1
|
Elshazly AM, Hosseini N, Shen S, Neely V, Harada H, Grant S, Radhakrishnan SK. Proteasome Inhibition Enhances Lysosome-mediated Targeted Protein Degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.634950. [PMID: 39974947 PMCID: PMC11838415 DOI: 10.1101/2025.01.31.634950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Proteasome inhibitor drugs are currently used in the clinic to treat multiple myeloma and mantle cell lymphoma. These inhibitors cause accumulation of undegraded proteins, thus inducing proteotoxic stress and consequent cell death. However, cancer cells counteract this effect by activating an adaptive response through the transcription factor Nuclear factor erythroid 2-related factor 1 (NRF1, also known as NFE2L1). NRF1 induces transcriptional upregulation of proteasome and autophagy/lysosomal genes, thereby reducing proteotoxic stress and diminishing the effectiveness of proteasome inhibition. While suppressing this protective autophagy response is one potential strategy, here we investigated whether this heightened autophagy could instead be leveraged therapeutically. To this end, we designed an autophagy-targeting chimera (AUTAC) compound to selectively degrade the anti-apoptotic protein Mcl1 via the lysosome. Our results show that this lysosome-mediated targeted degradation is significantly amplified in the presence of proteasome inhibition, in a NRF1-dependent manner. The combination of the proteasome inhibitor carfilzomib and Mcl1 AUTAC synergistically promoted cell death in both wild-type and proteasome inhibitor-resistant multiple myeloma and lung cancer cells. Thus, our work offers a novel strategy for enhancing proteasome inhibitor efficacy by exploiting the adaptive autophagy response. More broadly, our study establishes a framework for amplifying lysosome-mediated targeted protein degradation, with potential applications in cancer therapeutics and beyond.
Collapse
|
2
|
Amer H, Kampan NC, Itsiopoulos C, Flanagan KL, Scott CL, Kartikasari AER, Plebanski M. Interleukin-6 Modulation in Ovarian Cancer Necessitates a Targeted Strategy: From the Approved to Emerging Therapies. Cancers (Basel) 2024; 16:4187. [PMID: 39766086 PMCID: PMC11674514 DOI: 10.3390/cancers16244187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Despite significant advances in treatments, ovarian cancer (OC) remains one of the most prevalent and lethal gynecological cancers in women. The frequent detection at the advanced stages has contributed to low survival rates, resistance to various treatments, and disease recurrence. Thus, a more effective approach is warranted to combat OC. The cytokine Interleukin-6 (IL6) has been implicated in various stages of OC development. High IL6 levels are also correlated with a lower survival rate in OC patients. In this current review, we summarized the pivotal roles of IL6 in OC, including the initiation, development, invasion, metastasis, and drug resistance mechanisms. This article systematically highlights how targeting IL6 improves OC outcomes by altering various cancer processes and reports the ongoing clinical trials that would further shape the IL6-based targeted therapies. This review also suggests how combining IL6-targeted therapies with other therapeutic strategies could further enhance their efficacy to combat OC.
Collapse
Affiliation(s)
- Hina Amer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Nirmala C. Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Catherine Itsiopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Katie L. Flanagan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
- School of Medicine and School of Health Sciences, University of Tasmania, Launceston, TAS 7250, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Clare L. Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
- The Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Apriliana E. R. Kartikasari
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia; (H.A.); (A.E.R.K.)
| |
Collapse
|
3
|
Pradhan S, Sarker S, Thilagar P. Azobenzene-Tagged Photopeptides Exhibiting Excellent Selectivity and Light-Induced Cytotoxicity in MCF-7 Cells over HeLa and A549. J Med Chem 2024; 67:18794-18806. [PMID: 39487790 DOI: 10.1021/acs.jmedchem.4c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The precise regulation of proteasome activity has become a focal point in current research, particularly its implications in cancer treatment. Bortezomib is used for treating multiple myeloma and is found to be ineffective against solid tumors. A spatiotemporal control over the proteasome is one of the solutions to resolve these issues using external stimuli, such as light. Thus, we designed and synthesized azobenzene-containing tripeptide vinyl sulfones 1, 2, 3, and 4, as the azobenzene moiety can impart E↔Z isomerism upon exposure to UV light. Further, the hydrophobicity of these peptides was fine-tuned by systematically varying the size of hydrophobic amino acids at the P1, P2, and P3 positions. The light-induced Z isomers of these photopeptides showed excellent cellular potency in HeLa, MCF-7, and A549 cell lines. Photopeptide 4 with valine at the proximal position, phenylalanine at P2, and leucine at the P1 positions exhibited 19.3- and 6.6-fold cellular potency in MCF-7 and A549 cells, respectively.
Collapse
Affiliation(s)
- Sambit Pradhan
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, INDIA
| | - Surajit Sarker
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, INDIA
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, INDIA
| |
Collapse
|
4
|
Anchoori RK, Tseng SH, Tsai HL, Palande V, Rudek MA, Roden RBS. Preclinical studies of RA475, a guanidine-substituted spirocyclic candidate RPN13/ADRM1 inhibitor for treatment of ovarian cancer. PLoS One 2024; 19:e0305710. [PMID: 38990850 PMCID: PMC11239005 DOI: 10.1371/journal.pone.0305710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
There is an urgent unmet need for more targeted and effective treatments for advanced epithelial ovarian cancer (EOC). The emergence of drug resistance is a particular challenge, but small molecule covalent inhibitors have promise for difficult targets and appear less prone to resistance. Michael acceptors are covalent inhibitors that form bonds with cysteines or other nucleophilic residues in the target protein. However, many are categorized as pan-assay interference compounds (PAINS) and considered unsuitable as drugs due to their tendency to react non-specifically. Targeting RPN13/ADRM1-mediated substrate recognition and deubiquitination by the proteasome 19S Regulatory Particle (RP) is a promising treatment strategy. Early candidate RPN13 inhibitors (iRPN13) produced a toxic accumulation of very high molecular weight polyubiquitinated substrates, resulting in therapeutic activity in mice bearing liquid or solid tumor models, including ovarian cancer; however, they were not drug-like (PAINS) because of their central piperidone core. Up284 instead has a central spiro-carbon ring. We hypothesized that adding a guanidine moiety to the central ring nitrogen of Up284 would produce a compound, RA475, with improved drug-like properties and therapeutic activity in murine models of ovarian cancer. RA475 produced a rapid accumulation of high molecular polyubiquitinated proteins in cancer cell lines associated with apoptosis, similar to Up284 although it was 3-fold less cytotoxic. RA475 competed binding of biotinylated Up284 to RPN13. RA475 shows improved solubility and distinct pharmacodynamic properties compared to Up284. Specifically, tetraubiquitin firefly luciferase expressed in leg muscle was stabilized in mice more effectively upon IP treatment with RA475 than with Up284. However, pharmacologic analysis showed that RA475 was more rapidly cleared from the circulation, and less orally available than Up284. RA475 shows reduced ability to cross the blood-brain barrier and in vitro inhibition of HERG. Treatment of mice with RA475 profoundly inhibited the intraperitoneal growth of the ID8-luciferase ovarian tumor model. Likewise, RA475 treatment of immunocompetent mice inhibited the growth of spontaneous genetically-engineered peritoneal tumor, as did weekly cisplatin dosing. The combination of RA475 and cisplatin significantly extended survival compared to individual treatments, consistent with synergistic cytotoxicity in vitro. In sum, RA475 is a promising candidate covalent RPN13i with potential utility for treatment of patients with advanced EOC in combination with cisplatin.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hua-Ling Tsai
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Vikrant Palande
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Michelle A. Rudek
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard B. S. Roden
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
5
|
Bai S, Taylor S, Jamalruddin MA, McGonigal S, Grimley E, Yang D, Bernstein KA, Buckanovich RJ. Targeting Therapeutic Resistance and Multinucleate Giant Cells in CCNE1-Amplified HR-Proficient Ovarian Cancer. Mol Cancer Ther 2022; 21:1473-1484. [PMID: 35732503 PMCID: PMC9452459 DOI: 10.1158/1535-7163.mct-21-0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/30/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Approximately 20% of high-grade serous ovarian cancers (HGSOC) have CCNE1 amplification. CCNE1-amplified tumors are homologous recombination (HR) proficient and resistant to standard therapies. Therapy resistance is associated with increased numbers of polyploid giant cancer cells (PGCC). We sought to identify new therapeutic approaches for patients with CCNE1-amplified tumors. Using TCGA data, we find that the mTOR, HR, and DNA checkpoint pathways are enriched in CCNE1-amplified ovarian cancers. Furthermore, Interactome Mapping Analysis linked the mTOR activity with upregulation of HR and DNA checkpoint pathways. Indeed, we find that mTOR inhibitors (mTORi) downregulate HR/checkpoint genes in CCNE1-amplified tumors. As CCNE1-amplified tumors are dependent on the HR pathway for viability, mTORi proved selectively effective in CCNE1-amplified tumors. Similarly, via downregulation of HR genes, mTORi increased CCNE1-amplifed HGSOC response to PARPi. In contrast, overexpression of HR/checkpoint proteins (RAD51 or ATR), induced resistance to mTORi. In vivo, mTORi alone potently reduced CCNE1-amplified tumor growth and the combination of mTORi and PARPi increased response and tumor eradication. Tumors treated with mTORi demonstrated a significant reduction in ALDH+ PGCCs. Finally, as a proof of principle, we identified three patients with CCNE1 amplified tumors who were treated with an mTORi. All three obtained clinical benefits from the therapy. Our studies and clinical experience indicate mTORi are a potential therapeutic approach for patients with CCNE1-amplified tumors.
Collapse
Affiliation(s)
- Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Taylor
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohd Azrin Jamalruddin
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy McGonigal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Grimley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara A. Bernstein
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ronald J. Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Novel Perspectives in Pseudomyxoma Peritonei Treatment. Cancers (Basel) 2021; 13:cancers13235965. [PMID: 34885075 PMCID: PMC8656832 DOI: 10.3390/cancers13235965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Pseudomyxoma Peritonei (PMP) represents a rare entity which greatly benefits from Cytoreductive Surgery (CRS) associated with Hyperthermic Intraperitoneal Chemotherapy (HIPEC). In fact, CRS-HIPEC represents the treatment with potential chances of cure and long-term disease control of patients affected by PMP. This therapeutic strategy should be performed in referral centers, where a consolidated know-how of this locoregional treatment and a multidisciplinary approach are available. CRS-HIPEC provides excellent results for PMP patients in terms of postoperative outcome, overall and disease-free survival, and quality of life. However, in patients with an extensive or recurrent disease, few therapeutic opportunities are available. This review is focused on the most recent clinical evidence and provides a better understanding of the molecular prognostic factors and potential therapeutic targets in this rare malignancy. Abstract Pseudomyxoma Peritonei (PMP) is an anatomo-clinical condition characterized by the implantation of neoplastic cells on peritoneal surfaces with the production of a large amount of mucin. The rarity of the disease precludes the evaluation of treatment strategies within randomized controlled trials. Cytoreductive Surgery (CRS) combined with Hyperthermic Intraperitoneal Chemotherapy (HIPEC) has proven to be the only therapeutic option with potential chances of cure and long-term disease control. The present review discusses the epidemiology, pathogenesis, clinical presentation and treatment of PMP, focusing on the molecular factors involved in tumor progression and mucin production that could be used, in the upcoming future, to improve patient selection for surgery and to expand the therapeutic armamentarium.
Collapse
|
7
|
Li X, Wang F, Xu X, Zhang J, Xu G. The Dual Role of STAT1 in Ovarian Cancer: Insight Into Molecular Mechanisms and Application Potentials. Front Cell Dev Biol 2021; 9:636595. [PMID: 33834023 PMCID: PMC8021797 DOI: 10.3389/fcell.2021.636595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
The signal transducer and activator of transcription 1 (STAT1) is a transducer protein and acts as a transcription factor but its role in ovarian cancer (OC) is not completely understood. Practically, there are two-faced effects of STAT1 on tumorigenesis in different kinds of cancers. Existing evidence reveals that STAT1 has both tumor-suppressing and tumor-promoting functions involved in angiogenesis, cell proliferation, migration, invasion, apoptosis, drug resistance, stemness, and immune responses mainly through interacting and regulating target genes at multiple levels. The canonical STAT1 signaling pathway shows that STAT1 is phosphorylated and activated by the receptor-activated kinases such as Janus kinase in response to interferon stimulation. The STAT1 signaling can also be crosstalk with other signaling such as transforming growth factor-β signaling involved in cancer cell behavior. OC is often diagnosed at an advanced stage due to symptomless or atypical symptoms and the lack of effective detection at an early stage. Furthermore, patients with OC often develop chemoresistance and recurrence. This review focuses on the multi-faced role of STAT1 and highlights the molecular mechanisms and biological functions of STAT1 in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Conley BA, Staudt L, Takebe N, Wheeler DA, Wang L, Cardenas MF, Korchina V, Zenklusen JC, McShane LM, Tricoli JV, Williams PM, Lubensky I, O’Sullivan-Coyne G, Kohn E, Little RF, White J, Malik S, Harris LN, Mann B, Weil C, Tarnuzzer R, Karlovich C, Rodgers B, Shankar L, Jacobs PM, Nolan T, Berryman SM, Gastier-Foster J, Bowen J, Leraas K, Shen H, Laird PW, Esteller M, Miller V, Johnson A, Edmondson EF, Giordano TJ, Kim B, Ivy SP. The Exceptional Responders Initiative: Feasibility of a National Cancer Institute Pilot Study. J Natl Cancer Inst 2021; 113:27-37. [PMID: 32339229 PMCID: PMC7781457 DOI: 10.1093/jnci/djaa061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 02/27/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tumor molecular profiling from patients experiencing exceptional responses to systemic therapy may provide insights into cancer biology and improve treatment tailoring. This pilot study evaluates the feasibility of identifying exceptional responders retrospectively, obtaining pre-exceptional response treatment tumor tissues, and analyzing them with state-of-the-art molecular analysis tools to identify potential molecular explanations for responses. METHODS Exceptional response was defined as partial (PR) or complete (CR) response to a systemic treatment with population PR or CR rate less than 10% or an unusually long response (eg, duration >3 times published median). Cases proposed by patients' clinicians were reviewed by clinical and translational experts. Tumor and normal tissue (if possible) were profiled with whole exome sequencing and, if possible, targeted deep sequencing, RNA sequencing, methylation arrays, and immunohistochemistry. Potential germline mutations were tracked for relevance to disease. RESULTS Cases reflected a variety of tumors and standard and investigational treatments. Of 520 cases, 476 (91.5%) were accepted for further review, and 222 of 476 (46.6%) proposed cases met requirements as exceptional responders. Clinical data were obtained from 168 of 222 cases (75.7%). Tumor was provided from 130 of 168 cases (77.4%). Of 117 of the 130 (90.0%) cases with sufficient nucleic acids, 109 (93.2%) were successfully analyzed; 6 patients had potentially actionable germline mutations. CONCLUSION Exceptional responses occur with standard and investigational treatment. Retrospective identification of exceptional responders, accessioning, and sequencing of pretreatment archived tissue is feasible. Data from molecular analyses of tumors, particularly when combining results from patients who received similar treatments, may elucidate molecular bases for exceptional responses.
Collapse
Affiliation(s)
- Barbara A Conley
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Lou Staudt
- Center for Cancer Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Naoko Takebe
- Developmental Therapeutics Clinic, National Cancer Institute, Bethesda, MD, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria F Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Lisa M McShane
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Paul M Williams
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Irina Lubensky
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | | | - Elise Kohn
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Richard F Little
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Jeffrey White
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Shakun Malik
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Bhupinder Mann
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Carol Weil
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Roy Tarnuzzer
- Center for Cancer Genomics, National Cancer Institute, Bethesda, MD, USA
| | - Chris Karlovich
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brian Rodgers
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Lalitha Shankar
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Paula M Jacobs
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Tracy Nolan
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sean M Berryman
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Julie Gastier-Foster
- Nationwide Children’s Hospital, Columbus, OH, USA; Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jay Bowen
- Nationwide Children’s Hospital, Columbus, OH, USA; Van Andel Research Institute, Grand Rapids, MI, USA
| | - Kristen Leraas
- Nationwide Children’s Hospital, Columbus, OH, USA; Van Andel Research Institute, Grand Rapids, MI, USA
| | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, Catalonia, Spain
| | | | | | - Elijah F Edmondson
- Pathology and Histology Laboratory, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Benjamin Kim
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - S Percy Ivy
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
9
|
Hufnagel DH, Wilson AJ, Saxon J, Blackwell TS, Watkins J, Khabele D, Crispens MA, Yull FE, Beeghly-Fadiel A. Expression of p52, a non-canonical NF-kappaB transcription factor, is associated with poor ovarian cancer prognosis. Biomark Res 2020; 8:45. [PMID: 32974032 PMCID: PMC7493985 DOI: 10.1186/s40364-020-00227-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The canonical and non-canonical nuclear factor-kappaB (NF-κB) signaling pathways have key roles in cancer, but studies have previously evaluated only the association of canonical transcription factors and ovarian cancer survival. Although a number of in vitro and in vivo studies have demonstrated mechanisms by which non-canonical NF-κB signaling potentially contributes to ovarian cancer progression, a prognostic association has yet to be shown in the clinical context. METHODS We assayed p65 and p52 (major components of the canonical and non-canonical NF-κB pathways) by immunohistochemistry in epithelial ovarian tumor samples; nuclear and cytoplasmic staining were semi-quantified by H-scores and dichotomized at median values. Associations of p65 and p52 with progression-free survival (PFS) and overall survival (OS) were quantified by Hazard Ratios (HR) from proportional-hazards regression. RESULTS Among 196 cases, median p52 and p65 H-scores were higher in high-grade serous cancers. Multivariable regression models indicated that higher p52 was associated with higher hazards of disease progression (cytoplasmic HR: 1.54; nuclear HR: 1.67) and death (cytoplasmic HR: 1.53; nuclear HR: 1.49), while higher nuclear p65 was associated with only a higher hazard of disease progression (HR: 1.40) in unadjusted models. When cytoplasmic and nuclear staining were combined, p52 remained significantly associated with increased hazards of disease progression (HR: 1.91, p = 0.004) and death (HR: 1.70, p = 0.021), even after adjustment for p65 and in analyses among only high-grade serous tumors. CONCLUSIONS This is the first study to demonstrate that p52, a major component of non-canonical NF-κB signaling, may be an independent prognostic factor for epithelial ovarian cancer, particularly high-grade serous ovarian cancer. Approaches to inhibit non-canonical NF-κB signaling should be explored as novel ovarian cancer therapies are needed.
Collapse
Affiliation(s)
| | - Andrew J. Wilson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
| | - Jamie Saxon
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Timothy S. Blackwell
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Jaclyn Watkins
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63130 USA
| | - Marta A. Crispens
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
| | - Fiona E. Yull
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University Medical Center, Nashville, TN 37232 USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232 USA
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203 USA
| |
Collapse
|
10
|
Hakin-1, a New Specific Small-Molecule Inhibitor for the E3 Ubiquitin-Ligase Hakai, Inhibits Carcinoma Growth and Progression. Cancers (Basel) 2020; 12:cancers12051340. [PMID: 32456234 PMCID: PMC7281109 DOI: 10.3390/cancers12051340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022] Open
Abstract
The requirement of the E3 ubiquitin-ligase Hakai for the ubiquitination and subsequent degradation of E-cadherin has been associated with enhanced epithelial-to-mesenchymal transition (EMT), tumour progression and carcinoma metastasis. To date, most of the reported EMT-related inhibitors were not developed for anti-EMT purposes, but indirectly affect EMT. On the other hand, E3 ubiquitin-ligase enzymes have recently emerged as promising therapeutic targets, as their specific inhibition would prevent wider side effects. Given this background, a virtual screening was performed to identify novel specific inhibitors of Hakai, targeted against its phosphotyrosine-binding pocket, where phosphorylated-E-cadherin specifically binds. We selected a candidate inhibitor, Hakin-1, which showed an important effect on Hakai-induced ubiquitination. Hakin-1 also inhibited carcinoma growth and tumour progression both in vitro, in colorectal cancer cell lines, and in vivo, in a tumour xenograft mouse model, without apparent systemic toxicity in mice. Our results show for the first time that a small molecule putatively targeting the E3 ubiquitin-ligase Hakai inhibits Hakai-dependent ubiquitination of E-cadherin, having an impact on the EMT process. This represents an important step forward in a future development of an effective therapeutic drug to prevent or inhibit carcinoma tumour progression.
Collapse
|
11
|
Anchoori RK, Tan M, Tseng SH, Peng S, Soong RS, Algethami A, Foran P, Das S, Wang C, Wang TL, Liang H, Hung CF, Roden RBS. Structure-function analyses of candidate small molecule RPN13 inhibitors with antitumor properties. PLoS One 2020; 15:e0227727. [PMID: 31940398 PMCID: PMC6961910 DOI: 10.1371/journal.pone.0227727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/29/2019] [Indexed: 11/23/2022] Open
Abstract
We sought to design ubiquitin-proteasome system inhibitors active against solid cancers by targeting ubiquitin receptor RPN13 within the proteasome’s 19S regulatory particle. The prototypic bis-benzylidine piperidone-based inhibitor RA190 is a michael acceptor that adducts Cysteine 88 of RPN13. In probing the pharmacophore, we showed the benefit of the central nitrogen-bearing piperidone ring moiety compared to a cyclohexanone, the importance of the span of the aromatic wings from the central enone-piperidone ring, the contribution of both wings, and that substituents with stronger electron withdrawing groups were more cytotoxic. Potency was further enhanced by coupling of a second warhead to the central nitrogen-bearing piperidone as RA375 exhibited ten-fold greater activity against cancer lines than RA190, reflecting its nitro ring substituents and the addition of a chloroacetamide warhead. Treatment with RA375 caused a rapid and profound accumulation of high molecular weight polyubiquitinated proteins and reduced intracellular glutathione levels, which produce endoplasmic reticulum and oxidative stress, and trigger apoptosis. RA375 was highly active against cell lines of multiple myeloma and diverse solid cancers, and demonstrated a wide therapeutic window against normal cells. For cervical and head and neck cancer cell lines, those associated with human papillomavirus were significantly more sensitive to RA375. While ARID1A-deficiency also enhanced sensitivity 4-fold, RA375 was active against all ovarian cancer cell lines tested. RA375 inhibited proteasome function in muscle for >72h after single i.p. administration to mice, and treatment reduced tumor burden and extended survival in mice carrying an orthotopic human xenograft derived from a clear cell ovarian carcinoma.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Marietta Tan
- Department of Otolaryngology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ssu-Hsueh Tseng
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shiwen Peng
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Ruey-Shyang Soong
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Aliyah Algethami
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Palmer Foran
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Samarjit Das
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chenguang Wang
- Department of Biostatistics, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tian-Li Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hong Liang
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chien-Fu Hung
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Richard B. S. Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Anchoori RK, Jiang R, Peng S, Soong RS, Algethami A, Rudek MA, Anders N, Hung CF, Chen X, Lu X, Kayode O, Dyba M, Walters KJ, Roden RBS. Covalent Rpn13-Binding Inhibitors for the Treatment of Ovarian Cancer. ACS OMEGA 2018; 3:11917-11929. [PMID: 30288466 PMCID: PMC6166221 DOI: 10.1021/acsomega.8b01479] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Substitution of the m,p-chloro groups of bis-benzylidinepiperidone RA190 for p-nitro, generating RA183, enhanced covalent drug binding to Cys88 of RPN13. Treatment of cancer cell lines with RA183 inhibited ubiquitin-mediated protein degradation, resulting in rapid accumulation of high-molecular-weight polyubiquitinated proteins, blockade of NFκB signaling, endoplasmic reticulum stress, an unfolded protein response, production of reactive oxygen species, and apoptotic cell death. High-grade ovarian cancer, triple-negative breast cancer, and multiple myeloma cell lines were particularly vulnerable to RA183. RA183 stabilized a tetraubiquitin-linked firefly luciferase reporter protein in cancer cell lines and mice, demonstrating in vitro and in vivo proteasomal inhibition, respectively. However, RA183 was rapidly cleared from plasma, likely reflecting its rapid degradation to the active compound RA9, as seen in human liver microsomes. Intraperitoneal administration of RA183 inhibited proteasome function and orthotopic tumor growth in mice bearing human ovarian cancer model ES2-luc ascites or syngeneic ID8-luc tumor.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Rosie Jiang
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Shiwen Peng
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Ruey-shyang Soong
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department of General Surgery, Chang Gung
Memorial Hospital at Keelung, Keelung
City, Taiwan 204, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302, ROC
| | - Aliyah Algethami
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Michelle A. Rudek
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Nicole Anders
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Chien-Fu Hung
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Xiang Chen
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Xiuxiu Lu
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Olumide Kayode
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Marzena Dyba
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Kylie J. Walters
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Richard B. S. Roden
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| |
Collapse
|
13
|
Bastola P, Oien DB, Cooley M, Chien J. Emerging Cancer Therapeutic Targets in Protein Homeostasis. AAPS JOURNAL 2018; 20:94. [PMID: 30151644 DOI: 10.1208/s12248-018-0254-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Genomic aberrations inside malignant cells through copy number alterations, aneuploidy, and mutations can exacerbate misfolded and unfolded protein burden resulting in increased proteotoxic stress. Increased proteotoxic stress can be deleterious to malignant cells; therefore, these cells rely heavily on the protein quality control mechanisms for survival and proliferation. Components of the protein quality control, such as the unfolded protein response, heat shock proteins, autophagy, and the ubiquitin proteasome system, orchestrate a cascade of downstream events that allow the mitigation of the proteotoxic stress. This dependency makes components of the protein quality control mechanisms attractive targets in cancer therapeutics. In this review, we explore the components of the protein homeostasis especially focusing on the emerging cancer therapeutic agents/targets that are being actively pursued actively.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66130, USA
| | - Derek B Oien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA
| | - Megan Cooley
- Methods Development, Small Molecules, PRA Health Sciences, Lenexa, KS, 66215, USA
| | - Jeremy Chien
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud NE, Albuquerque, NM, 87131, USA.
| |
Collapse
|
14
|
Castosa R, Martinez-Iglesias O, Roca-Lema D, Casas-Pais A, Díaz-Díaz A, Iglesias P, Santamarina I, Graña B, Calvo L, Valladares-Ayerbes M, Concha Á, Figueroa A. Hakai overexpression effectively induces tumour progression and metastasis in vivo. Sci Rep 2018; 8:3466. [PMID: 29472634 PMCID: PMC5823865 DOI: 10.1038/s41598-018-21808-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/12/2018] [Indexed: 12/31/2022] Open
Abstract
At early stages of carcinoma progression, epithelial cells undergo a program named epithelial-to-mesenchymal transition characterized by the loss of the major component of the adherens junctions, E-cadherin, which in consequence causes the disruption of cell-cell contacts. Hakai is an E3 ubiquitin-ligase that binds to E-cadherin in a phosphorylated-dependent manner and induces its degradation; thus modulating cell adhesions. Here, we show that Hakai expression is gradually increased in adenoma and in different TNM stages (I-IV) from colon adenocarcinomas compared to human colon healthy tissues. Moreover, we confirm that Hakai overexpression in epithelial cells drives transformation in cells, a mesenchymal and invasive phenotype, accompanied by the downregulation of E-cadherin and the upregulation of N-cadherin, and an increased proliferation and an oncogenic potential. More importantly, for the first time, we have studied the role of Hakai during cancer progression in vivo. We show that Hakai-transformed MDCK cells dramatically induce tumour growth and local invasion in nude mice and tumour cells exhibit a mesenchymal phenotype. Furthermore, we have detected the presence of micrometastasis in the lung mice, further confirming Hakai role during tumour metastasis in vivo. These results lead to the consideration of Hakai as a potential new therapeutic target to block tumour development and metastasis.
Collapse
Affiliation(s)
- Raquel Castosa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Olaia Martinez-Iglesias
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Daniel Roca-Lema
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Andrea Díaz-Díaz
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain
| | - Pilar Iglesias
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain.,Pathology Department, INIBIC, CHUAC, Sergas, UDC, Spain
| | - Isabel Santamarina
- Clinical and Translational Oncology Group, INIBIC, CHUAC, Sergas, UDC, Spain
| | - Begoña Graña
- Clinical and Translational Oncology Group, INIBIC, CHUAC, Sergas, UDC, Spain
| | - Lourdes Calvo
- Clinical and Translational Oncology Group, INIBIC, CHUAC, Sergas, UDC, Spain
| | | | - Ángel Concha
- Pathology Department, INIBIC, CHUAC, Sergas, UDC, Spain
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Universidade da Coruña (UDC), Sergas, Spain.
| |
Collapse
|
15
|
Banno A, Garcia DA, van Baarsel ED, Metz PJ, Fisch K, Widjaja CE, Kim SH, Lopez J, Chang AN, Geurink PP, Florea BI, Overkleeft HS, Ovaa H, Bui JD, Yang J, Chang JT. Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition. Oncotarget 2017; 7:21527-41. [PMID: 26930717 PMCID: PMC5008303 DOI: 10.18632/oncotarget.7596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/24/2016] [Indexed: 01/12/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy.
Collapse
Affiliation(s)
- Asoka Banno
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel A Garcia
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric D van Baarsel
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Patrick J Metz
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kathleen Fisch
- Center for Computational Biology and Bioinformatics, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Stephanie H Kim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Justine Lopez
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Aaron N Chang
- Center for Computational Biology and Bioinformatics, Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Paul P Geurink
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Bogdan I Florea
- Division of Chemical Biology, Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Hermen S Overkleeft
- Division of Chemical Biology, Leiden Institute of Chemistry, Leiden University, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Jing Yang
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.,Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Jiang RT, Yemelyanova A, Xing D, Anchoori RK, Hamazaki J, Murata S, Seidman JD, Wang TL, Roden RBS. Early and consistent overexpression of ADRM1 in ovarian high-grade serous carcinoma. J Ovarian Res 2017; 10:53. [PMID: 28784174 PMCID: PMC5547474 DOI: 10.1186/s13048-017-0347-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/18/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Ovarian carcinoma is highly dependent on the ubiquitin proteasome system (UPS), but its clinical response to treatment with the proteasome inhibitor bortezomib has been disappointing. This has driven exploration of alternate approaches to target the UPS in ovarian cancer. Recently, proteasome inhibitors targeting the 19S regulatory particle-associated RPN13 protein have been described, such as RA190. RPN13, which is encoded by ADRM1, facilitates the recognition by the proteasome of its polyubiquinated substrates. Inhibition of RPN13 produces a rapid, toxic accumulation of polyubiquitinated proteins in ovarian and other cancer cells, triggering apoptosis. Here, we sought to determine if RPN13 is available as a target in precursors of ovarian/fallopian tube cancer as well as all advanced cases, and the impact of increased ADRM1 gene copy number on sensitivity of ovarian cancer to RA190. METHODS ADRM1 mRNA was quantified by RNAscope in situ hybridization and RPN13 protein detected by immunohistochemistry in high grade serous carcinoma (HGSC) of the ovary and serous tubal intraepithelial carcinoma (STIC). Amplification of ADRM1 and sensitivity to RA190 were determined in ovarian cancer cell lines. RESULTS Here, we demonstrate that expression of ADRM1mRNA is significantly elevated in STIC and HGSC as compared to normal fallopian tube epithelium. ADRM1 mRNA and RPN13 were ubiquitously and robustly expressed in ovarian carcinoma tissue and cell lines. No correlation was found between ADRM1 amplification and sensitivity of ovarian cancer cell lines to RA190, but all were susceptible. CONCLUSIONS RPN13 can potentially be targeted by RA190 in both in situ and metastatic ovarian carcinoma. Ovarian cancer cell lines are sensitive to RA190 regardless of whether the ADRM1 gene is amplified.
Collapse
Affiliation(s)
- Rosie T Jiang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Anna Yemelyanova
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Deyin Xing
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Ravi K Anchoori
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Jeffrey D Seidman
- Division of Molecular Genetics and Pathology, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Tian-Li Wang
- Division of Gynecologic Pathology, The Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Richard B S Roden
- Department of Pathology, The Johns Hopkins University, Baltimore, MD, 21231, USA.
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, 21231, USA.
- Departments of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD, 21231, USA.
| |
Collapse
|
17
|
Díaz-Díaz A, Casas-Pais A, Calamia V, Castosa R, Martinez-Iglesias O, Roca-Lema D, Santamarina I, Valladares-Ayerbes M, Calvo L, Chantada V, Figueroa A. Proteomic Analysis of the E3 Ubiquitin-Ligase Hakai Highlights a Role in Plasticity of the Cytoskeleton Dynamics and in the Proteasome System. J Proteome Res 2017; 16:2773-2788. [PMID: 28675930 DOI: 10.1021/acs.jproteome.7b00046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carcinoma, the most common type of cancer, arises from epithelial cells. The transition from adenoma to carcinoma is associated with the loss of E-cadherin and, in consequence, the disruption of cell-cell contacts. E-cadherin is a tumor suppressor, and it is down-regulated during epithelial-to-mesenchymal transition (EMT); indeed, its loss is a predictor of poor prognosis. Hakai is an E3 ubiquitin-ligase protein that mediates E-cadherin ubiquitination, endocytosis and finally degradation, leading the alterations of cell-cell contacts. Although E-cadherin is the most established substrate for Hakai activity, other regulated molecular targets for Hakai may be involved in cancer cell plasticity during tumor progression. In this work we employed an iTRAQ approach to explore novel molecular pathways involved in Hakai-driven EMT during tumor progression. Our results show that Hakai may have an important influence on cytoskeleton-related proteins, extracellular exosome-associated proteins, RNA-related proteins and proteins involved in metabolism. Moreover, a profound decreased expression in several proteasome subunits during Hakai-driven EMT was highlighted. Since proteasome inhibitors are becoming increasingly used in cancer treatment, our findings suggest that the E3 ubiquitin-ligase, such as Hakai, may be a better target than proteasome for using novel specific inhibitors in tumor subtypes that follow EMT.
Collapse
Affiliation(s)
- Andrea Díaz-Díaz
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Valentina Calamia
- Proteomics Group-ProteoRed PRB2/ISCIII, INIBIC-CHUAC, UDC , 15006 A Coruña, Spain
| | - Raquel Castosa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Olaia Martinez-Iglesias
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Daniel Roca-Lema
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Isabel Santamarina
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Manuel Valladares-Ayerbes
- Clinical and Translational Oncology Group, Hospital Universitario Virgen del Rocio, Instituto de Investigación Biomédica de Sevilla (IBIS) , 41013 Sevilla, Spain
| | - Lourdes Calvo
- Clinical and Translational Oncology Group, Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas , 15006 A Coruña, Spain
| | - Venancio Chantada
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC) , 15006 A Coruña, Spain
| |
Collapse
|
18
|
Wu T, Chen W, Zhong Y, Hou X, Fang S, Liu CY, Wang G, Yu T, Huang YY, Ouyang X, Li HQX, Cui L, Yang Y. Nuclear Export of Ubiquitinated Proteins Determines the Sensitivity of Colorectal Cancer to Proteasome Inhibitor. Mol Cancer Ther 2016; 16:717-728. [PMID: 27903750 DOI: 10.1158/1535-7163.mct-16-0553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/02/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022]
Abstract
Although proteasome inhibitors such as bortezomib had significant therapeutic effects in multiple myeloma and mantel cell lymphoma, they exhibited minimal clinical activity as a monotherapy for solid tumors, including colorectal cancer. We found in this study that proteasome inhibition induced a remarkable nuclear exportation of ubiquitinated proteins. Inhibition of CRM1, the nuclear export carrier protein, hampered protein export and synergistically enhanced the cytotoxic action of bortezomib on colon cancer cells containing wild-type p53, which underwent G2-M cell-cycle block and apoptosis. Further analysis indicated that tumor suppressor p53 was one of the proteins exported from nuclei upon proteasome inhibition, and in the presence of CRM1 inhibitor KPT330, nuclear p53, and expression of its target genes were increased markedly. Moreover, knockdown of p53 significantly reduced the synergistic cytotoxic action of bortezomib and KPT330 on p53+/+ HCT116 cells. In mice, KPT330 markedly augmented the antitumor action of bortezomib against HCT116 xenografts as well as patient-derived xenografts that harbored functional p53. These results indicate that nuclear p53 is a major mediator in the synergistic antitumor effect of bortezomib and KPT330, and provides a rationale for the use of proteasome inhibitor together with nuclear export blocker in the treatment of colorectal cancer. It is conceivable that targeting nuclear exportation may serve as a novel strategy to overcome resistance and raise chemotherapeutic efficacy, especially for the drugs that activate the p53 system. Mol Cancer Ther; 16(4); 717-28. ©2016 AACR.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Wei Chen
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yongwang Zhong
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Xiaodan Hou
- Suzhou Institute of Systems Medicine, Center for Systems Medicine Research, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, P.R. China
| | - Shengyun Fang
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Chen-Ying Liu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Guanghui Wang
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Tong Yu
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | | | | | | | - Long Cui
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China.
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine Research, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, P.R. China.
| |
Collapse
|
19
|
Cyclin E as a potential therapeutic target in high grade serous ovarian cancer. Gynecol Oncol 2016; 143:152-158. [DOI: 10.1016/j.ygyno.2016.07.111] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/18/2022]
|
20
|
Singha B, Gatla HR, Phyo S, Patel A, Chen ZS, Vancurova I. IKK inhibition increases bortezomib effectiveness in ovarian cancer. Oncotarget 2016; 6:26347-58. [PMID: 26267322 PMCID: PMC4694906 DOI: 10.18632/oncotarget.4713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/08/2015] [Indexed: 12/25/2022] Open
Abstract
Ovarian cancer is associated with increased expression of the pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which induces tumor cell proliferation, angiogenesis, and metastasis. Even though bortezomib (BZ) has shown remarkable anti-tumor activity in hematological malignancies, it has been less effective in ovarian cancer; however, the mechanisms are not understood. We have recently shown that BZ unexpectedly induces the expression of IL-8 in ovarian cancer cells in vitro, by IκB kinase (IKK)-dependent mechanism. Here, we tested the hypothesis that IKK inhibition reduces the IL-8 production and increases BZ effectiveness in reducing ovarian tumor growth in vivo. Our results demonstrate that the combination of BZ and the IKK inhibitor Bay 117085 significantly reduces the growth of ovarian tumor xenografts in nude mice when compared to either drug alone. Mice treated with the BZ/Bay 117085 combination exhibit smallest tumors, and lowest levels of IL-8. Furthermore, the reduced tumor growth in the combination group is associated with decreased tumor levels of S536P-p65 NFκB and its decreased recruitment to IL-8 promoter in tumor tissues. These data provide the first in vivo evidence that combining BZ with IKK inhibitor is effective, and suggest that using IKK inhibitors may increase BZ effectiveness in ovarian cancer treatment.
Collapse
Affiliation(s)
- Bipradeb Singha
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | | | - Sai Phyo
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Atish Patel
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
21
|
Shukla N, Somwar R, Smith RS, Ambati S, Munoz S, Merchant M, D'Arcy P, Wang X, Kobos R, Antczak C, Bhinder B, Shum D, Radu C, Yang G, Taylor BS, Ng CKY, Weigelt B, Khodos I, de Stanchina E, Reis-Filho JS, Ouerfelli O, Linder S, Djaballah H, Ladanyi M. Proteasome Addiction Defined in Ewing Sarcoma Is Effectively Targeted by a Novel Class of 19S Proteasome Inhibitors. Cancer Res 2016; 76:4525-34. [PMID: 27256563 DOI: 10.1158/0008-5472.can-16-1040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/09/2016] [Indexed: 01/05/2023]
Abstract
Ewing sarcoma is a primitive round cell sarcoma with a peak incidence in adolescence that is driven by a chimeric oncogene created from the fusion of the EWSR1 gene with a member of the ETS family of genes. Patients with metastatic and recurrent disease have dismal outcomes and need better therapeutic options. We screened a library of 309,989 chemical compounds for growth inhibition of Ewing sarcoma cells to provide the basis for the development of novel therapies and to discover vulnerable pathways that might broaden our understanding of the pathobiology of this aggressive sarcoma. This screening campaign identified a class of benzyl-4-piperidone compounds that selectively inhibit the growth of Ewing sarcoma cell lines by inducing apoptosis. These agents disrupt 19S proteasome function through inhibition of the deubiquitinating enzymes USP14 and UCHL5. Functional genomic data from a genome-wide shRNA screen in Ewing sarcoma cells also identified the proteasome as a node of vulnerability in Ewing sarcoma cells, providing orthologous confirmation of the chemical screen findings. Furthermore, shRNA-mediated silencing of USP14 or UCHL5 in Ewing sarcoma cells produced significant growth inhibition. Finally, treatment of a xenograft mouse model of Ewing sarcoma with VLX1570, a benzyl-4-piperidone compound derivative currently in clinical trials for relapsed multiple myeloma, significantly inhibited in vivo tumor growth. Overall, our results offer a preclinical proof of concept for the use of 19S proteasome inhibitors as a novel therapeutic strategy for Ewing sarcoma. Cancer Res; 76(15); 4525-34. ©2016 AACR.
Collapse
Affiliation(s)
- Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roger S Smith
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sri Ambati
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stanley Munoz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melinda Merchant
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Padraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Xin Wang
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Rachel Kobos
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christophe Antczak
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - Bhavneet Bhinder
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - David Shum
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - Constantin Radu
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - Guangbin Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York. Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Inna Khodos
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden. Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Hakim Djaballah
- High-Throughput Drug Screening Facility, Memorial Sloan Kettering Cancer Center, New YorkNew York
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
22
|
Wilson AJ, Saskowski J, Barham W, Khabele D, Yull F. Microenvironmental effects limit efficacy of thymoquinone treatment in a mouse model of ovarian cancer. Mol Cancer 2015; 14:192. [PMID: 26552746 PMCID: PMC4640396 DOI: 10.1186/s12943-015-0463-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/23/2015] [Indexed: 01/01/2023] Open
Abstract
Background Ovarian cancer is the most lethal gynecologic malignancy, with limited treatment options for chemoresistant disease. An important link between inflammation and peritoneal spread of ovarian cancer is NF-κB signaling. Thymoquinone (TQ) exerts multiple anti-tumorigenic cellular effects, including NF-κB inhibition. We aimed to investigate the therapeutic potential of TQ in an established murine syngeneic model of ovarian cancer. Methods ID8-NGL mouse ovarian cancer cells stably expressing an NF-κB reporter transgene were injected intra-peritoneally into C57BL/6 mice, and mice were treated with TQ or vehicle for 10 or 30 days. TQ was combined with the macrophage depleting drug, liposomal clodronate, in selected experiments. Effects on peritoneal tumor burden were measured by volume of ascites, number of peritoneal implants and mesenteric tumor mass. NF-κB reporter activity and markers of proliferation and apoptosis were measured in tumors and in confirmatory in vitro experiments. Protein or mRNA expression of M1 (anti-tumor) and M2 (pro-tumor) macrophage markers, and soluble cytokine profiles, were examined from harvested ascites fluid, peritoneal lavages and/or tumor sections. 2-tailed Mann–Whitney tests were used for measuring differences between groups in in vivo experiments. Results Consistent with its effects in vitro, TQ reduced proliferation and increased apoptosis in ID8-NGL tumors after 10 and 30 day treatment. Prolonged TQ treatment did not significantly alter tumor number or mass compared to vehicle, but rather exerted an overall deleterious effect by stimulating ascites formation. Increased ascites was accompanied by elevated NF-κB activity in tumors and macrophages, increased pro-tumor M2 macrophages and expression of pro-tumorigenic soluble factors such as VEGF in ascites fluid, and increased tumor infiltration of M2 macrophages. In contrast, a 10 day exposure to TQ produced no ascites, and reduced tumor NF-κB activity, M2 macrophages and soluble VEGF levels. Peritoneal macrophage depletion by clodronate significantly reduced tumor burden. However, TQ-stimulated ascites was further enhanced by co-treatment with clodronate, with macrophages present overwhelmingly of the M2 phenotype. Conclusions Our findings show that pro-tumorigenic microenvironmental effects limited the efficacy of TQ in a syngeneic mouse model of ovarian cancer, and provide caution regarding its potential use in clinical trials in ovarian cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0463-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, B1100 Medical Center North, Nashville, TN, 37232, USA.
| | - Jeanette Saskowski
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Whitney Barham
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dineo Khabele
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fiona Yull
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
23
|
Song X, Dilly AK, Choudry HA, Bartlett DL, Kwon YT, Lee YJ. Hypoxia Promotes Synergy between Mitomycin C and Bortezomib through a Coordinated Process of Bcl-xL Phosphorylation and Mitochondrial Translocation of p53. Mol Cancer Res 2015; 13:1533-43. [PMID: 26354682 DOI: 10.1158/1541-7786.mcr-15-0237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Colorectal peritoneal carcinomatosis (CPC) exhibits severe tumor hypoxia, leading to drug resistance and disease aggressiveness. This study demonstrates that the combination of the chemotherapeutic agent mitomycin C with the proteasome inhibitor bortezomib induced synergistic cytotoxicity and apoptosis, which was even more effective under hypoxia in colorectal cancer cells. The combination of mitomycin C and bortezomib at sublethal doses induced activation of c-Jun NH2-terminal kinase and p38 mitogen-activated protein kinase and resulted in Bcl-xL phosphorylation at Serine 62, leading to dissociation of Bcl-xL from proapoptotic Bak. Interestingly, the intracellular level of p53 became elevated and p53 translocated to the mitochondria during the combinatorial treatment, in particular under hypoxia. The coordinated action of Bcl-xL phosphorylation and p53 translocation to the mitochondria resulted in conformational activation of Bak oligomerization, facilitating cytochrome c release and apoptosis induction. In addition, the combinatorial treatment with mitomycin C and bortezomib significantly inhibited intraperitoneal tumor growth in LS174T cells and increased apoptosis, especially under hypoxic conditions in vivo. This study provides a preclinical rationale for the use of combination therapies for CPC patients. IMPLICATIONS The combination of a chemotherapy agent and proteasome inhibitor at sublethal doses induced synergistic apoptosis, in particular under hypoxia, in vitro and in vivo through coordinated action of Bcl-xL and p53 on Bak activation.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ashok-Kumar Dilly
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haroon Asif Choudry
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
| | - Yong J Lee
- Department of Surgery, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
24
|
Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. J Ovarian Res 2015. [PMID: 26215403 PMCID: PMC4517540 DOI: 10.1186/s13048-015-0177-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most lethal gynecologic malignancy characterized by the frequent development of resistance to platinum chemotherapy. Finding new drug combinations to overcome platinum resistance is a key clinical challenge. Thymoquinone (TQ) is a component of black seed oil that exerts multiple anti-tumorigenic effects on cells, including inhibition of NF-κB and promotion of DNA damage. We aimed to determine whether TQ enhances cisplatin cytotoxicity in cultured ovarian cancer cells and in an established murine syngeneic model of ovarian cancer. METHODS Ovarian cancer cell viability in vitro was measured by sulforhodamine B (SRB) assays, and drug interactions tested for synergism by isobologram analysis. ID8-NGL mouse ovarian cancer cells stably expressing an NF-κB reporter transgene were injected intra-peritoneally into C57BL/6 mice. After 30 day TQ and/or cisplatin treatment, we measured the following indices: tumor burden (ascites volume, number of peritoneal implants and mesenteric tumor mass); NF-κB reporter activity (luciferase assay); protein expression of the double-strand DNA break marker, pH2AX(ser139), the proliferation markers, Ki67/mib-1 and PCNA, and the apoptosis markers, cleaved caspase-3, cleaved PARP and Bax; and mRNA expression of NF-κB targets, TNF-α and IL-1β. Two-tailed Mann-Whitney tests were used for measuring differences between groups in mouse experiments. RESULTS In SRB assays, TQ and cisplatin synergized in ID8-NGL cells. In mice, cisplatin significantly reduced cell proliferation and increased apoptosis in tumors, resulting in decreased overall tumor burden. Combining TQ with cisplatin further decreased these indices, indicating co-operative effects between the drugs. TQ treatment promoted cisplatin-induced pH2AX expression in cultured cells and in tumors. While NF-κB inhibition by TQ induced anti-tumor effects in vitro, we made the unexpected observation that TQ alone increased both tumor NF-κB activity and formation of ascites in vivo. CONCLUSIONS TQ enhanced cisplatin-mediated cytoxicity in ovarian cancer cells in vitro and in a mouse syngeneic model, effects associated with increased DNA damage. However, our results strongly caution that TQ treatment alone may have an overall deleterious effect in the immunocompetent host through stimulation of ascites. Since TQ is a potential candidate for future clinical trials in ovarian cancer patients, this finding has considerable potential relevance to the clinic.
Collapse
|
25
|
Abstract
The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonist, LDE225. Bortezomib, alone and in combination with LDE225, was evaluated for effects on paclitaxel efficacy. Cell viability and cell cycle analysis were assessed by MTT assay and propidium iodide staining, respectively. Proteasome activity and gene expression were determined by luminescence assay and qPCR, respectively. Studies demonstrated that GSI-I, but not Compound E, inhibited proteasome activity, similar to bortezomib. Proteasome inhibition decreased hedgehog target genes (PTCH1, GLI1 and GLI2) and increased LDE225 sensitivity in vitro. Bortezomib, alone and in combination with LDE225, increased paclitaxel sensitivity through apoptosis and G2/M arrest. Expression of the multi-drug resistance gene ABCB1/MDR1 was decreased and acetylation of α-tubulin, a marker of microtubule stabilization, was increased following bortezomib treatment. HDAC6 inhibitor tubastatin-a demonstrated that microtubule effects are associated with hedgehog inhibition and sensitization to paclitaxel and LDE225. These results suggest that proteasome inhibition, through alteration of microtubule dynamics and hedgehog signaling, can reverse taxane-mediated chemoresistance.
Collapse
|
26
|
Transcriptional regulation of chemokine expression in ovarian cancer. Biomolecules 2015; 5:223-43. [PMID: 25790431 PMCID: PMC4384120 DOI: 10.3390/biom5010223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/14/2022] Open
Abstract
The increased expression of pro-inflammatory and pro-angiogenic chemokines contributes to ovarian cancer progression through the induction of tumor cell proliferation, survival, angiogenesis, and metastasis. The substantial potential of these chemokines to facilitate the progression and metastasis of ovarian cancer underscores the need for their stringent transcriptional regulation. In this Review, we highlight the key mechanisms that regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that have important roles in controlling ovarian cancer progression. We further discuss the potential mechanisms underlying the increased chemokine expression in drug resistance, along with our perspective for future studies.
Collapse
|
27
|
Abstract
The destruction of proteins via the ubiquitin-proteasome system is a multi-step, complex process involving polyubiquitination of substrate proteins, followed by proteolytic degradation by the macromolecular 26S proteasome complex. Inhibitors of the proteasome promote the accumulation of proteins that are deleterious to cell survival, and represent promising anti-cancer agents. In multiple myeloma and mantle cell lymphoma, treatment with the first-generation proteasome inhibitor, bortezomib, or the second-generation inhibitor, carfilzomib, has demonstrated significant therapeutic benefit in humans. This has prompted United States Food and Drug Administration (US FDA) approval of these agents and development of additional second-generation compounds with improved properties. There is considerable interest in extending the benefits of proteasome inhibitors to the treatment of solid tumor malignancies. Herein, we review progress that has been made in the preclinical development and clinical evaluation of different proteasome inhibitors in solid tumors. In addition, we describe several novel approaches that are currently being pursued for the treatment of solid tumors, including drug combinatorial strategies incorporating proteasome inhibitors and the targeting of components of the ubiquitin-proteasome system that are distinct from the 26S proteasome complex.
Collapse
Affiliation(s)
- Daniel E Johnson
- Division of Hematology/OncologyDepartments of Medicine, and Pharmacology and Chemical Biology, University of Pittsburgh and the University of Pittsburgh Cancer Institute, Room 2.18c, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
28
|
|
29
|
Ando M, Hoyos V, Yagyu S, Tao W, Ramos CA, Dotti G, Brenner MK, Bouchier-Hayes L. Bortezomib sensitizes non-small cell lung cancer to mesenchymal stromal cell-delivered inducible caspase-9-mediated cytotoxicity. Cancer Gene Ther 2014; 21:472-482. [PMID: 25323693 DOI: 10.1038/cgt.2014.53] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023]
Abstract
Delivery of suicide genes to solid tumors represents a promising tumor therapy strategy. However, slow or limited killing by suicide genes and ineffective targeting of the tumor has reduced effectiveness. We have adapted a suicide system based on an inducible caspase-9 (iC9) protein that is activated using a specific chemical inducer of dimerization (CID) for adenoviral-based delivery to lung tumors via mesenchymal stromal cells (MSCs). Four independent human non-small cell lung cancer (NSCLC) cell lines were transduced with adenovirus encoding iC9, and all underwent apoptosis when iC9 was activated by adding CID. However, there was a large variation in the percentage of cell killing induced by CID across the different lines. The least responsive cell lines were sensitized to apoptosis by combined inhibition of the proteasome using bortezomib. These results were extended to an in vivo model using human NSCLC xenografts. E1A-expressing MSCs replicated Ad.iC9 and delivered the virus to lung tumors in SCID mice. Treatment with CID resulted in some reduction of tumor growth, but addition of bortezomib led to greater reduction of tumor size. The enhanced apoptosis and anti-tumor effect of combining MSC-delivered Ad.iC9, CID and bortezomib appears to be due to increased stabilization of active caspase-3, as proteasomal inhibition increased the levels of cleaved caspase-9 and caspase-3. Knockdown of X-linked inhibitor of apoptosis protein (XIAP), a caspase inhibitor that targets active caspase-3 to the proteasome, also sensitized iC9-transduced cells to CID, suggesting that blocking the proteasome counteracts XIAP to permit apoptosis. Thus, MSC-based delivery of the iC9 suicide gene to human NSCLC effectively targets lung cancer cells for elimination. Combining this therapy with bortezomib, a drug that is otherwise inactive in this disease, further enhances the anti-tumor activity of this strategy.
Collapse
Affiliation(s)
- Miki Ando
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Shigeki Yagyu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Wade Tao
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA
| | - Lisa Bouchier-Hayes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital, Houston, Texas, USA.,Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
30
|
Wiedemeyer WR, Beach JA, Karlan BY. Reversing Platinum Resistance in High-Grade Serous Ovarian Carcinoma: Targeting BRCA and the Homologous Recombination System. Front Oncol 2014. [PMID: 24624361 DOI: 10.3389/fonc.2014.00034]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resistance to platinum chemotherapy is one of the main factors driving ovarian cancer mortality, and overcoming platinum resistance is considered one of the greatest challenges in ovarian cancer research. Genetic and functional evidence points to the homologous recombination (HR) DNA repair system, and BRCA1 and BRCA2 in particular, as main determinants of response to platinum therapy. BRCA-mutant ovarian cancers are especially sensitive to platinum, associated with better survival, and amenable to poly ADP ribose polymerase inhibitor treatment. Here, we discuss a therapeutic concept that seeks to disrupt HR capacity via targeting of BRCA1 and BRCA2 functionality in order to reverse platinum resistance in BRCA-proficient high-grade serous ovarian cancers (HGSOC). We review the molecular signaling pathways that converge on BRCA1 and BRCA2, their activation status in ovarian cancer, and therapeutic options to modulate BRCA function. Several recent publications demonstrate efficient chemosensitization of BRCA-proficient cancers by combining targeted therapy with standard platinum-based agents. Due to its inherent genomic heterogeneity, molecularly defined subgroups of HGSOC may require different approaches. We seek to provide an overview of available agents and their potential use to reverse platinum resistance by inhibiting the HR system, either directly or indirectly, by targeting oncogenic activators of HR.
Collapse
Affiliation(s)
- W Ruprecht Wiedemeyer
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA ; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| | - Jessica A Beach
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA ; Graduate Program in Biomedical Sciences and Translational Medicine, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Beth Y Karlan
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA ; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
31
|
Wiedemeyer WR, Beach JA, Karlan BY. Reversing Platinum Resistance in High-Grade Serous Ovarian Carcinoma: Targeting BRCA and the Homologous Recombination System. Front Oncol 2014. [PMID: 24624361 DOI: 10.3389/fonc.2014.00034] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Resistance to platinum chemotherapy is one of the main factors driving ovarian cancer mortality, and overcoming platinum resistance is considered one of the greatest challenges in ovarian cancer research. Genetic and functional evidence points to the homologous recombination (HR) DNA repair system, and BRCA1 and BRCA2 in particular, as main determinants of response to platinum therapy. BRCA-mutant ovarian cancers are especially sensitive to platinum, associated with better survival, and amenable to poly ADP ribose polymerase inhibitor treatment. Here, we discuss a therapeutic concept that seeks to disrupt HR capacity via targeting of BRCA1 and BRCA2 functionality in order to reverse platinum resistance in BRCA-proficient high-grade serous ovarian cancers (HGSOC). We review the molecular signaling pathways that converge on BRCA1 and BRCA2, their activation status in ovarian cancer, and therapeutic options to modulate BRCA function. Several recent publications demonstrate efficient chemosensitization of BRCA-proficient cancers by combining targeted therapy with standard platinum-based agents. Due to its inherent genomic heterogeneity, molecularly defined subgroups of HGSOC may require different approaches. We seek to provide an overview of available agents and their potential use to reverse platinum resistance by inhibiting the HR system, either directly or indirectly, by targeting oncogenic activators of HR.
Collapse
Affiliation(s)
- W Ruprecht Wiedemeyer
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA ; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| | - Jessica A Beach
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA ; Graduate Program in Biomedical Sciences and Translational Medicine, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Beth Y Karlan
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA ; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
32
|
Wiedemeyer WR, Beach JA, Karlan BY. Reversing Platinum Resistance in High-Grade Serous Ovarian Carcinoma: Targeting BRCA and the Homologous Recombination System. Front Oncol 2014; 4:34. [PMID: 24624361 PMCID: PMC3939430 DOI: 10.3389/fonc.2014.00034] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/11/2014] [Indexed: 11/26/2022] Open
Abstract
Resistance to platinum chemotherapy is one of the main factors driving ovarian cancer mortality, and overcoming platinum resistance is considered one of the greatest challenges in ovarian cancer research. Genetic and functional evidence points to the homologous recombination (HR) DNA repair system, and BRCA1 and BRCA2 in particular, as main determinants of response to platinum therapy. BRCA-mutant ovarian cancers are especially sensitive to platinum, associated with better survival, and amenable to poly ADP ribose polymerase inhibitor treatment. Here, we discuss a therapeutic concept that seeks to disrupt HR capacity via targeting of BRCA1 and BRCA2 functionality in order to reverse platinum resistance in BRCA-proficient high-grade serous ovarian cancers (HGSOC). We review the molecular signaling pathways that converge on BRCA1 and BRCA2, their activation status in ovarian cancer, and therapeutic options to modulate BRCA function. Several recent publications demonstrate efficient chemosensitization of BRCA-proficient cancers by combining targeted therapy with standard platinum-based agents. Due to its inherent genomic heterogeneity, molecularly defined subgroups of HGSOC may require different approaches. We seek to provide an overview of available agents and their potential use to reverse platinum resistance by inhibiting the HR system, either directly or indirectly, by targeting oncogenic activators of HR.
Collapse
Affiliation(s)
- W Ruprecht Wiedemeyer
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA ; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| | - Jessica A Beach
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA ; Graduate Program in Biomedical Sciences and Translational Medicine, Cedars-Sinai Medical Center , Los Angeles, CA , USA
| | - Beth Y Karlan
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles, CA , USA ; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
33
|
Uno M, Saitoh Y, Mochida K, Tsuruyama E, Kiyono T, Imoto I, Inazawa J, Yuasa Y, Kubota T, Yamaoka S. NF-κB inducing kinase, a central signaling component of the non-canonical pathway of NF-κB, contributes to ovarian cancer progression. PLoS One 2014; 9:e88347. [PMID: 24533079 PMCID: PMC3922808 DOI: 10.1371/journal.pone.0088347] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/12/2014] [Indexed: 11/19/2022] Open
Abstract
Ovarian cancer is one of the leading causes of female death and the development of novel therapeutic approaches is urgently required. Nuclear factor-κB (NF-κB) is constitutively activated in several types of cancer including ovarian cancer and is known to support the survival of cancer cells. However, molecular mechanisms of persistent activation of NF-κB in ovarian cancer remain largely unknown. We report here that, in addition to the previously reported canonical activation, NF-κB is activated through the noncanonical pathway in ovarian cancer cells. RNA interference-mediated silencing of NF-κB inducing kinase (NIK), a central regulator of the noncanonical pathway, reduced the NF-κB2/p52 DNA binding activity and NF-κB-dependent reporter gene expression as well as NF-κB target gene expression. Notably, anchorage-dependent and -independent cell growth was impaired in NIK-depleted cells. Depletion of NIK also suppressed tumor formation in the nude mouse xenograft assay. These results indicate that NIK plays a key role in constitutive NF-κB activation and the progression of ovarian cancer cells and suggest that NIK represents an attractive therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Masaya Uno
- Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunori Saitoh
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kanako Mochida
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eri Tsuruyama
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tohru Kiyono
- Virology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhito Yuasa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshiro Kubota
- Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoji Yamaoka
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
34
|
Van Nieuwenhuysen E, Lambrechts S, Lambrechts D, Leunen K, Amant F, Vergote I. Genetic changes in nonepithelial ovarian cancer. Expert Rev Anticancer Ther 2014; 13:871-82. [DOI: 10.1586/14737140.2013.811174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Singha B, Gatla HR, Manna S, Chang TP, Sanacora S, Poltoratsky V, Vancura A, Vancurova I. Proteasome inhibition increases recruitment of IκB kinase β (IKKβ), S536P-p65, and transcription factor EGR1 to interleukin-8 (IL-8) promoter, resulting in increased IL-8 production in ovarian cancer cells. J Biol Chem 2013; 289:2687-700. [PMID: 24337575 DOI: 10.1074/jbc.m113.502641] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proinflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8) contributes to ovarian cancer progression through its induction of tumor cell proliferation, survival, angiogenesis, and metastasis. Proteasome inhibition by bortezomib, which has been used as a frontline therapy in multiple myeloma, has shown only limited effectiveness in ovarian cancer and other solid tumors. However, the responsible mechanisms remain elusive. Here, we show that proteasome inhibition dramatically increases the IL-8 expression and release in ovarian cancer cells. The responsible mechanism involves an increased nuclear accumulation of IκB kinase β (IKKβ) and an increased recruitment of the nuclear IKKβ, p65-phosphorylated at Ser-536, and the transcription factor early growth response-1 (EGR-1) to the endogenous IL-8 promoter. Coimmunoprecipitation studies identified the nuclear EGR-1 associated with IKKβ and with p65, with preferential binding to S536P-p65. Both IKKβ activity and EGR-1 expression are required for the increased IL-8 expression induced by proteasome inhibition in ovarian cancer cells. Interestingly, in multiple myeloma cells the IL-8 release is not increased by bortezomib. Together, these data indicate that the increased IL-8 release may represent one of the underlying mechanisms responsible for the decreased effectiveness of proteasome inhibition in ovarian cancer treatment and identify IKKβ and EGR-1 as potential new targets in ovarian cancer combination therapies.
Collapse
|
36
|
Synthetic lethality between CCNE1 amplification and loss of BRCA1. Proc Natl Acad Sci U S A 2013; 110:19489-94. [PMID: 24218601 DOI: 10.1073/pnas.1314302110] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-grade serous ovarian cancers (HGSCs) are characterized by a high frequency of TP53 mutations, BRCA1/2 inactivation, homologous recombination dysfunction, and widespread copy number changes. Cyclin E1 (CCNE1) gene amplification has been reported to occur independently of BRCA1/2 mutation, and it is associated with primary treatment failure and reduced patient survival. Insensitivity of CCNE1-amplified tumors to platinum cross-linking agents may be partly because of an intact BRCA1/2 pathway. Both BRCA1/2 dysfunction and CCNE1 amplification are known to promote genomic instability and tumor progression. These events may be mutually exclusive, because either change provides a path to tumor development, with no selective advantage to having both mutations. Using data from a genome-wide shRNA synthetic lethal screen, we show that BRCA1 and members of the ubiquitin pathway are selectively required in cancers that harbor CCNE1 amplification. Furthermore, we show specific sensitivity of CCNE1-amplified tumor cells to the proteasome inhibitor bortezomib. These findings provide an explanation for the observed mutual exclusivity of CCNE1 amplification and BRCA1/2 loss in HGSC and suggest a unique therapeutic approach for treatment-resistant CCNE1-amplified tumors.
Collapse
|
37
|
Clinical outcome and prognostic markers for patients with gynecologic malignancies in phase 1 clinical trials: A single institution experience from 1999 to 2010. Gynecol Oncol 2013; 131:163-8. [DOI: 10.1016/j.ygyno.2013.07.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 11/22/2022]
|
38
|
Kobrinsky B, Joseph SO, Muggia F, Liebes L, Beric A, Malankar A, Ivy P, Hochster H. A phase I and pharmacokinetic study of oxaliplatin and bortezomib: activity, but dose-limiting neurotoxicity. Cancer Chemother Pharmacol 2013; 72:1073-8. [PMID: 24048674 DOI: 10.1007/s00280-013-2295-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/06/2013] [Indexed: 12/27/2022]
Abstract
PURPOSE The potential synergy of modulating platinum-induced DNA damage by combining the proteasome inhibitor bortezomib with oxaliplatin was studied in patients with solid tumors, with special attention to avoidance of cumulative neurotoxicity (NT). PATIENTS AND METHODS In a 3 + 3 dose escalation design, patients received bortezomib at 1.0-1.5 mg/m² on days 1 and 4 and oxaliplatin at 60-85 mg/m² on day 1 of a 14-day cycle. NT assessments were performed at the start of every two cycles. Oxaliplatin pharmacokinetics (PK) were determined pre- and post-bortezomib. RESULTS Thirty patients were enrolled with 25 (11 men, 14 women) fully evaluable for NT assessments at cycle 2. The median age was 56 years (range 35-74 years); median number of cycles received 2 (range 1-10). At dose levels 2-5 (B 1.3 mg/m²), patients manifested NT grades 3 and 4 at a median 3.4 cycles (range 2-9 cycles): 3 had ataxia (one also with sensory neuropathy or neurogenic hypotension, respectively) and 3 had just sensory neuropathy. A 6th dose-level reducing bortezomib to 1.0 mg/m² with oxaliplatin 85 mg/m²) was explored and no NT or dose limiting toxicities were noted among 7 evaluable patients (5 receiving two or more cycles). Four patients experienced a partial response--one with platinum-resistant ovarian cancer, another with gastroesophageal cancer, another with ampulla of Vater carcinoma, and a patient with cholangiocarcinoma. PK studies at dose levels 1 and 2 showed greater mean ultrafiltrable platinum when oxaliplatin was dosed after bortezomib. CONCLUSIONS Bortezomib 1.0 mg/m² × 2 every 14 days combines safely with oxaliplatin. At higher doses, cumulative NT (i.e., cerebellar signs and sensory neuropathy) occurs at an accelerated pace perhaps from a PK interaction.
Collapse
Affiliation(s)
- B Kobrinsky
- Division of Hematology and Oncology, NYU School of Medicine, 550 First Avenue, OBV C&D Bldg Rm 556, New York, NY, 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Papadopoulos KP, Burris HA, Gordon M, Lee P, Sausville EA, Rosen PJ, Patnaik A, Cutler RE, Wang Z, Lee S, Jones SF, Infante JR. A phase I/II study of carfilzomib 2-10-min infusion in patients with advanced solid tumors. Cancer Chemother Pharmacol 2013; 72:861-8. [PMID: 23975329 PMCID: PMC3784064 DOI: 10.1007/s00280-013-2267-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/08/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE Tolerability, pharmacokinetics (PK), pharmacodynamics, and antitumor activity of carfilzomib, a selective proteasome inhibitor, administered twice weekly by 2-10-min intravenous (IV) infusion on days 1, 2, 8, 9, 15, and 16 in 28-day cycles, were assessed in patients with advanced solid tumors in this phase I/II study. METHODS Adult patients with solid tumors progressing after ≥1 prior therapies were enrolled. The dose was 20 mg/m(2) in week 1 of cycle 1 and 20, 27, or 36 mg/m(2) thereafter. The maximum tolerated dose or protocol-defined maximum planned dose (MPD) identified during dose escalation was administered to an expansion cohort and to patients with small cell lung, non-small cell lung, ovarian, and renal cancer in phase II tumor-specific cohorts. RESULTS Fourteen patients received carfilzomib during dose escalation. The single dose-limiting toxicity at 20/36 mg/m(2) was grade 3 fatigue, establishing the MPD as the expansion and phase II dose. Sixty-five additional patients received carfilzomib at the MPD. Adverse events included fatigue, nausea, anorexia, and dyspnea. Carfilzomib PK was dose proportional with a half-life <1 h. All doses resulted in at least 80 % proteasome inhibition in blood. Partial responses occurred in two patients in phase I, with 21.5 % stable disease after four cycles in evaluable patients in the expansion and phase II cohorts. CONCLUSION Carfilzomib 20/36 mg/m(2) was well tolerated when administered twice weekly by 2-10-min IV infusion. At this dose and infusion rate, carfilzomib inhibited the proteasome in blood but demonstrated limited antitumor activity in patients with advanced solid tumors.
Collapse
Affiliation(s)
- Kyriakos P Papadopoulos
- South Texas Accelerated Research Therapeutics (START), 4383 Medical Dr, Room 4042, San Antonio, TX, 78229, USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Phase II study of gemcitabine in combination with regional arterial infusion of nafamostat mesilate for advanced pancreatic cancer. Am J Clin Oncol 2013; 36:44-8. [PMID: 22157216 DOI: 10.1097/coc.0b013e31823a53b2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE To evaluate the efficacy of regional arterial infusion of the synthetic serine protease inhibitor nafamostat mesilate combined with gemcitabine for the treatment of patients with unresectable locally advanced or metastatic pancreatic cancer. MATERIALS AND METHODS A single-arm, single center, institutional review board-approved phase II trial was conducted. Thirty-five of 38 consecutive patients were included in the study. Patients received nafamostat mesilate (4.8 mg/kg continuous regional arterial infusion) with gemcitabine (1000 mg/m intravenously) on days 1, 8, and 15. This treatment was repeated at 28-day intervals. The primary endpoints were to evaluate overall survival and 1-year survival rate. The secondary endpoints were to assess therapeutic response and clinical benefit response. Overall survival times were estimated by the Kaplan-Meier survival analysis. RESULTS The median survival time was 10.0 months, and the 1-year survival rate was 40.0%. The response rate and disease control rate were 17.1% and 88.6%, respectively. A fraction of 25% of the patients who required opioids for cancer-related pain could reduce their opioid intake, and 37.1% of the patients showed healthy weight gain. Among the patients with metastatic pancreatic cancer, the median survival time was 9.0 months, and the 1-year survival rate was 32.0%. The proposed regimen offers an economic advantage compared with recent therapy regimens that have shown significant improvements in median survival over standard chemotherapy with gemcitabine. CONCLUSIONS An alternative regimen for unresectable pancreatic cancer, especially for metastatic pancreatic cancer, is proposed based on acceptable survival time, clinical benefit, and cost advantage.
Collapse
|
41
|
Phosphorylation of signal transducer and activator of transcription 1 reduces bortezomib-mediated apoptosis in cancer cells. Cell Death Dis 2013; 4:e512. [PMID: 23449448 PMCID: PMC3734825 DOI: 10.1038/cddis.2013.38] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potent and selective proteasome inhibitor bortezomib has shown remarkable antitumor activity and is now entering clinical trials for several cancers. However, the molecular mechanisms by which bortezomib induces cytotoxicity in ovarian cancer cells still remain unclear. In this study, we show that bortezomib induced apoptosis, which was demonstrated by the downregulation of antiapoptotic molecules (Bcl-2, Bcl-XL, p-Bad, and p-AKT) and the upregulation of proapoptotic proteins (p21, p27, and cleaved-Bid) in ovarian cancer cell lines. Moreover, bortezomib stimulates Janus kinase (JAK) phosphorylation and activates heat-shock transcription factor-1 (HSF-1) and heat-shock protein 70 (HSP70), ultimately leading to signal transducer and activator of transcription 1 (STAT1) phosphorylation. Phosphorylated STAT1 partially counteracted apoptosis induced by bortezomib in cancer cells. These findings suggest that the antitumor activity of bortezomib in ovarian cancer can be improved by inhibiting bortezomib-induced STAT1 phosphorylation. This effect can be achieved by STAT1 knockdown, HSP70 knockdown, JAK inhibition, or the addition of cisplatin, one of the most commonly used anticancer drugs. These results provide the first evidence that STAT1 phosphorylation can play a role in bortezomib resistance by exerting antiapoptotic effects. They also suggest the possibility to abolish or reduce bortezomib chemoresistance in ovarian cancer by the addition of cisplatin or JAK inhibitors.
Collapse
|
42
|
Brem GJ, Mylonas I, Brüning A. Eeyarestatin causes cervical cancer cell sensitization to bortezomib treatment by augmenting ER stress and CHOP expression. Gynecol Oncol 2012; 128:383-90. [PMID: 23107612 DOI: 10.1016/j.ygyno.2012.10.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/13/2012] [Accepted: 10/20/2012] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The proteasome inhibitor bortezomib is currently being tested in clinical trials against refractory cervical cancer. However, high doses of bortezomib are associated with adverse effects, which may lead to treatment abrogation or to the use of lower, ineffective doses. We investigated combination drug treatments that could enhance the efficacy of low bortezomib concentrations on cervical cancer cells. METHODS The cervical cancer cell lines CaSki, HeLa and SW756 were treated with various combinations of bortezomib and eeyarestatin. Treated cells were analyzed for cell viability by clonal assays and the MTT assay, and for expression of pro-apoptotic proteins and cell stress markers by immunofluorescence, immunoblots and RT-PCR analysis. RESULTS Cotreatment of bortezomib with eeyarestatin markedly enhanced cell death in cervical cancer cells, allowing reduction of the bortezomib concentration necessary for efficient cell death to as low as 5 ng/ml. Combination of bortezomib with eeyarestatin resulted in a massive induction of the endoplasmic reticulum stress reaction, small and large heat shock protein activation, autophagy, and upregulation of pro-apoptotic CHOP. CONCLUSION Eeyarestatin is a small molecule recently shown to cause endoplasmic reticulum stress by inhibiting the endoplasmic reticulum-associated degradation pathway, which directs misfolded cytotoxic proteins to proteasomal degradation. Concomitant inhibition of both pathways markedly enhances the efficacy of bortezomib against cervical cancer cells and thus may be applied to reduce the bortezomib dosage required for efficient cervical cancer treatment.
Collapse
Affiliation(s)
- German J Brem
- Department of Obstetrics and Gynecology, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
43
|
Itamochi H, Kigawa J. Clinical trials and future potential of targeted therapy for ovarian cancer. Int J Clin Oncol 2012; 17:430-40. [PMID: 22926640 DOI: 10.1007/s10147-012-0459-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 11/30/2022]
Abstract
Ovarian cancer is the leading cause of death in women with gynecological cancer. Most patients are diagnosed at an advanced stage with a poor prognosis. Currently, surgical tumor debulking followed by chemotherapy based on platinum and taxane is the standard treatment for advanced disease. However, these patients remain at great risk for recurrence and developing drug resistance. Therefore, new treatment strategies are needed to improve outcomes for patients with advanced and recurrent ovarian cancer. Several agents targeted at particular molecules have been developed for ovarian cancer and are now entering clinical trials. The functional targets of these agents are aberrations in tumor tissues including angiogenesis, the human epidermal growth factor receptor family, poly(ADP-ribose) polymerase (PARP), mammalian target of rapamycin (mTOR) signaling pathway, and α-folate receptor (α-FR). The anti-angiogenic compound bevacizumab has been reported as the most effective targeted agent. Bevacizumab plus chemotherapy prolonged progression-free survival (PFS) both for advanced and platinum-sensitive recurrent ovarian cancer, but did not increase overall survival. A PARP inhibitor, olaparib, applied as maintenance treatment also improved PFS in platinum-sensitive relapsed ovarian cancer. Furthermore, mTOR inhibitors and a monoclonal antibody to α-FR, farletuzumab, are attractive treatment strategies either alone or combined with chemotherapy. Understanding the tumor molecular biology and identifying predictive biomarkers are essential steps in selecting the best treatment strategies. This article reviews available clinical data on the most promising targeted agents for ovarian cancer.
Collapse
Affiliation(s)
- Hiroaki Itamochi
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishicho, Yonago 683-8504, Japan.
| | | |
Collapse
|
44
|
Abstract
In May 2003, the US Food and Drug Administration (FDA) granted accelerated approval for the use of the first-in-class proteasome inhibitor bortezomib as a third-line therapy in multiple myeloma, and the European Union followed suit a year later. Bortezomib has subsequently been approved for multiple myeloma as a second-line treatment on its own and as a first-line therapy in combination with an alkylating agent and a corticosteroid. Furthermore, bortezomib has also been approved as a second-line therapy for mantle cell lymphoma. In this chapter, the focus is on the current clinical research on bortezomib, its adverse effects, and the resistance of multiple myeloma patients to bortezomib-based therapy. The various applications of bortezomib in different diseases and recent advances in the development of a new generation of inhibitors that target the proteasome or other parts of the ubiquitin-proteasome system are also reviewed.
Collapse
Affiliation(s)
- Boris Cvek
- Department of Cell Biology & Genetics, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
45
|
Taylor-Harding B, Agadjanian H, Nassanian H, Kwon S, Guo X, Miller C, Karlan BY, Orsulic S, Walsh CS. Indole-3-carbinol synergistically sensitises ovarian cancer cells to bortezomib treatment. Br J Cancer 2011; 106:333-43. [PMID: 22166800 PMCID: PMC3261668 DOI: 10.1038/bjc.2011.546] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bortezomib is a proteasome inhibitor with minimal clinical activity as a monotherapy in solid tumours, but its combination with other targeted therapies is being actively investigated as a way to increase its anticarcinogenic properties. Here, we evaluate the therapeutic potential of co-treatment with bortezomib and indole-3-carbinol (I3C), a natural compound found in cruciferous vegetables, in human ovarian cancer. METHODS We examined the effects of I3C, bortezomib and cisplatin in several human ovarian cancer cell lines. Synergy was determined using proliferation assays and isobologram analysis. Cell cycle and apoptotic effects were assessed by flow cytometry. The mechanism of I3C and bortezomib action was determined by RNA microarray studies, quantitative RT-PCR and western blotting. Antitumour activity of I3C and bortezomib was evaluated using an OVCAR5 xenograft mouse model. RESULTS I3C sensitised ovarian cancer cell lines to bortezomib treatment through potent synergistic mechanisms. Combination treatment with bortezomib and I3C led to profound cell cycle arrest and apoptosis as well as disruptions to multiple pathways, including those regulating endoplasmic reticulum stress, cytoskeleton, chemoresistance and carcinogen metabolism. Moreover, I3C and bortezomib co-treatment sensitised ovarian cancer cells to the standard chemotherapeutic agents, cisplatin and carboplatin. Importantly, in vivo studies demonstrated that co-treatment with I3C and bortezomib significantly inhibited tumour growth and reduced tumour weight compared with either drug alone. CONCLUSION Together, these data provide a novel rationale for the clinical application of I3C and bortezomib in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- B Taylor-Harding
- Women's Cancer Program and Division of Gynecologic Oncology, Burns and Allen Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Behbakht K, Sill MW, Darcy KM, Rubin SC, Mannel RS, Waggoner S, Schilder RJ, Cai KQ, Godwin AK, Alpaugh RK. Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent and recurrent epithelial ovarian and primary peritoneal malignancies: a Gynecologic Oncology Group study. Gynecol Oncol 2011; 123:19-26. [PMID: 21752435 PMCID: PMC3336961 DOI: 10.1016/j.ygyno.2011.06.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Patients with persistent/recurrent epithelial ovarian cancer/primary peritoneal cancer (EOC/PPC) have limited treatment options. AKT and PI3K pathway activation is common in EOC/PPC, resulting in constitutive activation of downstream mTOR. The GOG conducted a phase II evaluation of efficacy and safety for the mTOR inhibitor, temsirolimus in EOC/PPC and explored circulating tumor cells (CTC) and AKT/mTOR/downstream tumor markers. METHODS Eligible women with measurable, persistent/recurrent EOC/PPC who had received 1-3 prior regimens were treated with 25mg weekly IV temsirolimus until progression or intolerable toxicity. Primary endpoints were progression-free survival (PFS) ≥6-months, tumor response, and toxicity. CellSearch® system was used to examine CTC, and AKT/mTOR/downstream markers were evaluated by archival tumor immunohistochemistry. Kendall's tau-b correlation coefficient (r) and Cox regression modeling were used to explore marker associations with baseline characteristics and outcome. RESULTS Sixty patients were enrolled in a two-stage sequential design. Of 54 eligible and evaluable patients, 24.1% (90% CI 14.9%-38.6%) had PFS ≥6 months (median 3.1 months), 9.3% (90% CI 3.7%-23.4%) experienced a partial response. Grade 3/4 adverse events included metabolic (8), gastrointestinal (8), pain (6), constitutional (5) and pulmonary (4). Suggested associations were between cyclin D1 and PFS ≥6 months, PFS or survival; positive CTC pre-treatment and lack of response; and high CTC expression of M30 and PFS ≥6 months/longer PFS. CONCLUSIONS Temsirolimus appears to have modest activity in persistent/recurrent EOC/PPC; however, PFS is just below that required to warrant inclusion in phase III studies in unselected patients. Cyclin D1 as a selection marker and CTC measures merit further study.
Collapse
Affiliation(s)
| | - Michael W. Sill
- GOG Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, NY
- Department of Biostatistics, SUNY at Buffalo, Buffalo, NY
| | - Kathleen M. Darcy
- GOG Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, NY
| | | | | | | | - Russell J. Schilder
- Department of Pathology and Laboratory Medicine, the University of Kansas Medical Center, Kansas City, KS
| | - Kathy Q. Cai
- Department of Pathology and Laboratory Medicine, the University of Kansas Medical Center, Kansas City, KS
| | - Andrew K. Godwin
- Protocol Support Laboratory, Fox Chase Cancer Center, Philadelphia, PA
| | | |
Collapse
|
47
|
Byrn SR, Tishmack PA, Milton MJ, van de Velde H. Analysis of two commercially available bortezomib products: differences in assay of active agent and impurity profile. AAPS PharmSciTech 2011; 12:461-7. [PMID: 21455817 PMCID: PMC3134677 DOI: 10.1208/s12249-010-9554-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 11/30/2010] [Indexed: 11/30/2022] Open
Abstract
The analytical properties of two commercially available bortezomib products (VELCADE® and Bortenat) were compared using nuclear magnetic resonance, mass spectrometry, high-performance liquid chromatography, and gas chromatography. The data showed differences between the two products. Based on these data, Bortenat samples contained more active ingredients than indicated by the label (mean, 116.5% and 117.9% of label, in 2-mg and 3.5-mg vials, respectively). In comparison, VELCADE samples contained a mean of 99.3% of active ingredient, which was consistent with the approved specification range (US, 90–110%; EU, 95–105%). Clinical data demonstrate that patients exposed to higher than recommended doses of bortezomib on the standard twice-weekly dosing schedule are likely to have an increased risk of major toxicities. Bortenat 2-mg vials contained an isovaleraldehyde impurity; the origin of this is unknown. Additionally, the ratio of boronic acid to boronic ester differed between Bortenat 2 mg (0.27:1) and 3.5 mg (0.13:1) and VELCADE (0.10:1) samples reconstituted in saline indicating that the Bortenat product is not equivalent to the VELCADE product.
Collapse
|
48
|
Schlumbrecht MP, Xie SS, Shipley GL, Urbauer DL, Broaddus RR. Molecular clustering based on ERα and EIG121 predicts survival in high-grade serous carcinoma of the ovary/peritoneum. Mod Pathol 2011; 24:453-62. [PMID: 21102415 PMCID: PMC3058634 DOI: 10.1038/modpathol.2010.211] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Assessment of estrogen receptor (ER) expression by immunohistochemistry has yielded inconsistent results as a prognostic indicator in ovarian carcinoma. In breast and endometrial carcinomas, panels of estrogen-induced genes have shown improved prognostic capability over the use of ER immunohistochemistry alone. For both breast and endometrial cancers, overexpression of estrogen-induced genes is associated with better prognosis. We hypothesized that analysis of a panel of estrogen-induced genes can predict the outcome in ovarian carcinoma and potentially differentiate between tumors of varying hormonal responsiveness. From a cohort of 219 women undergoing ovarian cancer surgery from 2004 to 2007, 83 patients were selected for inclusion. All patients had advanced stage ovarian/primary peritoneal high-grade serous carcinoma and underwent primary surgical debulking, followed by adjuvant treatment with platinum and taxane agents. The expression of ERα and six genes known to be induced by estrogen in the female reproductive tract (namely EIG121, sFRP1, sFRP4, RALDH2, PR, and IGF-1) was measured using quantitative RT-PCR. Unsupervised cluster analyses were used to categorize patients as high or low gene expressors. Gene expression results were then compared with those for ER immunohistochemistry. Clusters were compared using χ(2) analyses, and Cox proportional hazards models were used to evaluate survival outcomes. The median follow-up time was 38.7 months (range: 1-68). A cluster defined by EIG121 and ERα segregated tumors into distinct groups of high and low gene expressors. Shorter overall survival (OS) was associated with high gene expression (HR 2.84 (1.11-7.30), P=0.03), even after adjustment for other covariates. No difference in ER immunohistochemistry expression was noted between gene clusters. In contrast to other hormonally driven cancers, high expression of ERα and the estrogen-induced gene EIG121 predicts shorter OS in patients with high-grade serous ovarian carcinoma. Such a biomarker panel may potentially be used to guide management with estrogen antagonists in this patient population.
Collapse
Affiliation(s)
- Matthew P. Schlumbrecht
- Department of Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Su-Su Xie
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Gregory L. Shipley
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX
| | - Diana L. Urbauer
- Division of Quantitative Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| | - Russell R. Broaddus
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX
| |
Collapse
|
49
|
Itamochi H. Targeted therapies in epithelial ovarian cancer: Molecular mechanisms of action. World J Biol Chem 2010; 1:209-20. [PMID: 21537476 PMCID: PMC3083967 DOI: 10.4331/wjbc.v1.i7.209] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/08/2010] [Accepted: 07/15/2010] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is the leading cause of death in women with gynecological cancer. Most patients are diagnosed at an advanced stage and have a poor prognosis. Currently, surgical tumor debulking, followed by platinum- and taxane-based chemotherapy is the standard treatment for advanced ovarian cancer. However, these patients are at great risk of recurrence and emerging drug resistance. Therefore, novel treatment strategies are required to improve outcomes for women with advanced ovarian cancer. A variety of molecular targeted agents, the majority of which are monoclonal antibodies and small-molecule protein-kinase inhibitors, have been explored in the management of ovarian cancer. The targets of these agents include angiogenesis, the human epidermal growth factor receptor family, ubiquitin-proteasome pathway, epigenetic modulators, poly(ADP-ribose) polymerase (PARP), and mammalian target of rapamycin (mTOR) signaling pathway, which are aberrant in tumor tissue. The antiangiogenic agent, bevacizumab, has been reported as the most effective targeted agent and should be included in the standard chemotherapeutic regimen for advanced ovarian cancer. PARP inhibitors, which are mainly used in breast and ovarian cancer susceptibility gene-mutated patients, and mTOR inhibitors are also attractive treatment strategies, either alone or combination with chemotherapy, for ovarian cancer. Understanding the tumor molecular biology and identification of predictive biomarkers are essential steps for selection of the best treatment strategies. This article reviews the molecular mechanisms of the most promising targeted agents that are under early phase clinical evaluation for ovarian cancer.
Collapse
Affiliation(s)
- Hiroaki Itamochi
- Hiroaki Itamochi, Department of Obstetrics and Gynecology, Tottori University School of Medicine, 36-1 Nishicho, Yonago 683-8504, Japan
| |
Collapse
|
50
|
A multicenter, phase II study of bortezomib (PS-341) in patients with unresectable or metastatic gastric and gastroesophageal junction adenocarcinoma. Invest New Drugs 2010; 29:1475-81. [PMID: 20574790 DOI: 10.1007/s10637-010-9474-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/07/2010] [Indexed: 12/14/2022]
Abstract
PURPOSE The transcription factor nuclear factor-kB (NFkB) is implicated in gastric cancer carcinogenesis and survival, and its inhibition by proteosome inhibition is associated with preclinical gastric cancer anti-tumor activity. We examined the single agent efficacy of bortezomib, a selective proteasome inhibitor, in gastric adenocarcinoma. EXPERIMENTAL DESIGN We performed a phase II trial of bortezomib in patients with advanced gastric adenocarcinoma. Bortezomib 1.3 mg/m(2) was administered on days 1, 4, 8, and 11 every 21 days. The primary endpoint was objective response rate(RR); the null hypothesis was RR <1% versus the alternative ≥15%. One response in the first stage(15 patients) was required before proceeding with an additional 18 patients. If at least 2 or more responses out of 33 were observed, further study with bortezomib was warranted. Correlative studies evaluated pre-treatment tumor expression of NFkB, IkB, p53, p21, and cyclin D1. RESULTS We enrolled 16 patients (15 evaluable for response) from four institutions. No patients demonstrated an objective response(95% CI, 0-22%); one patient achieved stable disease. Fourteen out of 16 patients experienced ≥ grade 2 toxicity. The most common toxicity was fatigue in six patients (n = 4 grade 2, n = 2 grade 3). Seven patients experienced neuropathy (n = 5 grade 1, and 1 each grade 2 and 3). Seven (60%) had high cytoplasmic staining for NFkB. CONCLUSIONS Single agent bortezomib is inactive in metastatic gastric adenocarcinoma and should not be pursued. Future study of proteasome inhibition in gastric adenocarcinoma should be considered in combination with targeted inhibition of other non-overlapping oncogenic pathways as a potential rational approach.
Collapse
|