1
|
Contartese D, Salamanna F, Veronesi F, Fini M. Relevance of humanized three-dimensional tumor tissue models: a descriptive systematic literature review. Cell Mol Life Sci 2020; 77:3913-3944. [PMID: 32285137 PMCID: PMC11104864 DOI: 10.1007/s00018-020-03513-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022]
Abstract
Despite numerous advances in tumor screening, diagnosis, and treatment, to date, tumors remain one of the leading causes of death, principally due to metastasis and the physiological damage produced by tumor growth. Among the main limits related to the study of tumor physiology there is the complex and heterogeneity nature of its environment and the absence of relevant, simple and inexpensive models able to mimic the biological processes occurring in patients allowing the correct clinical translation of results. To enhance the understanding of the mechanisms of tumors and to develop and evaluate new therapeutic approaches the set-up of advanced and alternative models is mandatory. One of the more translational approaches seems to be the use of humanized three-dimensional (3D) tissue culture. This model allows to accurately mimic tumor morphology and biology, maintaining the native microenvironment without any manipulation. However, little is still known on the real clinical relevance of these models for the study of tumor mechanisms and for the screening of new therapy. The aim of this descriptive systematic literature review was to evaluate and summarize the current knowledge on human 3D tumor tissue culture models. We reviewed the strategies employed by researchers to set-up these systems, also considering the different approaches and culture conditions used. All these aspects greatly contribute to the existing knowledge on tumors, providing a specific link to clinical scenarios and making the humanized 3D tumor tissue models a more attractive tool both for researchers and clinicians.
Collapse
Affiliation(s)
- D Contartese
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Francesca Salamanna
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy.
| | - F Veronesi
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - M Fini
- Laboratory Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136, Bologna, Italy
| |
Collapse
|
2
|
Human Embryonic Stem Cells Acquire Responsiveness to TRAIL upon Exposure to Cisplatin. Stem Cells Int 2019; 2019:4279481. [PMID: 30805008 PMCID: PMC6360567 DOI: 10.1155/2019/4279481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand-TRAIL-is a protein operating as a ligand capable of inducing apoptosis particularly in cancerously transformed cells, while normal healthy cells are typically nonresponsive. We have previously demonstrated that pluripotent human embryonic stem cells (hESC) are also refractory to TRAIL, even though they express all canonical components of the death receptor-induced apoptosis pathway. In this study, we have examined a capacity of DNA damage to provoke sensitivity of hESC to TRAIL. The extent of DNA damage, behavior of molecules involved in apoptosis, and response of hESC to TRAIL were investigated. The exposure of hESC to 1 μM and 2 μM concentrations of cisplatin have led to the formation of 53BP1 and γH2AX foci, indicating the presence of double-strand breaks in DNA, without affecting the expression of proteins contributing to mitochondrial membrane integrity. Interestingly, cisplatin upregulated critical components of the extrinsic apoptotic pathway-initiator caspase 8, effector caspase 3, and the cell death receptors. The observed increase of expression of the extrinsic apoptotic pathway components was sufficient to sensitize hESC to TRAIL-induced apoptosis; immense cell dying accompanied by enhanced PARP cleavage, processing of caspase 8, and full activation of caspase 3 were all observed after the treatment combining cisplatin and TRAIL. Finally, we have demonstrated the central role of caspase 8 in this process, since its downregulation abrogated the sensitizing effect of cisplatin.
Collapse
|
3
|
A Novel Fully Human Agonistic Single Chain Fragment Variable Antibody Targeting Death Receptor 5 with Potent Antitumor Activity In Vitro and In Vivo. Int J Mol Sci 2017; 18:ijms18102064. [PMID: 28953230 PMCID: PMC5666746 DOI: 10.3390/ijms18102064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/03/2017] [Accepted: 09/17/2017] [Indexed: 01/13/2023] Open
Abstract
Agonistic antibodies, which bind specifically to death receptor 5 (DR5), can trigger apoptosis in tumor cells through the extrinsic pathway. In this present study, we describe the use of a phage display to isolate a novel fully human agonistic single chain fragment variable (scFv) antibody, which targets DR5. After five rounds of panning a large (1.2 × 108 clones) phage display library on DR5, a total of over 4000 scFv clones were screened by the phage ELISA. After screening for agonism in a cell-viability assay in vitro, a novel DR5-specific scFv antibody TR2-3 was isolated, which inhibited COLO205 and MDA-MB-231 tumor cell growth without any cross-linking agents. The activity of TR2-3 in inducing apoptosis in cancer cells was evaluated by using an Annexin V-PE apoptosis detection kit in combination with flow cytometry and the Hoechst 33342 and propidium iodide double staining analysis. In addition, the activation of caspase-dependent apoptosis was evaluated by Western blot assays. The results indicated that TR2-3 induced robust apoptosis of the COLO205 and MDA-MB-231 cells in a dose-dependent and time-dependent manner, while it remarkably upregulated the cleavage of caspase-3 and caspase-8. Furthermore, TR2-3 suppressed the tumor growth significantly in the xenograft model. Taken together, these data suggest that TR2-3 exhibited potent antitumor activity both in vitro and in vivo. This work provides a novel human antibody, which might be a promising candidate for cancer therapy by targeting DR5.
Collapse
|
4
|
Walters Haygood CL, Arend RC, Gangrade A, Chettiar S, Regan N, Hassmann CJ, Li PK, Hidalgo B, Straughn JM, Buchsbaum DJ. Niclosamide Analogs for Treatment of Ovarian Cancer. Int J Gynecol Cancer 2015; 25:1377-85. [PMID: 26186072 DOI: 10.1097/igc.0000000000000506] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Niclosamide has shown activity against ovarian cancer in vitro; however, it has low bioavailability in vivo. Therefore, we investigated the cytotoxicity of niclosamide analogs in combination with carboplatin against ovarian cancer patient ascites cells and tissue slices. MATERIALS/METHODS Tumorspheres were isolated from ascites collected from patients undergoing ovarian cancer surgery and plated at 10,000 cells per 50 μL into low attachment plates. Tumor slices were also processed at the time of surgery. These were treated concurrently with niclosamide or analogs (0.1-5 μM) and carboplatin (5-150 μM). At 48 hours, cell viability was assessed with ATPlite assay. Western blotting was used to determine expression of Wnt/β-catenin proteins in ascites cells. RESULTS Cytotoxicity of niclosamide and its analogs in combination with carboplatin was demonstrated in 24 patient ascites samples. Increased cytotoxicity was seen with 2 analogs in 23 patient ascites samples when compared with niclosamide. Similar cytotoxicity was produced in an ex vivo tumor slice model. Western blot analysis showed decreased expression of Wnt/β-catenin proteins with niclosamide and analog treatment in a dose-dependent fashion. CONCLUSIONS The niclosamide-like analogs produced cytotoxicity both alone and in combination with carboplatin against tumorspheres from patient ascites and slices from solid tumor samples. Tumor slices showed similar cytotoxicity to matched ascites samples. Western blots showed down-regulation of Wnt pathway-associated proteins in patient samples treated with niclosamide analogs. These results suggest that more soluble niclosamide analogs may be useful for the treatment of ovarian cancer in combination with chemotherapy.
Collapse
Affiliation(s)
- Christen L Walters Haygood
- Departments of *Obstetrics and Gynecology and †Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL; ‡Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH; and §Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hickman JA, Graeser R, de Hoogt R, Vidic S, Brito C, Gutekunst M, van der Kuip H. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J 2015; 9:1115-28. [PMID: 25174503 DOI: 10.1002/biot.201300492] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/11/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022]
Abstract
Cancers are complex and heterogeneous pathological "organs" in a dynamic interplay with their host. Models of human cancer in vitro, used in cancer biology and drug discovery, are generally highly reductionist. These cancer models do not incorporate complexity or heterogeneity. This raises the question as to whether the cancer models' biochemical circuitry (not their genome) represents, with sufficient fidelity, a tumor in situ. Around 95% of new anticancer drugs eventually fail in clinical trial, despite robust indications of activity in existing in vitro pre-clinical models. Innovative models are required that better capture tumor biology. An important feature of all tissues, and tumors, is that cells grow in three dimensions. Advances in generating and characterizing simple and complex (with added stromal components) three-dimensional in vitro models (3D models) are reviewed in this article. The application of stirred bioreactors to permit both scale-up/scale-down of these cancer models and, importantly, methods to permit controlled changes in environment (pH, nutrients, and oxygen) are also described. The challenges of generating thin tumor slices, their utility, and potential advantages and disadvantages are discussed. These in vitro/ex vivo models represent a distinct move to capture the realities of tumor biology in situ, but significant characterization work still remains to be done in order to show that their biochemical circuitry accurately reflects that of a tumor.
Collapse
|
6
|
Halim TA, Farooqi AA, Zaman F. Nip the HPV encoded evil in the cancer bud: HPV reshapes TRAILs and signaling landscapes. Cancer Cell Int 2013; 13:61. [PMID: 23773282 PMCID: PMC3691735 DOI: 10.1186/1475-2867-13-61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/17/2013] [Indexed: 12/18/2022] Open
Abstract
HPV encoded proteins can elicit ectopic protein–protein interactions that re-wire signaling pathways, in a mode that promotes malignancy. Moreover, accumulating data related to HPV is now providing compelling substantiation of a central role played by HPV in escaping immunosurveillance and impairment of apoptotic response. What emerges is an intricate network of Wnt, TGF, Notch signaling cascades that forms higher-order ligand–receptor complexes routing downstream signaling in HPV infected cells. These HPV infected cells are regulated both extracellularly by ligand receptor axis and intracellularly by HPV encoded proteins and impair TRAIL mediated apoptosis. We divide this review into different sections addressing how linear signaling pathways integrate to facilitate carcinogenesis and compounds that directly or indirectly reverse these aberrant interactions offer new possibilities for therapy in cancer. Although HPV encoded proteins mediated misrepresentation of pathways is difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can target dysregulated pathways in HPV infected cervical cancer cells, thus setting the stage for preclinical models and clinical trials.
Collapse
Affiliation(s)
- Talha Abdul Halim
- Laboratory for Translational oncology and Personalized Medicine, RLMC, 35 Km Ferozepur Road, Lahore, Pakistan.
| | | | | |
Collapse
|
7
|
JIANG QIN, ZHU HONG, LIANG BAOQUAN, HUANG YAN, LI CHUNMEI. Apoptosis-inducing effect of the DR5 monoclonal antibody, D-6, alone or in combination with cisplatin, on A2780 ovarian cancer cells. Mol Med Rep 2012; 6:316-20. [DOI: 10.3892/mmr.2012.902] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 04/26/2012] [Indexed: 11/06/2022] Open
|
8
|
Treatment of small cell lung cancer with TRA-8 in combination with cisplatin and radiation. Radiother Oncol 2011; 101:183-9. [DOI: 10.1016/j.radonc.2011.05.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 05/29/2011] [Accepted: 05/29/2011] [Indexed: 01/27/2023]
|
9
|
Anti-EMMPRIN antibody treatment of head and neck squamous cell carcinoma in an ex-vivo model. Anticancer Drugs 2010; 21:861-7. [PMID: 20700044 DOI: 10.1097/cad.0b013e32833d1a11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting the molecular pathways associated with carcinogenesis remains the greatest opportunity to reduce treatment-related morbidity and mortality. Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a cell surface molecule known to promote tumor growth and angiogenesis in preclinical studies of head and neck carcinoma making it an excellent therapeutic target. To evaluate the feasibility of anti-EMMPRIN therapy, an ex-vivo human head and neck cancer model was established using specimens obtained at the time of surgery (n=22). Tumor slices were exposed to varying concentrations of anti-EMMPRIN monoclonal antibody and cetuximab for comparison purposes. Cetuximab is the only monoclonal antibody currently approved for the treatment of head and neck carcinoma. After treatment, tumor slices were assessed by immunohistochemistry and western blot analysis for apoptosis (TUNEL) and EMMPRIN expression. Of the tumor specimens 33% showed a significant reduction in mean ATP levels after treatment with cetuximab compared with untreated controls, whereas 58% of the patients responded to anti-EMMPRIN therapy (P<0.05). Samples, which showed reactivity to anti-EMMPRIN, also had greater EMMPRIN expression based on immunohistochemistry staining (49%) when compared with nonresponders (25%, P=0.06). In addition, TUNEL analysis showed a larger number of cells undergoing apoptosis in antibody-treated tumor slices (77%) compared with controls (30%, P<0.001) with activation of apoptotic proteins, caspase 3 and caspase 8. This study shows the potential of anti-EMMPRIN to inhibit proliferation and promote apoptosis and suggests its future role in the targeted treatment of head and neck carcinoma.
Collapse
|
10
|
Vondalova Blanarova O, Jelinkova I, Szoor A, Skender B, Soucek K, Horvath V, Vaculova A, Andera L, Sova P, Szollosi J, Hofmanova J, Vereb G, Kozubik A. Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway. Carcinogenesis 2010; 32:42-51. [DOI: 10.1093/carcin/bgq220] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Forero-Torres A, Shah J, Wood T, Posey J, Carlisle R, Copigneaux C, Luo FR, Wojtowicz-Praga S, Percent I, Saleh M. Phase I trial of weekly tigatuzumab, an agonistic humanized monoclonal antibody targeting death receptor 5 (DR5). Cancer Biother Radiopharm 2010; 25:13-9. [PMID: 20187792 DOI: 10.1089/cbr.2009.0673] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND TRA-8 is a murine agonist monoclonal antibody to death receptor 5 (DR5), which is able to trigger apoptosis in DR5 positive human tumor cells without the aid of crosslinking. It has demonstrated cytotoxicity in vitro and in vivo antitumor efficacy to a wide range of solid tumors in murine xenograft models. Tigatuzumab is a humanized IgG1 monoclonal antibody derived from TRA-8. METHODS A phase I trial of tigatuzumab in patients with relapsed/refractory carcinomas (n = 16) or lymphoma (n = 1) was designed to determine the maximal tolerated dose (MTD), pharmacokinetics, immunogenicity, and safety. Three to six (3-6) patients were enrolled in successive escalating cohorts at doses ranging from 1 to 8 mg/kg weekly. RESULTS Seventeen (17) patients enrolled, 9 in the 1-, 2-, and 4-mg/kg dose cohorts (3 in each cohort) and 8 in the 8-mg/kg dose cohort. Tigatuzumab was well tolerated with no DLTs observed, and the MTD was not reached. There were no study-drug-related grade 3 or 4, renal, hepatic, or hematologic toxicities. Plasma half-life was 6-10 days, and no anti-tigatuzumab responses were detected. Seven (7) patients had stable disease, with the duration of response ranging from 81 to 798 days. CONCLUSIONS Tigatuzumab is well tolerated, and the MTD was not reached. The high number of patients with stable disease suggests antitumor activity.
Collapse
Affiliation(s)
- Andres Forero-Torres
- University of Alabama at Birmingham, Comprehensive Cancer Center, Birmingham, Alabama 35294-3300, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rajeshkumar NV, Rasheed ZA, García-García E, López-Ríos F, Fujiwara K, Matsui WH, Hidalgo M. A combination of DR5 agonistic monoclonal antibody with gemcitabine targets pancreatic cancer stem cells and results in long-term disease control in human pancreatic cancer model. Mol Cancer Ther 2010; 9:2582-92. [PMID: 20660600 DOI: 10.1158/1535-7163.mct-10-0370] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy with one of the worst outcomes among all cancers. PDA often recurs after initial treatment to result in patient death despite the use of chemotherapy or radiation therapy. PDA contains a subset of tumor-initiating cells capable of extensive self-renewal known as cancer stem cells (CSC), which may contribute to therapeutic resistance and metastasis. At present, conventional chemotherapy and radiotherapy are largely ineffective in depleting CSC pool, suggesting the need for novel therapies that specifically target the cancer-sustaining stem cells for tumor eradication and to improve the poor prognosis of PDA patients. In this study, we report that death receptor 5 (DR5) is enriched in pancreatic CSCs compared with the bulk of the tumor cells. Treating a collection of freshly generated patient-derived PDA xenografts with gemcitabine, the first-line chemotherapeutic agent for PDA, is initially effective in reducing tumor size, but largely ineffective in diminishing the CSC populations, and eventually culminated in tumor relapse. However, a combination of tigatuzumab, a fully humanized DR5 agonist monoclonal antibody, with gemcitabine proved to be more efficacious by providing a double hit to kill both CSCs and bulk tumor cells. The combination therapy produced remarkable reduction in pancreatic CSCs, tumor remissions, and significant improvements in time to tumor progression in a model that is considered more difficult to treat. These data provide the rationale to explore the DR5-directed therapies in combination with chemotherapy as a therapeutic option to improve the current standard of care for pancreatic cancer patients.
Collapse
Affiliation(s)
- N V Rajeshkumar
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Saar K, Saar H, Hansen M, Langel Ü, Pooga M. Distribution of CPP-Protein Complexes in Freshly Resected Human Tissue Material. Pharmaceuticals (Basel) 2010; 3:621-635. [PMID: 27713271 PMCID: PMC4033972 DOI: 10.3390/ph3030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Revised: 03/05/2010] [Accepted: 03/09/2010] [Indexed: 12/29/2022] Open
Abstract
Interest in cell-penetrating peptides (CPPs) as delivery agents has fuelled a large number of studies conducted on cultured cells and in mice. However, only a few studies have been devoted to the behaviour of CPPs in human tissues. Therefore, we performed ex vivo tissue-dipping experiments where we studied the distribution of CPP-protein complexes in samples of freshly harvested human tissue material. We used the carcinoma or hyperplasia-containing specimens of the uterus and the cervix, obtained as surgical waste from nine hysterectomies. Our aim was to evaluate the tissue of preference (epithelial versus muscular/connective tissue, carcinoma versus adjacent histologically normal tissue) for two well-studied CPPs, the transportan and the TAT-peptide. We complexed biotinylated CPPs with avidin--galactosidase (ABG), which enabled us to apply whole-mount X-gal staining as a robust detection method. Our results demonstrate that both peptides enhanced the tissue distribution of ABG. The enhancing effect of the tested CPPs was more obvious in the normal tissue and in some specimens we detected a striking selectivity of CPP-ABG complexes for the normal tissue. This unexpected finding encourages the evaluation of CPPs as local delivery agents in non-malignant situations, for example in the intrauterine gene therapy of benign gynaecological diseases.
Collapse
Affiliation(s)
- Külliki Saar
- Institute of Molecular and Cell Biology, University of Tartu; Riia Street 23, 51010 Tartu, Estonia.
| | - Helgi Saar
- Department of Pathology, University of Tartu Hospital; Puusepa Street 8, 50411 Tartu, Estonia
| | - Mats Hansen
- Department of Biochemistry, University of Tartu; Ravila Street 19, 50411 Tartu, Estonia
| | - Ülo Langel
- Molecular Biotechnology Lab, Institute of Technology, University of Tartu; Nooruse Street 1, 50411 Tartu, Estonia
- Department of Neurochemistry, Stockholm University; Svante Arrhenius väg 21A, 10691 Stockholm, Sweden
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu; Riia Street 23, 51010 Tartu, Estonia
| |
Collapse
|
14
|
Precision-cut slice cultures of tumors from MMTV-neu mice for the study of the ex vivo response to cytokines and cytotoxic drugs. In Vitro Cell Dev Biol Anim 2009; 45:442-50. [PMID: 19533258 DOI: 10.1007/s11626-009-9212-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 04/21/2009] [Indexed: 01/08/2023]
Abstract
Ex vivo analysis of signaling pathways operating in tumor tissue is complicated by the three-dimensional structure, in particular by stroma-epithelial interactions. Studies performed with pure populations of tumor cells usually do not take into account this issue. One possibility to preserve the tissue architecture is the use of tumor slices. However, diffusion of oxygen and nutrients may become limiting factors, resulting in decreased cell viability and change of tissue morphology, especially after long-term incubation of slices. By using precision cut slices of defined thickness, we were able to establish culture conditions for tumor material obtained from MMTV-neu transgenic mice, which allow the study of the action of cytokines and cytotoxic drugs for up to 24 h. A slice thickness of 160 mum was found to be optimal for viability and handling of material. These slices were highly responsive to the action of the cytokine IFN-gamma, as evident form the increase of pY701 STAT1, detected by both immunohistochemistry and western blotting, and by the increase of mRNA levels of the IFN-gamma response genes IRF-1, SOCS-1, and STAT1, analyzed by reverse transcriptase-polymerase chain reaction. Furthermore, induction of apoptosis and increase of DNA damage could be monitored after treatment with IFN-gamma or doxorubicin. The slices were also a convenient source for the establishment of explant cultures of tumor epithelial cells. It is concluded that cultivation of precision-cut tumor slices provides a convenient way for the ex vivo molecular analysis of MMTV-neu tumor tissue under conditions which closely simulate the situation in vivo and can provide an alternative to in vivo experiments.
Collapse
|
15
|
Brüning A, Vogel M, Burger P, Rahmeh M, Gingelmaier A, Friese K, Lenhard M, Burges A. Nelfinavir induces TRAIL receptor upregulation in ovarian cancer cells. Biochem Biophys Res Commun 2008; 377:1309-14. [PMID: 19000651 DOI: 10.1016/j.bbrc.2008.10.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
HIV protease inhibitors are currently being discussed to be useful as new and alternative anti-cancer agents, especially as second line treatments for chemo-resistant human cancer types. Among three clinically applied HIV protease inhibitors tested, we found a high efficacy of nelfinavir on ovarian cancer cells, accompanied by apoptosis (annexin binding) and necrosis (propidium iodide permeability). In vitro, at concentrations used to induce cell death in ovarian cancer cells, nelfinavir had no effect on the cellular viability of fibroblasts or peripheral blood mononuclear leukocytes. Nelfinavir sensitized ovarian cancer cells to treatment with an apoptosis-inducing TRAIL receptor antibody due to upregulation of the TRAIL receptor DR5 as shown by RT-PCR and FACScan analysis. We conclude that nelfinavir, an already approved drug, is a highly efficient agent against ovarian cancer cells and could sensitize ovarian cancer cells to TRAIL treatment, either therapeutically applied or endogenously produced by cells of the immune system.
Collapse
Affiliation(s)
- Ansgar Brüning
- University Hospital Munich, Department of Obstetrics/Gynecology, Maistrasse 11, 80337 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tseng CW, Monie A, Trimble C, Alvarez RD, Huh WK, Buchsbaum DJ, Straughn JM, Wang MC, Yagita H, Hung CF, Wu TC. Combination of treatment with death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanced therapeutic anti-tumor effects. Vaccine 2008; 26:4314-9. [PMID: 18598733 DOI: 10.1016/j.vaccine.2008.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/02/2008] [Accepted: 06/10/2008] [Indexed: 02/03/2023]
Abstract
There is currently a vital need for the development of novel therapeutic strategies for the control of advanced stage cancers. Antigen-specific immunotherapy and the employment of antibodies against the death receptor 5 (DR5) have emerged as two potentially promising strategies for cancer treatment. In the current study, we hypothesize that the combination of treatment with the anti-DR5 monoclonal antibody, MD5-1 with a DNA vaccine encoding calreticulin (CRT) linked to human papillomavirus type 16 (HPV-16) E7 antigen (CRT/E7(detox)) administered via gene gun would lead to further enhancement of E7-specific immune responses as well as anti-tumor effects. Our results indicated that mice bearing the E7-expressing tumor, TC-1 treated with MD5-1 monoclonal antibody followed by CRT/E7(detox) DNA vaccination generated the most potent therapeutic anti-tumor effects as well as highest levels of E7-specific CD8+ T cells among all the groups tested. In addition, treatment with MD5-1 monoclonal antibody was capable of rendering the TC-1 tumor cells more susceptible to lysis by E7-specific cytotoxic T lymphocytes. Our findings serve as an important foundation for future clinical translation.
Collapse
Affiliation(s)
- Chih Wen Tseng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|