1
|
Gillman AS, Helmuth T, Koljack CE, Hutchison KE, Kohrt WM, Bryan AD. The Effects of Exercise Duration and Intensity on Breast Cancer-Related DNA Methylation: A Randomized Controlled Trial. Cancers (Basel) 2021; 13:4128. [PMID: 34439282 PMCID: PMC8394212 DOI: 10.3390/cancers13164128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022] Open
Abstract
Emerging research suggests that one mechanism through which physical activity may decrease cancer risk is through its influence on the methylation of genes associated with cancer. The purpose of the current study was to prospectively test, using a rigorous experimental design, whether aerobic exercise affects DNA methylation in genes associated with breast cancer, as well as whether quantity of exercise completed affects change in DNA methylation in a dose-response manner. 276 women (M age = 37.25, SD = 4.64) were recruited from the Denver metro area for a randomized controlled trial in which participants were assigned to a supervised aerobic exercise program varying in a fully crossed design by intensity (55-65% versus 75-85% of VO2max) and duration (40 versus 20 min per session). DNA methylation was assessed via blood samples provided at baseline, after completing a 16-week supervised exercise intervention, and six months after the intervention. 137 participants completed the intervention, and 81 had viable pre-post methylation data. Contrary to our hypotheses, total exercise volume completed in kcal/kg/week was not associated with methylation from baseline to post-intervention for any of the genes of interest. An increase in VO2max over the course of the intervention, however, was associated with decreased post-intervention methylation of BRCA1, p = 0.01. Higher levels of self-reported exercise during the follow-up period were associated with lower levels of GALNT9 methylation at the six-month follow-up. This study provides hypothesis-generating evidence that increased exercise behavior and or increased fitness might affect methylation of some genes associated with breast cancer to reduce risk.
Collapse
Affiliation(s)
- Arielle S. Gillman
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| | - Timothy Helmuth
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| | - Claire E. Koljack
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.E.K.); (W.M.K.)
| | - Kent E. Hutchison
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| | - Wendy M. Kohrt
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.E.K.); (W.M.K.)
| | - Angela D. Bryan
- Center for Health and Neuroscience, Genes, and Environment (CUChange), Department of Psychology & Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; (T.H.); (K.E.H.); (A.D.B.)
| |
Collapse
|
2
|
Natanzon Y, Goode EL, Cunningham JM. Epigenetics in ovarian cancer. Semin Cancer Biol 2018; 51:160-169. [PMID: 28782606 PMCID: PMC5976557 DOI: 10.1016/j.semcancer.2017.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 12/24/2022]
Abstract
Ovarian cancer is a disease with a poor prognosis and little progress has been made to improve treatment. It is now recognized that there are several histotypes of ovarian cancer, each with distinct epidemiologic and genomic characteristics. Cancer therapy is moving beyond classical chemotherapy to include epigenetic approaches. Epigenetics is the dynamic regulation of gene expression by DNA methylation and histone post translational modification in response to environmental cues. Improvement in technology to study DNA methylation has enabled a more agnostic approach and, with larger samples sets, has begun to unravel how epigenetics contributes to the etiology, response to chemotherapy and prognosis in of ovarian cancer. Investigations into histone modifications in ovarian cancer are more nascent. Much more is needed to be done to fully realize the potential that epigenetics holds for ovarian cancer clinical care.
Collapse
Affiliation(s)
- Yanina Natanzon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Tomar T, Alkema NG, Schreuder L, Meersma GJ, de Meyer T, van Criekinge W, Klip HG, Fiegl H, van Nieuwenhuysen E, Vergote I, Widschwendter M, Schuuring E, van der Zee AGJ, de Jong S, Wisman GBA. Methylome analysis of extreme chemoresponsive patients identifies novel markers of platinum sensitivity in high-grade serous ovarian cancer. BMC Med 2017; 15:116. [PMID: 28641578 PMCID: PMC5481993 DOI: 10.1186/s12916-017-0870-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/06/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Despite an early response to platinum-based chemotherapy in advanced stage high-grade serous ovarian cancer (HGSOC), the majority of patients will relapse with drug-resistant disease. Aberrant epigenetic alterations like DNA methylation are common in HGSOC. Differences in DNA methylation are associated with chemoresponse in these patients. The objective of this study was to identify and validate novel epigenetic markers of chemoresponse using genome-wide analysis of DNA methylation in extreme chemoresponsive HGSOC patients. METHODS Genome-wide next-generation sequencing was performed on methylation-enriched tumor DNA of two HGSOC patient groups with residual disease, extreme responders (≥18 months progression-free survival (PFS), n = 8) and non-responders (≤6 months PFS, n = 10) to platinum-based chemotherapy. DNA methylation and expression data of the same patients were integrated to create a gene list. Genes were validated on an independent cohort of extreme responders (n = 21) and non-responders (n = 31) using pyrosequencing and qRT-PCR. In silico validation was performed using publicly available DNA methylation (n = 91) and expression (n = 208) datasets of unselected advanced stage HGSOC patients. Functional validation of FZD10 on chemosensitivity was carried out in ovarian cancer cell lines using siRNA-mediated silencing. RESULTS Integrated genome-wide methylome and expression analysis identified 45 significantly differentially methylated and expressed genes between two chemoresponse groups. Four genes FZD10, FAM83A, MYO18B, and MKX were successfully validated in an external set of extreme chemoresponsive HGSOC patients. High FZD10 and MKX methylation were related with extreme responders and high FAM83A and MYO18B methylation with non-responders. In publicly available advanced stage HGSOC datasets, FZD10 and MKX methylation levels were associated with PFS. High FZD10 methylation was strongly associated with improved PFS in univariate analysis (hazard ratio (HR) = 0.43; 95% CI, 0.27-0.71; P = 0.001) and multivariate analysis (HR = 0.39; 95% CI, 0.23-0.65; P = 0.003). Consistently, low FZD10 expression was associated with improved PFS (HR = 1.36; 95% CI, 0.99-1.88; P = 0.058). FZD10 silencing caused significant sensitization towards cisplatin treatment in survival assays and apoptosis assays. CONCLUSIONS By applying genome-wide integrated methylome analysis on extreme chemoresponsive HGSOC patients, we identified novel clinically relevant, epigenetically-regulated markers of platinum-sensitivity in HGSOC patients. The clinical potential of these markers in predictive and therapeutic approaches has to be further validated in prospective studies.
Collapse
Affiliation(s)
- Tushar Tomar
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Nicolette G Alkema
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Leroy Schreuder
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Gert Jan Meersma
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Tim de Meyer
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - Wim van Criekinge
- Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium
| | - Harry G Klip
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Heidi Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Els van Nieuwenhuysen
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Martin Widschwendter
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Ed Schuuring
- Department of Medical Biology and Pathology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ate G J van der Zee
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
| | - G Bea A Wisman
- Department of Gynecologic Oncology, Cancer Research Center Groningen, University of Groningen, University Medical Center Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
4
|
Zheng SC, Widschwendter M, Teschendorff AE. Epigenetic drift, epigenetic clocks and cancer risk. Epigenomics 2016; 8:705-19. [PMID: 27104983 DOI: 10.2217/epi-2015-0017] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
It is well-established that the DNA methylation landscape of normal cells undergoes a gradual modification with age, termed as 'epigenetic drift'. Here, we review the current state of knowledge of epigenetic drift and its potential role in cancer etiology. We propose a new terminology to help distinguish the different components of epigenetic drift, with the aim of clarifying the role of the epigenetic clock, mitotic clocks and active changes, which accumulate in response to environmental disease risk factors. We further highlight the growing evidence that epigenetic changes associated with cancer risk factors may play an important causal role in cancer development, and that monitoring these molecular changes in normal cells may offer novel risk prediction and disease prevention strategies.
Collapse
Affiliation(s)
- Shijie C Zheng
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Martin Widschwendter
- Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK
| | - Andrew E Teschendorff
- CAS Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Department of Women's Cancer, University College London, 74 Huntley Street, London, WC1E 6AU, UK.,Statistical Cancer Genomics, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| |
Collapse
|
5
|
Pashayan N, Reisel D, Widschwendter M. Integration of genetic and epigenetic markers for risk stratification: opportunities and challenges. Per Med 2016; 13:93-95. [PMID: 27053939 DOI: 10.2217/pme.15.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Common genetic susceptibility variants could be used for risk stratification in risk-tailored cancer screening and prevention programmes. Combining genetic variants with environmental risk factors would improve risk stratification. Epigenetic changes are surrogate markers of environmental exposures during individual's lifetime. Integrating epigenetic markers, in lieu of environmental exposure data, with genetic markers would potentially improve risk stratification. Epigenetic changes are reversible and acquired gradually, providing potentials for prevention and early detection strategies. The epigenetic changes are tissue-specific and stage-of-development-specific, raising challenges in choice of sample and timing for evaluation of cancer-associated changes. The Horizon 2020 funded research programme, FORECEE, using empirical data, will investigate the value of integration of epigenomics with genomics for risk prediction and prevention of women-specific cancers.
Collapse
Affiliation(s)
- Nora Pashayan
- University College London, Department of Applied Health Research, London, UK
| | - Daniel Reisel
- University College London, Department of Women's Cancer, London, UK
| | | |
Collapse
|
6
|
Niskakoski A, Kaur S, Staff S, Renkonen-Sinisalo L, Lassus H, Järvinen HJ, Mecklin JP, Bützow R, Peltomäki P. Epigenetic analysis of sporadic and Lynch-associated ovarian cancers reveals histology-specific patterns of DNA methylation. Epigenetics 2015; 9:1577-87. [PMID: 25625843 PMCID: PMC4622692 DOI: 10.4161/15592294.2014.983374] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Diagnosis and treatment of epithelial ovarian cancer is challenging due to the poor understanding of the pathogenesis of the disease. Our aim was to investigate epigenetic mechanisms in ovarian tumorigenesis and, especially, whether tumors with different histological subtypes or hereditary background (Lynch syndrome) exhibit differential susceptibility to epigenetic inactivation of growth regulatory genes. Gene candidates for epigenetic regulation were identified from the literature and by expression profiling of ovarian and endometrial cancer cell lines treated with demethylating agents. Thirteen genes were chosen for methylation-specific multiplex ligation-dependent probe amplification assays on 104 (85 sporadic and 19 Lynch syndrome-associated) ovarian carcinomas. Increased methylation (i.e., hypermethylation) of variable degree was characteristic of ovarian carcinomas relative to the corresponding normal tissues, and hypermethylation was consistently more prominent in non-serous than serous tumors for individual genes and gene sets investigated. Lynch syndrome-associated clear cell carcinomas showed the highest frequencies of hypermethylation. Among endometrioid ovarian carcinomas, lower levels of promoter methylation of RSK4, SPARC, and HOXA9 were significantly associated with higher tumor grade; thus, the methylation patterns showed a shift to the direction of high-grade serous tumors. In conclusion, we provide evidence of a frequent epigenetic inactivation of RSK4, SPARC, PROM1, HOXA10, HOXA9, WT1-AS, SFRP2, SFRP5, OPCML, and MIR34B in the development of non-serous ovarian carcinomas of Lynch and sporadic origin, as compared to serous tumors. Our findings shed light on the role of epigenetic mechanisms in ovarian tumorigenesis and identify potential targets for translational applications.
Collapse
Affiliation(s)
- Anni Niskakoski
- a Department of Medical Genetics; Biomedicum Helsinki ; University of Helsinki ; Helsinki , Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
He S, Zeng S, Zhou ZW, He ZX, Zhou SF. Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: a bioinformatic and clinical study and the therapeutic implication. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1103-75. [PMID: 25733820 PMCID: PMC4342183 DOI: 10.2147/dddt.s73551] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aberrant expression of human microRNA-181a-1 (hsa-miR-181a) has been implicated in the pathogenesis of various cancers, serving as an oncogene or a tumor suppressor. However, the role of hsa-miR-181a in the pathogenesis of endometrial carcinoma (EC) and its clinical significance are unclear. This study aimed to search for the molecular targets of hsa-miR-181a using bioinformatic tools and then determine the expression levels of hsa-miR-181a in normal, hyperplasia, and EC samples from humans. To predict the targets of hsa-miR-181a, ten different algorithms were used, including miRanda-mirSVR, DIANA microT v5.0, miRDB, RNA22 v2, TargetMiner, TargetScan 6.2, PicTar, MicroCosm Targets v5, and miRWALK. Two algorithms, TarBase 6.0 and miRTarBase, were used to identify the validated targets of hsa-miR-181a-5p (a mature product of hsa-miR-181a), and the web-based Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.7 was used to provide biological functional interpretation of the validated targets of hsa-miR-181a-5p. A total of 78 formalin-fixed, paraffin-embedded tissue specimens from 65 patients and 13 healthy subjects were collected and examined, including normal endometrium (n=13), endometrial hyperplasia (n=18), and EC (37 type I and 10 type II EC cases). Our bioinformatic studies have showed that hsa-miR-181a might regulate a large number of target genes that are important in the regulation of critical cell processes, such as cell fate, cell survival, metabolism, and cell death. To date, 313 targets of hsa-miR-181a have been validated, and 22 of these targets are cancer genes. The precision of predictions by all the algorithms for hsa-miR-181a-1’s targets was low. Many of these genes are involved in tumorigenesis of various cancers, including EC, based on the DAVID and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In comparison with normal endometrial tissue, the expression level of hsa-miR-181a was significantly increased in type I and type II EC (P<0.05), and type II EC exhibited a significant higher expression level of hsa-miR-181a than that in type I EC (P<0.05). In addition, there was a significant increase in the expression level of hsa-miR-181a in type II EC compared with endometrial hyperplasia (P<0.05). Taken together, these results suggest that hsa-miR-181a may serve as an oncogene in endometrial tumorigenesis and that hsa-miR-181a might be used as a new biomarker in the prediction of prognosis of EC in clinical practice. More functional and mechanistic studies are needed to validate the role of hsa-miR-181a in the development, progression, and metastasis of EC.
Collapse
Affiliation(s)
- Shuming He
- Department of Obstetrics and Gynecology, Xiaolan People's Hospital affiliated to Southern Medical University, Zhongshan, Guangdong, People's Republic of China
| | - Shumei Zeng
- Department of Obstetrics and Gynecology, Xiaolan People's Hospital affiliated to Southern Medical University, Zhongshan, Guangdong, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
8
|
Jeong HM, Kwon MJ, Shin YK. Overexpression of Cancer-Associated Genes via Epigenetic Derepression Mechanisms in Gynecologic Cancer. Front Oncol 2014; 4:12. [PMID: 24551595 PMCID: PMC3912470 DOI: 10.3389/fonc.2014.00012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 01/20/2014] [Indexed: 12/15/2022] Open
Abstract
Like other cancers, most gynecologic cancers are caused by aberrant expression of cancer-related genes. Epigenetics is one of the most important gene expression mechanisms, which contribute to cancer development and progression by regulating cancer-related genes. Since the discovery of differential gene expression patterns in cancer cells when compared with normal cells, extensive efforts have been made to explore the origins of abnormal gene expression in cancer. Epigenetics, the study of inheritable changes in gene expression that do not alter DNA sequence is a key area of this research. DNA methylation and histone modification are well-known epigenetic mechanisms, while microRNAs and alternative splicing have recently been identified as important regulators of epigenetic mechanisms. These mechanisms not only affect specific target gene expression but also regulate the functioning of other epigenetic mechanisms. Moreover, these diverse epigenetic regulations occur simultaneously. Epigenetic regulation of gene expression is extraordinarily complicated and all epigenetic mechanisms to be studied at once to determine the exact gene regulation mechanisms. Traditionally, the contribution of epigenetics to cancer is thought to be mediated through the inactivation of tumor suppressor genes expression. But recently, it is arising that some oncogenes or cancer-promoting genes (CPGs) are overexpressed in diverse type of cancers through epigenetic derepression mechanism, such as DNA and histone demethylation. Epigenetic derepression arises from diverse epigenetic changes, and all of these mechanisms actively interact with each other to increase oncogenes or CPGs expression in cancer cell. Oncogenes or CPGs overexpressed through epigenetic derepression can initiate cancer development, and accumulation of these abnormal epigenetic changes makes cancer more aggressive and treatment resistance. This review discusses epigenetic mechanisms involved in the overexpression of oncogenes or CPGs via epigenetic derepression in gynecologic cancers. Therefore, improved understanding of these epigenetic mechanisms will provide new targets for gynecologic cancer treatment.
Collapse
Affiliation(s)
- Hae Min Jeong
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University , Seoul , South Korea
| | - Mi Jeong Kwon
- College of Pharmacy, Kyungpook National University , Daegu , South Korea ; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University , Daegu , South Korea
| | - Young Kee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, College of Pharmacy, Seoul National University , Seoul , South Korea ; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul , South Korea ; Advanced Institutes of Convergence Technology , Suwon , South Korea ; Bio-MAX Institute, Seoul National University , Seoul , South Korea
| |
Collapse
|
9
|
Lan VTT, Thuan TB, Thu DM, Uyen NQ, Ha NT, To TV. Methylation Profile of BRCA1, RASSF1A and ER in Vietnamese Women with Ovarian Cancer. Asian Pac J Cancer Prev 2013; 14:7713-8. [DOI: 10.7314/apjcp.2013.14.12.7713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Jones A, Teschendorff AE, Li Q, Hayward JD, Kannan A, Mould T, West J, Zikan M, Cibula D, Fiegl H, Lee SH, Wik E, Hadwin R, Arora R, Lemech C, Turunen H, Pakarinen P, Jacobs IJ, Salvesen HB, Bagchi MK, Bagchi IC, Widschwendter M. Role of DNA methylation and epigenetic silencing of HAND2 in endometrial cancer development. PLoS Med 2013; 10:e1001551. [PMID: 24265601 PMCID: PMC3825654 DOI: 10.1371/journal.pmed.1001551] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/03/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Endometrial cancer incidence is continuing to rise in the wake of the current ageing and obesity epidemics. Much of the risk for endometrial cancer development is influenced by the environment and lifestyle. Accumulating evidence suggests that the epigenome serves as the interface between the genome and the environment and that hypermethylation of stem cell polycomb group target genes is an epigenetic hallmark of cancer. The objective of this study was to determine the functional role of epigenetic factors in endometrial cancer development. METHODS AND FINDINGS Epigenome-wide methylation analysis of >27,000 CpG sites in endometrial cancer tissue samples (n = 64) and control samples (n = 23) revealed that HAND2 (a gene encoding a transcription factor expressed in the endometrial stroma) is one of the most commonly hypermethylated and silenced genes in endometrial cancer. A novel integrative epigenome-transcriptome-interactome analysis further revealed that HAND2 is the hub of the most highly ranked differential methylation hotspot in endometrial cancer. These findings were validated using candidate gene methylation analysis in multiple clinical sample sets of tissue samples from a total of 272 additional women. Increased HAND2 methylation was a feature of premalignant endometrial lesions and was seen to parallel a decrease in RNA and protein levels. Furthermore, women with high endometrial HAND2 methylation in their premalignant lesions were less likely to respond to progesterone treatment. HAND2 methylation analysis of endometrial secretions collected using high vaginal swabs taken from women with postmenopausal bleeding specifically identified those patients with early stage endometrial cancer with both high sensitivity and high specificity (receiver operating characteristics area under the curve = 0.91 for stage 1A and 0.97 for higher than stage 1A). Finally, mice harbouring a Hand2 knock-out specifically in their endometrium were shown to develop precancerous endometrial lesions with increasing age, and these lesions also demonstrated a lack of PTEN expression. CONCLUSIONS HAND2 methylation is a common and crucial molecular alteration in endometrial cancer that could potentially be employed as a biomarker for early detection of endometrial cancer and as a predictor of treatment response. The true clinical utility of HAND2 DNA methylation, however, requires further validation in prospective studies. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Allison Jones
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Andrew E. Teschendorff
- Statistical Cancer Genomics, UCL Cancer Institute, University College London, London, United Kingdom
- CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai Institute for Biological Sciences, Shanghai, China
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jane D. Hayward
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Tim Mould
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - James West
- Statistical Cancer Genomics, UCL Cancer Institute, University College London, London, United Kingdom
- Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, United Kingdom
| | - Michal Zikan
- Gynaecologic Oncology Center, Department of Obstetrics and Gynaecology, First Faculty of Medicine and General University Hospital, Charles University Prague, Prague, Czech Republic
| | - David Cibula
- Gynaecologic Oncology Center, Department of Obstetrics and Gynaecology, First Faculty of Medicine and General University Hospital, Charles University Prague, Prague, Czech Republic
| | - Heidi Fiegl
- Department of Gynaecology and Obstetrics, Innsbruck Medical University, Innsbruck, Austria
| | - Shih-Han Lee
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Elisabeth Wik
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
- Center for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Richard Hadwin
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Rupali Arora
- Department of Pathology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Charlotte Lemech
- Department of Medical Oncology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Henna Turunen
- Department of Obstetrics and Gynaecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Päivi Pakarinen
- Department of Obstetrics and Gynaecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Ian J. Jacobs
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Helga B. Salvesen
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, Bergen, Norway
- Center for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Milan K. Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Indrani C. Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Martin Widschwendter
- Department of Women's Cancer, UCL Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Dai W, Zeller C, Masrour N, Siddiqui N, Paul J, Brown R. Promoter CpG island methylation of genes in key cancer pathways associates with clinical outcome in high-grade serous ovarian cancer. Clin Cancer Res 2013; 19:5788-5797. [PMID: 23965899 PMCID: PMC4913863 DOI: 10.1158/1078-0432.ccr-13-1217] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We aimed to identify DNA methylation biomarkers of progression-free survival (PFS) to platinum-based chemotherapy in high-grade serous ovarian cancer (HGSOC) within biologically relevant ovarian cancer-associated pathways. EXPERIMENTAL DESIGN Association with PFS of CpG island (CGI) promoter DNA methylation at genes in the pathways Akt/mTOR, p53, redox, and homologous recombination DNA repair was sought with PFS as the primary objective in a prospectively collected ovarian cancer cohort (n = 150). Significant loci were validated for associations between PFS, methylation, and gene expression in an independent The Cancer Genome Atlas (TCGA) data set of HGSOC (n = 311). RESULTS DNA methylation at 29 CGI loci linked to 28 genes was significantly associated with PFS, independent from conventional clinical prognostic factors (adjusted P < 0.05). Of 17 out of the 28 genes represented in the TCGA data set, methylation of VEGFB, VEGFA, HDAC11, FANCA, E2F1, GPX4, PRDX2, RAD54L, and RECQL4 was prognostic in this independent patient cohort (one-sided P < 0.05, false discovery rate < 10%). A multivariate Cox model was constructed, with clinical parameters (age, stage, grade, and histologic type) and significant loci. The final model included NKD1, VEGFB, and PRDX2 as the three best predictors of PFS (P = 6.62 × 10(-6), permutation test P < 0.05). Focussing only on known VEGFs in the TCGA cohort showed that methylation at promoters of VEGFA, VEGFB, and VEGFC was significantly associated with PFS. CONCLUSIONS A three loci model of DNA methylation could identify two distinct prognostic groups of patients with ovarian cancer (PFS: HR = 2.29, P = 3.34 × 10(-5); overall survival: HR = 1.87, P = 0.007) and patients more likely to have poor response to chemotherapy (OR = 3.45, P = 0.012).
Collapse
Affiliation(s)
- Wei Dai
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
| | - Constanze Zeller
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
| | - Nahal Masrour
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
| | - Nadeem Siddiqui
- Department of Gynaecology, Glasgow Royal Infirmary, Glasgow, UK G31 2ER
| | - James Paul
- Cancer Research UK Clinical Trials Unit, Glasgow University, The Beatson West of Scotland Cancer Centre, Level 0, 1053 Gt. Western Road, Glasgow, UK G12 0YN
| | - Robert Brown
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
- Section of Molecular Pathology, Institute for Cancer Research, Sutton UK SM2 5NG
| |
Collapse
|