, in addition to playing a potential role in the hypersensitive response. In vitro binding assays with various forms of commercial polysaccharides (pectins, xylans, and mixed-linkage glucans) and wall-extracted fractions (pectic/hemicellulosic/cellulosic) from both Arabidopsis and Brachypodium leaf tissues provided new insights into the binding properties of BdWAK2 and other candidate BdWAKs in grasses. The BdWAKs displayed a specificity for the acidic pectins with similar binding characteristics to the AtWAKs.
Collapse
Affiliation(s)
- Xingwen Wu
- School of BioSciences, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora 3086, Victoria, Australia; (A.B.); (K.L.J.)
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora 3086, Victoria, Australia; (A.B.); (K.L.J.)
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - John Humphries
- School of BioSciences, University of Melbourne, Parkville 3010, Victoria, Australia
- La Trobe Institute for Agriculture and Food, La Trobe University, Bundoora 3086, Victoria, Australia; (A.B.); (K.L.J.)
| |
Collapse
|