1
|
Barillari G, Bei R, Manzari V, Modesti A. Infection by High-Risk Human Papillomaviruses, Epithelial-to-Mesenchymal Transition and Squamous Pre-Malignant or Malignant Lesions of the Uterine Cervix: A Series of Chained Events? Int J Mol Sci 2021; 22:13543. [PMID: 34948338 PMCID: PMC8703928 DOI: 10.3390/ijms222413543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Wound healing requires static epithelial cells to gradually assume a mobile phenotype through a multi-step process termed epithelial-to-mesenchymal transition (EMT). Although it is inherently transient and reversible, EMT perdures and is abnormally activated when the epithelium is chronically exposed to pathogens: this event deeply alters the tissue and eventually contributes to the development of diseases. Among the many of them is uterine cervical squamous cell carcinoma (SCC), the most frequent malignancy of the female genital system. SCC, whose onset is associated with the persistent infection of the uterine cervix by high-risk human papillomaviruses (HR-HPVs), often relapses and/or metastasizes, being resistant to conventional chemo- or radiotherapy. Given that these fearsome clinical features may stem, at least in part, from the exacerbated and long-lasting EMT occurring in the HPV-infected cervix; here we have reviewed published studies concerning the impact that HPV oncoproteins, cellular tumor suppressors, regulators of gene expression, inflammatory cytokines or growth factors, and the interactions among these effectors have on EMT induction and cervical carcinogenesis. It is predictable and desirable that a broader comprehension of the role that EMT inducers play in SCC pathogenesis will provide indications to flourish new strategies directed against this aggressive tumor.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montellier, 00133 Rome, Italy; (R.B.); (V.M.); (A.M.)
| | | | | | | |
Collapse
|
2
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
3
|
Smith PG, Roque D, Ching MM, Fulton A, Rao G, Reader JC. The Role of Eicosanoids in Gynecological Malignancies. Front Pharmacol 2020; 11:1233. [PMID: 32982722 PMCID: PMC7479818 DOI: 10.3389/fphar.2020.01233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Eicosanoids, bio-active lipid molecules, evoke a multitude of biological effects that directly affect cancer cells and indirectly affect tumor microenvironment. An emerging role has been shown for eicosanoids in the pathogenesis of gynecological malignancies which include cancers of the vulva, vagina, cervix, uterine, and ovary. Eicosanoid biosynthesis pathways start at the metabolism of phospholipids by phospholipase A2 then proceeding to one of three pathways: the cyclooxygenase (COX), lipoxygenase (LOX), or P450 epoxygenase pathways. The most studied eicosanoid pathways include COX and LOX; however, more evidence is appearing to support further study of the P450 epoxygenase pathway in gynecologic cancers. In this review, we present the current knowledge of the role of COX, LOX and P450 pathways in the pathogenesis of gynecologic malignancies. Vulvar and vaginal cancer, the rarest subtypes, there is association of COX-2 expression with poor disease specific survival in vulvar cancer and, in vaginal cancer, COX-2 expression has been found to play a role in mucosal inflammation leading to disease susceptibility and transmission. Cervical cancer is associated with COX-2 levels 7.4 times higher than in healthy tissues. Additionally, HPV elevates COX-2 levels through the EGFR pathway and HIV promotes elevated COX-2 levels in cervical tissue as well as increases PGE2 levels eliciting inflammation and progression of cancer. Evidence supports significant roles for both the LOX and COX pathways in uterine cancer. In endometrial cancer, there is increased expression of 5-LOX which is associated with adverse outcomes. Prostanoids in the COX pathway PGE2 and PGF2α have been shown to play a significant role in uterine cancer including alteration of proliferation, adhesion, migration, invasion, angiogenesis, and the inflammatory microenvironment. The most studied gynecological malignancy in regard to the potential role of eicosanoids in tumorigenesis is ovarian cancer in which all three pathways have shown to be associated or play a role in ovarian tumorigenesis directly on the tumor cell or through modulation of the tumor microenvironment. By identifying the gaps in knowledge, additional pathways and targets could be identified in order to obtain a better understanding of eicosanoid signaling in gynecological malignancies and identify potential new therapeutic approaches.
Collapse
Affiliation(s)
- Paige G. Smith
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Dana Roque
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Mc Millan Ching
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Fulton
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
- Baltimore Veterans Administration Medical Center, Baltimore, MD, United States
| | - Gautam Rao
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jocelyn C. Reader
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
4
|
Jain P, Singh S, Jain M, Ralli M, Sen R. The expression of cyclooxygenase-2 in carcinoma of uterine cervix. CLINICAL CANCER INVESTIGATION JOURNAL 2020. [DOI: 10.4103/ccij.ccij_118_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Zhang J, Liu Q, Qiao L, Hu P, Deng G, Liang N, Xie J, Luo H, Zhang J. Novel role of granulocyte-macrophage colony-stimulating factor: antitumor effects through inhibition of epithelial-to-mesenchymal transition in esophageal cancer. Onco Targets Ther 2017; 10:2227-2237. [PMID: 28461757 PMCID: PMC5404808 DOI: 10.2147/ott.s133504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Purpose Recent studies demonstrate the possible antitumor effects of granulocyte-macrophage colony-stimulating factor (GM-CSF); however, the exact mechanism is still unclear. The aim of our study was to analyze the effects of GM-CSF on multiple biological functions of human esophageal cancer (EC) cell lines and to explore the potential mechanism of its antitumor effects. Materials and methods Eca109/9706 human EC cells were examined. Cell proliferation, apoptosis, and migration were analyzed using cell proliferation assay, flow cytometry, and transwell assay, respectively. The expression of signaling molecules were examined by reverse transcription polymerase chain reaction and Western blot. Results Our results provide experimental evidence that GM-CSF inhibits growth and migration, as well as induction of apoptosis in EC cells. In addition, EC cells stimulated with GM-CSF were more likely to have suppressed epithelial-to-mesenchymal transition (EMT), accompanied by increased E-cadherin and decreased vimentin expression. Conclusion Our data demonstrate that GM-CSF inhibits cancer cell proliferation and migration, as well as induction of apoptosis. Moreover, our findings indicate that GM-CSF may regulate EMT through JAK2-PRMT5 signaling, and thereby exhibit its antitumor effects on EC cells.
Collapse
Affiliation(s)
- Jingxin Zhang
- Division of Oncology, Department of Graduate, Weifang Medical College, Weifang
| | - Qiqi Liu
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Shandong University
| | - Lili Qiao
- Department of Oncology, The Fifth Peoples' Hospital of Jinan, Jinan
| | - Pingping Hu
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Shandong University
| | - Guodong Deng
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Shandong University
| | - Ning Liang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Shandong University
| | - Jian Xie
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Shandong University
| | - Hui Luo
- Department of Radiation Oncology, Henan Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Jiandong Zhang
- Department of Radiation Oncology, Qianfoshan Hospital Affiliated to Shandong University, Shandong University
| |
Collapse
|
6
|
Visalli G, Riso R, Facciolà A, Mondello P, Caruso C, Picerno I, Di Pietro A, Spataro P, Bertuccio MP. Higher levels of oxidative DNA damage in cervical cells are correlated with the grade of dysplasia and HPV infection. J Med Virol 2015; 88:336-44. [DOI: 10.1002/jmv.24327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Giuseppa Visalli
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Romana Riso
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Alessio Facciolà
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | | | - Carmela Caruso
- Department of Paediatric, Gynaecological, Microbiological and Biomedical Sciences; University of Messina; Messina Italy
| | - Isa Picerno
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Angela Di Pietro
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Pasquale Spataro
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| | - Maria Paola Bertuccio
- Department of Biomedical Sciences and Morphological and Functional Images; University of Messina; Messina Italy
| |
Collapse
|
7
|
Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) Downregulates the Expression of Protumor Factors Cyclooxygenase-2 and Inducible Nitric Oxide Synthase in a GM-CSF Receptor-Independent Manner in Cervical Cancer Cells. Mediators Inflamm 2015; 2015:601604. [PMID: 26257474 PMCID: PMC4518190 DOI: 10.1155/2015/601604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/25/2015] [Accepted: 07/05/2015] [Indexed: 11/18/2022] Open
Abstract
Enhanced expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) is associated with the pathogenic processes of various tumor types. COX-2 and iNOS expression in the immunomodulatory dendritic cells is mediated by the granulocyte macrophage-colony stimulating factor (GM-CSF), which is also expressed by cervical cancer cells; however, whether and how GM-CSF regulates COX-2 and iNOS expression in clinical cervical cancer cells remain unknown. In this study, we found that the COX-2 and iNOS expression was upregulated in the cervical cancer tissues and positively correlated with cancer metastasis and stage. About one-half of the cervical cancer tissues showed strong/moderate GM-CSF expression, while the normal cervical tissues showed >80% positive rate; no GM-CSFR protein was detectable on the cervical cancer cells. The GM-CSF expression was negatively correlated with the COX-2 and iNOS expression in the cervical cancer tissues and the functional negative regulatory effect of GM-CSF on COX-2/iNOS expression was demonstrated in various cervical cancer cell lines. Therefore, in cervical cancer cells, GM-CSF might contribute an antitumor response by inhibiting iNOS and COX-2 expression in a GM-CSFR independent manner.
Collapse
|
8
|
Almutairi MS, Hegazy GH, Haiba ME, Ali HI, Khalifa NM, Soliman AEMM. Synthesis, docking and biological activities of novel hybrids celecoxib and anthraquinone analogs as potent cytotoxic agents. Int J Mol Sci 2014; 15:22580-603. [PMID: 25490139 PMCID: PMC4284725 DOI: 10.3390/ijms151222580] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/13/2014] [Accepted: 11/20/2014] [Indexed: 11/16/2022] Open
Abstract
Herein, novel hybrid compounds of celecoxib and 2-aminoanthraquinone derivatives have been synthesized using condensation reactions of celecoxib with 2-aminoanthraquinone derivatives or 2-aminoanthraquinon with celecoxib derivatives. Celecoxib was reacted with different acid chlorides, 2-chloroethylisocyanate and bis (2-chloroethyl) amine hydrochloride. These intermediates were then reacted with 2-aminoanthraquinone. Also the same different acid chlorides and 2-chloroethylisocyanate were reacted with 2-aminoanthraquinone and the resulting intermediates were reacted with celecoxib to give isomers for the previous compounds. The antitumor activities against hepatic carcinoma tumor cell line (HEPG2) have been investigated in vitro, and all these compounds showed promising activities, especially compound 3c, 7, and 12. Flexible docking studies involving AutoDock 4.2 was investigated to identify the potential binding affinities and the mode of interaction of the hybrid compounds into two protein tyrosine kinases namely, SRC (Pp60v-src) and platelet-derived growth factor receptor, PDGFR (c-Kit). The compounds in this study have a preferential affinity for the c-Kit PDGFR PTK over the non-receptor tyrosine kinase SRC (Pp60v-src).
Collapse
Affiliation(s)
- Maha S Almutairi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Gehan H Hegazy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Mogedda E Haiba
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hamed I Ali
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA.
| | - Nagy M Khalifa
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Abd El-mohsen M Soliman
- Department of Therapeutical Chemistry, Pharmaceutical and Drug Industries Division, National Research Center, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
9
|
de Freitas AC, Coimbra EC, Leitão MDCG. Molecular targets of HPV oncoproteins: potential biomarkers for cervical carcinogenesis. Biochim Biophys Acta Rev Cancer 2014; 1845:91-103. [PMID: 24388872 DOI: 10.1016/j.bbcan.2013.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 12/10/2013] [Accepted: 12/27/2013] [Indexed: 12/17/2022]
Abstract
Cervical cancer is the second most common cancer among women worldwide and is responsible for 275,000 deaths each year. Persistent infection with high-risk human papillomavirus (HR-HPV) is an essential factor for the development of cervical cancer. Although the process is not fully understood, molecular mechanisms caused by HPV infection are necessary for its development and reveal a large number of potential biomarkers for diagnosis and prognosis. These molecules are host genes and/or proteins, and cellular microRNAs involved in cell cycle regulation that result from disturbed expression of HR-HPV E5, E6 and E7 oncoproteins. One of the current challenges in medicine is to discover potent biomarkers that can correctly diagnose cervical premalignant lesions and standardize clinical management. Currently, studies are showing that some of these molecules are potential biomarkers of cervical carcinogenesis, and it is possible to carry out a more accurate diagnosis and provide more appropriate follow-up treatment for women with cervical dysplasia. In this paper, we review recent research studies on cell cycle molecules deregulated by HPV infections, as well as their potential use for cervical cancer screening.
Collapse
Affiliation(s)
- Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Eliane Campos Coimbra
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| | - Maria da Conceição Gomes Leitão
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Center for Biological Sciences, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
10
|
Dominguez-Lopez P, Diaz-Cueto L, Olivares A, Ulloa-Aguirre A, Arechavaleta-Velasco F. Differential effect of DDT, DDE, and DDD on COX-2 expression in the human trophoblast derived HTR-8/SVneo cells. J Biochem Mol Toxicol 2012; 26:454-60. [PMID: 23132776 DOI: 10.1002/jbt.21444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/14/2012] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate the effect of 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) isomers on COX-2 expression in a human trophoblast-derived cell line. Cultured HTR-8/SVneo trophoblast cells were exposed to DDT isomers and its metabolites for 24 h, and COX-2 mRNA and protein expression were assessed by RT-PCR, Western blotting, and ELISA. Prostaglandin E₂ production was also measured by ELISA. Both COX-2 mRNA and protein were detected under control (unexposed) conditions in the HTR-8/SVneo cell line. COX-2 protein expression and prostaglandin E₂ production but not COX-2 mRNA levels increased only after DDE and DDD isomers exposure. It is concluded that DDE and DDD exposure induce the expression of COX-2 protein, leading to increased prostaglandin E2 production. Interestingly, the regulation of COX-2 by these organochlorines pesticides appears to be at the translational level.
Collapse
Affiliation(s)
- Pablo Dominguez-Lopez
- Research Unit in Reproductive Medicine, UMAE en Ginecologia y Obstetricia Luis Castelazo Ayala., IMSS, México D. F., Mexico
| | | | | | | | | |
Collapse
|
11
|
Best SR, Niparko KJ, Pai SI. Biology of human papillomavirus infection and immune therapy for HPV-related head and neck cancers. Otolaryngol Clin North Am 2012; 45:807-22. [PMID: 22793854 PMCID: PMC3398423 DOI: 10.1016/j.otc.2012.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article outlines the biology of human papillomavirus (HPV) infection of human mucosa and the cellular pathways that are altered through viral infection. The article provides a conceptual framework with which to understand the 2 major immunologic strategies to address HPV-related diseases: (1) prevention of primary HPV infection through the use of prophylactic vaccines and (2) treatment of established infection and diseases through therapeutic vaccines. Nonimmunologic therapy that targets cellular dysregulation induced by HPV infection is also discussed. The challenges in actualizing these conceptually attractive therapies on both a societal and biological level are examined.
Collapse
Affiliation(s)
- Simon R. Best
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Sara I. Pai
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Huang H, Cheng Z, Shi H, Xin W, Wang TTY, Yu LL. Isolation and characterization of two flavonoids, engeletin and astilbin, from the leaves of Engelhardia roxburghiana and their potential anti-inflammatory properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4562-4569. [PMID: 21476602 DOI: 10.1021/jf2002969] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Engeletin, a flavonoid compound, was isolated from the leaves of Engelhardia roxburghiana for the first time, along with astilbin, another flavonoid. The chemical structures of engeletin and astilbin were confirmed by (1)H and (13)C nuclear magnetic resonance (NMR) and mass spectrometry (MS) spectra, and their anti-inflammatory activities were studied in lipopolysaccharide (LPS)-stimulated mouse J774A.1 macrophage cells. LPS induced the inflammatory state in macrophage cells and increased mRNA expressions of pro-inflammatory cytokines. Engeletin and astilbin exhibited remarkable inhibitory effects on interleukin (IL)-1β and IL-6 mRNA expression. Significant inhibition of LPS-mediated mRNA expressions were also seen in LPS binding toll-like receptor (TLR)-4, pro-inflammatory cytokine tumor necrosis factor (TNF)-α, IL-10, chemoattractant monocyte chemotactic protein (MCP)-1, and cyclooxygenase (COX)-2 genes. The reduced expression of these cytokines may alleviate immune response and reduce inflammatory activation, indicating that engeletin and astilbin may serve as potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Haiqiu Huang
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | | | | | | | | | | |
Collapse
|
13
|
Lee S, Kim JH, Kim H, Kang JW, Kim SH, Yang Y, Kim J, Park J, Park S, Hong J, Yoon DY. Activation of the interleukin-32 pro-inflammatory pathway in response to human papillomavirus infection and over-expression of interleukin-32 controls the expression of the human papillomavirus oncogene. Immunology 2011; 132:410-20. [PMID: 21208204 DOI: 10.1111/j.1365-2567.2010.03377.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High-risk variants of human papillomavirus (HPV) induce cervical cancer by persistent infection, and are regarded as the principal aetiological factor in this malignancy. The pro-inflammatory cytokine interleukin-32 (IL-32) is present at substantial levels in cervical cancer tissues and in HPV-positive cervical cancer cells. In this study, we identified the mechanism by which the high-risk HPV-16 E7 oncogene induces IL-32 expression in cervical cancer cells. We used antisense transfection, over-expression, or knock-down of IL-32 to assess the effects of the HPV-16 E7 oncogene on IL-32 expression in cervical cancer cells. Cyclo-oxygenase 2 (COX-2) inhibitor treatment was conducted, and the expression levels, as well as the promoter activities, of IL-32 and COX-2 were evaluated in human HPV-positive cervical cancer cell lines. E7 antisense treatment reduced the expression levels and promoter activities of COX-2, which is constitutively expressed in HPV-infected cells. Constitutively expressed IL-32 was also inhibited by E7 antisense treatment. Moreover, IL-32 expression was blocked by the application of the selective COX-2 inhibitor, NS398, whereas COX-2 over-expression resulted in increased IL-32 levels. These results show that the high-risk variant of HPV induces IL-32 expression via E7-mediated COX-2 stimulation. However, E7 and COX-2 were down-regulated in the IL-32γ over-expressing cells and recovered by IL-32 small interfering RNA, indicating that E7 and COX-2 were feedback-inhibited by IL-32γ in cervical cancer cells.
Collapse
Affiliation(s)
- Sojung Lee
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Centre, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Williams VM, Filippova M, Soto U, Duerksen-Hughes PJ. HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol 2011; 6:45-57. [PMID: 21318095 DOI: 10.2217/fvl.10.73] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
HPV-DNA integration into cellular chromatin is usually a necessary event in the pathogenesis of HPV-related cancer; however, the mechanism of integration has not been clearly defined. Breaks must be created in both the host DNA and in the circular viral episome for integration to occur, and studies have shown that viral integration is indeed increased by the induction of DNA double strand breaks. Inflammation generates reactive oxygen species, which in turn have the potential to create such DNA strand breaks. It is plausible that these breaks enable a greater frequency of HPV-DNA integration, and in this way contribute to carcinogenesis. Consistent with this idea, co-infections with certain sexually transmitted diseases cause cervical inflammation, and have also been identified as cofactors in the progression to cervical cancer. This article examines the idea that inflammation facilitates HPV-DNA integration into cellular chromatin through the generation of reactive oxygen species, thereby contributing to carcinogenesis.
Collapse
Affiliation(s)
- Vonetta M Williams
- Department of Basic Science, Loma Linda University, Loma Linda, CA 92354, USA
| | | | | | | |
Collapse
|
15
|
The relationship between HPV16 and expression of cyclooxygenase-2, P53 and their prognostic roles in esophageal squamous cell carcinoma. Eur J Gastroenterol Hepatol 2010; 22:67-74. [PMID: 19730383 DOI: 10.1097/meg.0b013e32832c7e76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES This study aimed to investigate the relationship between human papillomavirus type 16 (HPV16) and expression of cyclooxygenase-2 (COX-2), P53 in esophageal squamous cell carcinoma (ESCC), which has not yet been elucidated. METHODS HPV16 was detected by amplifying the HPV16 E6 gene by the PCR method, and the expression of COX-2, P53 protein in 69 ESCCs and 32 normal esophageal mucosa (NEM) from Shaanxi Province was examined by the streptavidin-peroxidase method. Estimation of overall survival by HPV16, COX-2, and P53 was calculated with the Kaplan-Meier method and analyzed with the log-rank test. RESULTS The infection rate of HPV16 in ESCCs (35 of 69, 50.7%) was significantly higher than that in NEMs (two of 32, 6.25%) (P<0.01). The expression rate of COX-2 in ESCCs (44 of 69, 63.8%) was higher than that in NEMs (two of 32, 6.25%) (P<0.01). The expression intensity of COX-2 expression had statistical difference in histological grade (R = 0.4453, P = 0.0019), tumor stage (R = 0.438, P = 0.000), and metastasis (R = 0.417, P = 0.002). P53 expression rate was 49.3% (34 of 69) in ESCC and 18.8% (six of 32) in NEMs. The expression rate of P53 proteins in ESCC was statistically higher than that in N67EMs (P = 0.0037). The infection of HPV16 had inverse correlation with the overexpression of COX-2 in ESCCs (R = -0.321, P = 0.008). The HPV16 DNA in ESCC had no statistical correlation with P53 protein (R = -0.014, P = 0.9055) and the elevated expression of COX-2 had positive correlation with P53 protein in ESCC (R = 0.441, P = 0.000). No statistical correlation was observed between the infection of HPV16 and clinicopathological features in ESCCs including sex, age, tumor stage, and lymph node metastasis, respectively (P>0.05). The COX-2 had no statistical correlation with sex and age (P>0.05), but had association with tumor stage and lymph node metastasis, respectively (P<0.05). The expression of P53 protein had significant association with lymph node metastasis (P = 0.0005), but not with sex, age, and tumor stage, respectively (P>0.05). The overexpression of COX-2, infection of HPV16, and P53 protein in ESCC were not correlated with survival during the 5-year follow-up period (P>0.05). CONCLUSION We first concluded that the increased expression of COX-2 had inverse correlation with HPV16 in ESCC. COX-2, HPV16, and P53 had no significant effect on the survival of patients with ESCC. These observations might help us to further understand the significant association between HPV16 and other molecules involved in the carcinogenesis and progression of ESCC.
Collapse
|
16
|
Singh H, Demers AA, Nugent Z, Mahmud SM, Kliewer EV, Bernstein CN. Risk of cervical abnormalities in women with inflammatory bowel disease: a population-based nested case-control study. Gastroenterology 2009; 136:451-8. [PMID: 18996382 DOI: 10.1053/j.gastro.2008.10.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/01/2008] [Accepted: 10/09/2008] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS We evaluated the risk of cervical abnormalities in women with inflammatory bowel disease (IBD) in a population-based, nested, case-control study. METHODS Cases with abnormal Papanicolaou (Pap) smears or cervical biopsies were matched with up to 3 controls (normal Pap smears) by year of birth, year of first health care coverage, and number of Pap smears in the preceding 5 years. A diagnosis of IBD before the index date was identified from the University of Manitoba IBD Epidemiology Database. Exposures to immunosuppressant drugs and corticosteroids were determined from the provincial drug prescription database. Analyses were adjusted for socioeconomic status and exposure to oral contraceptives and nonsteroidal anti-inflammatory drugs. RESULTS 19,692 women with cervical cytologic and/or histologic abnormalities were matched with 57,898 controls with normal Pap smears. There was no association between cervical abnormalities and ulcerative colitis (odds ratio [OR], 1.03; 95% confidence interval [CI], 0.77-1.38). The increase in risk in women with Crohn's disease was limited to those exposed to 10 or more prescriptions of oral contraceptives (OR, 1.66; 95% CI, 1.08-2.54). The combined exposure to corticosteroids and immunosuppressants was associated with increased risk of cervical abnormalities (OR, 1.41; 95% CI, 1.09-1.81). There was no interaction between the effect of IBD and corticosteroids and/or immunosuppressants. CONCLUSIONS These findings do not support an association between IBD itself and the risk of developing cervical abnormalities. An increased risk in patients given a combination of corticosteroids and immunosuppressants should be considered in managing women with IBD.
Collapse
Affiliation(s)
- Harminder Singh
- Internal Medicine, and the University of Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | |
Collapse
|