1
|
Oladipo KH, Parish JL. De-regulation of aurora kinases by oncogenic HPV; implications in cancer development and treatment. Tumour Virus Res 2025; 19:200314. [PMID: 39923999 DOI: 10.1016/j.tvr.2025.200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs are the cause of almost all cervical cancers and a sub-set of other epithelial malignancies including head and neck cancers, specifically within the oropharynx. The oncogenic properties of HPV are largely mediated through the viral oncoproteins E6 and E7, which disrupt many cellular pathways to drive uncontrolled cell proliferation. One family of proteins targeted by HPV is the Aurora kinase family. Aurora kinases are serine/threonine kinases including Aurora kinase A (AURKA), B (AURKB), and C (AURKC) which are often dysregulated in many cancer types, including HPV driven cancers. All three family members play essential roles in mitotic regulation and accurate cell division. The deregulation of Aurora kinases by HPV infection highlights their potential as therapeutic targets in HPV-associated malignancies. Targeting Aurora kinase activity, in combination with current HPV therapies, may provide new avenues for treating HPV-induced cancers and reducing the burden of HPV-related diseases. Combinatorial inhibition targets distinct but overlapping functions of these kinases, thereby reducing the potential for cancer cells to develop resistance. This broad impact emphasizes the capability for Aurora kinase inhibitors not only as anti-mitotic agents but also as modulators of multiple oncogenic pathways. This review explores the combinatorial effects of Aurora kinase inhibition, offering insights into novel therapeutic strategies for the treatment of HPV-driven cancers.
Collapse
Affiliation(s)
- Kemi Hannah Oladipo
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom; National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, United Kingdom.
| | - Joanna L Parish
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom; National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, United Kingdom.
| |
Collapse
|
2
|
Yu L, Majerciak V, Lobanov A, Mirza S, Band V, Liu H, Cam M, Hughes SH, Lowy DR, Zheng ZM. HPV oncogenes expressed from only one of multiple integrated HPV DNA copies drive clonal cell expansion in cervical cancer. mBio 2024; 15:e0072924. [PMID: 38624210 PMCID: PMC11077993 DOI: 10.1128/mbio.00729-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The integration of HPV DNA into human chromosomes plays a pivotal role in the onset of papillomavirus-related cancers. HPV DNA integration often occurs by linearizing the viral DNA in the E1/E2 region, resulting in the loss of a critical viral early polyadenylation signal (PAS), which is essential for the polyadenylation of the E6E7 bicistronic transcripts and for the expression of the viral E6 and E7 oncogenes. Here, we provide compelling evidence that, despite the presence of numerous integrated viral DNA copies, virus-host fusion transcripts originate from only a single integrated HPV DNA in HPV16 and HPV18 cervical cancers and cervical cancer-derived cell lines. The host genomic elements neighboring the integrated HPV DNA are critical for the efficient expression of the viral oncogenes that leads to clonal cell expansion. The fusion RNAs that are produced use a host RNA polyadenylation signal downstream of the integration site, and almost all involve splicing to host sequences. In cell culture, siRNAs specifically targeting the host portion of the virus-host fusion transcripts effectively silenced viral E6 and E7 expression. This, in turn, inhibited cell growth and promoted cell senescence in HPV16+ CaSki and HPV18+ HeLa cells. Showing that HPV E6 and E7 expression from a single integration site is instrumental in clonal cell expansion sheds new light on the mechanisms of HPV-induced carcinogenesis and could be used for the development of precision medicine tailored to combat HPV-related malignancies. IMPORTANCE Persistent oncogenic HPV infections lead to viral DNA integration into the human genome and the development of cervical, anogenital, and oropharyngeal cancers. The expression of the viral E6 and E7 oncogenes plays a key role in cell transformation and tumorigenesis. However, how E6 and E7 could be expressed from the integrated viral DNA which often lacks a viral polyadenylation signal in the cancer cells remains unknown. By analyzing the integrated HPV DNA sites and expressed HPV RNAs in cervical cancer tissues and cell lines, we show that HPV oncogenes are expressed from only one of multiple chromosomal HPV DNA integrated copies. A host polyadenylation signal downstream of the integrated viral DNA is used for polyadenylation and stabilization of the virus-host chimeric RNAs, making the oncogenic transcripts targetable by siRNAs. This observation provides further understanding of the tumorigenic mechanism of HPV integration and suggests possible therapeutic strategies for the development of precision medicine for HPV cancers.
Collapse
Affiliation(s)
- Lulu Yu
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, Maryland, USA
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Haibin Liu
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, Maryland, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Douglas R. Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
3
|
Zygouras I, Leventakou D, Pouliakis A, Panagiotou S, Tsakogiannis D, Konstantopoulos G, Logotheti E, Samaras M, Kyriakopoulou Z, Beloukas A, Pateras IS, Delides A, Psyrri A, Panayiotides IG, Yiangou M, Kottaridi C. Human Papillomavirus 16 DNA Methylation Patterns and Investigation of Integration Status in Head and Neck Cancer Cases. Int J Mol Sci 2023; 24:14593. [PMID: 37834041 PMCID: PMC10572864 DOI: 10.3390/ijms241914593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Persistent high-risk human papillomavirus (HPV) infection is a pivotal factor in the progression of cervical cancer. In recent years, an increasing interest has emerged in comprehending the influence of HPV on head and neck squamous cell carcinoma (HNSCC). Notably, it is well established that HPV-associated HNSCC show cases with distinct molecular and clinical attributes compared to HPV-negative cases. The present study delves into the epigenetic landscape of HPV16, specifically its L1 gene and untranslated region (UTR), through pyrosequencing, while the HPV16 DNA physical status was evaluated using E2/E6 ratio analysis in HPV16-positive HNSCC FFPE biopsies. Our findings reveal substantial methylation across six sites within the HPV16 L1 gene and seven sites in the UTR. Specifically, methylation percentages of two L1 CpG sites (7136, 7145) exhibit significant associations with tumor histological grade (p < 0.01), while proving concurrent methylation across multiple sites. The HPV16 DNA physical status was not correlated with the methylation of viral genome or tumor characteristics. This is the first study that examines epigenetic modifications and the HPV16 DNA physical status in Greek HNSCC patients. Our findings suggest an orchestrated epigenetic modulation among specific sites, impacting viral gene expression and intricate virus-host interactions.
Collapse
Affiliation(s)
- Ioannis Zygouras
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.Z.); (S.P.); (G.K.); (E.L.); (M.Y.)
| | - Danai Leventakou
- 2nd Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12464 Athens, Greece; (D.L.); (A.P.); (M.S.); (I.S.P.); (I.G.P.)
| | - Abraham Pouliakis
- 2nd Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12464 Athens, Greece; (D.L.); (A.P.); (M.S.); (I.S.P.); (I.G.P.)
| | - Styliana Panagiotou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.Z.); (S.P.); (G.K.); (E.L.); (M.Y.)
| | | | - Georgios Konstantopoulos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.Z.); (S.P.); (G.K.); (E.L.); (M.Y.)
| | - Eirini Logotheti
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.Z.); (S.P.); (G.K.); (E.L.); (M.Y.)
| | - Menelaos Samaras
- 2nd Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12464 Athens, Greece; (D.L.); (A.P.); (M.S.); (I.S.P.); (I.G.P.)
| | - Zaharoula Kyriakopoulou
- Department of Environment, School of Technology, University of Thessaly, Gaiopolis Campus, 41500 Larissa, Greece;
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece;
- National AIDS Reference Centre of Southern Greece, School of Public Health, University of West Attica, 11521 Athens, Greece
| | - Ioannis S. Pateras
- 2nd Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12464 Athens, Greece; (D.L.); (A.P.); (M.S.); (I.S.P.); (I.G.P.)
| | - Alexandros Delides
- 2nd Department of Otolaryngology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12464 Athens, Greece;
| | - Amanda Psyrri
- 2nd Department of Internal Medicine-Propaedeutic, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12464 Athens, Greece;
| | - Ioannis G. Panayiotides
- 2nd Department of Pathology, University General Hospital “Attikon”, School of Medicine, National and Kapodistrian University of Athens, 12464 Athens, Greece; (D.L.); (A.P.); (M.S.); (I.S.P.); (I.G.P.)
| | - Minas Yiangou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.Z.); (S.P.); (G.K.); (E.L.); (M.Y.)
| | - Christine Kottaridi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.Z.); (S.P.); (G.K.); (E.L.); (M.Y.)
| |
Collapse
|
4
|
Rossi NM, Dai J, Xie Y, Wangsa D, Heselmeyer-Haddad K, Lou H, Boland JF, Yeager M, Orozco R, Freites EA, Mirabello L, Gharzouzi E, Dean M. Extrachromosomal Amplification of Human Papillomavirus Episomes Is a Mechanism of Cervical Carcinogenesis. Cancer Res 2023; 83:1768-1781. [PMID: 36971511 PMCID: PMC10239328 DOI: 10.1158/0008-5472.can-22-3030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
SIGNIFICANCE Multimers of the HPV genome are generated in cervical tumors replicating as extrachromosomal episomes, which is associated with deletion and rearrangement of the HPV genome and provides a mechanism for oncogenesis without integration.
Collapse
Affiliation(s)
- Nicole M. Rossi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jieqiong Dai
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | - Yi Xie
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Darawalee Wangsa
- Center for Cancer Research, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kerstin Heselmeyer-Haddad
- Center for Cancer Research, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hong Lou
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | - Joseph F. Boland
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Leidos Biomedical Research, Inc., National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Enrique Alvirez Freites
- Hospital Central Universitario “Dr. Antonio M Pineda,” Barquisimeto, Lara State, Venezuela, and Universidad Andino de Cusco, Cusco, Perú
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
5
|
An in vitro carcinogenesis model for cervical cancer harboring episomal form of HPV16. PLoS One 2023; 18:e0281069. [PMID: 36763589 PMCID: PMC9916646 DOI: 10.1371/journal.pone.0281069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/14/2023] [Indexed: 02/11/2023] Open
Abstract
Deregulated expression of viral E6 and E7 genes often caused by viral genome integration of high-risk human papillomaviruses (HR-HPVs) into host DNA and additional host genetic alterations are thought to be required for the development of cervical cancer. However, approximately 15% of invasive cervical cancer specimens contain only episomal HPV genomes. In this study, we investigated the tumorigenic potential of human cervical keratinocytes harboring only the episomal form of HPV16 (HCK1T/16epi). We found that the HPV16 episomal form is sufficient for promoting cell proliferation and colony formation of parental HCK1T cells. Ectopic expression of host oncogenes, MYC and PIK3CAE545K, enhanced clonogenic growth of both early- and late-passage HCK1T/16epi cells, but conferred tumor-initiating ability only to late-passage HCK1T/16epi cells. Interestingly, the expression levels of E6 and E7 were rather lower in late-passage than in early-passage cells. Moreover, additional introduction of a constitutively active MEK1 (MEK1DD) and/or KRASG12V into HCK1T/16epi cells resulted in generation of highly potent tumor-initiating cells. Thus an in vitro model for progression of cervical neoplasia with episomal HPV16 was established. In the model, constitutively active mutation of PIK3CA, PIK3CAE545K, and overexpression of MYC, in the cells with episomal HPV16 genome were not sufficient, but an additional event such as activation of the RAS-MEK pathway was required for progression to tumorigenicity.
Collapse
|
6
|
Castro-Oropeza R, Piña-Sánchez P. Epigenetic and Transcriptomic Regulation Landscape in HPV+ Cancers: Biological and Clinical Implications. Front Genet 2022; 13:886613. [PMID: 35774512 PMCID: PMC9237502 DOI: 10.3389/fgene.2022.886613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Human Papillomavirus (HPV) is an oncogenic virus that causes the highest number of viral-associated cancer cases and deaths worldwide, with more than 690,000 new cases per year and 342,000 deaths only for cervical cancer (CC). Although the incidence and mortality rates for CC are declining in countries where screening and vaccination programs have been implemented, other types of cancer in which HPV is involved, such as oropharyngeal cancer, are increasing, particularly in men. Mutational and transcriptional profiles of various HPV-associated neoplasms have been described, and accumulated evidence has shown the oncogenic capacity of E6, E7, and E5 genes of high-risk HPV. Interestingly, transcriptomic analysis has revealed that although a vast majority of the human genome is transcribed into RNAs, only 2% of transcripts are translated into proteins. The remaining transcripts lacking protein-coding potential are called non-coding RNAs. In addition to the transfer and ribosomal RNAs, there are regulatory non-coding RNAs classified according to size and structure in long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and small RNAs; such as microRNAs (miRNAs), piwi-associated RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and endogenous short-interfering RNAs. Recent evidence has shown that lncRNAs, miRNAs, and circRNAs are aberrantly expressed under pathological conditions such as cancer. In addition, those transcripts are dysregulated in HPV-related neoplasms, and their expression correlates with tumor progression, metastasis, poor prognosis, and recurrence. Nuclear lncRNAs are epigenetic regulators involved in controlling gene expression at the transcriptional level through chromatin modification and remodeling. Moreover, disruption of the expression profiles of those lncRNAs affects multiple biological processes such as cell proliferation, apoptosis, and migration. This review highlights the epigenetic alterations induced by HPV, from infection to neoplastic transformation. We condense the epigenetic role of non-coding RNA alterations and their potential as biomarkers in transformation's early stages and clinical applications. We also summarize the molecular mechanisms of action of nuclear lncRNAs to understand better their role in the epigenetic control of gene expression and how they can drive the malignant phenotype of HPV-related neoplasia. Finally, we review several chemical and epigenetic therapy options to prevent and treat HPV-associated neoplasms.
Collapse
Affiliation(s)
| | - Patricia Piña-Sánchez
- Molecular Oncology Laboratory, Oncology Research Unit, Oncology Hospital, IMSS National Medical Center, Mexico City, Mexico
| |
Collapse
|
7
|
Wang L, Wang F, Fu S, Zhang C, Zhe X, Li H, Li D, Shao R, Pan Z. Analysis of genetic variation in human papillomavirus type 16 E1 and E2 in women with cervical infection in Xinjiang, China. BMC Med Genomics 2021; 14:268. [PMID: 34772425 PMCID: PMC8590209 DOI: 10.1186/s12920-021-01120-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Xinjiang is one of the regions with a high incidence of cervical cancer, and the genetic variation of human papillomavirus may increase its ability to infect the human body and enhance virus-mediated immune escape ability. METHODS Sanger sequencing of the HPV16 genome from 165 samples positive for HPV16 infection and phylogenetic analysis of the E1 and E2 genes revealed the gene polymorphism of HPV16 in Xinjiang. RESULTS The results showed that there were 109 samples with variations in HPV16 E1, 48 sites with nucleotide variations (19 missense variations and 29 synonymous variations), and 91 samples with variations in HPV16 E2, 25 sites with nucleotide variations (20 missense variations and five synonymous variations). CONCLUSIONS From the phylogenetic tree results, 149 samples were of the European variant and 16 samples were of the Asian variant. No African or North American/Asian variant types were found.
Collapse
Affiliation(s)
- Luyue Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, 832002, Xinjiang, People's Republic of China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, 832002, Xinjiang, People's Republic of China
| | - Shaowei Fu
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, 832002, Xinjiang, People's Republic of China
| | - Chunhe Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, 832002, Xinjiang, People's Republic of China
| | - Xiangyi Zhe
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, 832002, Xinjiang, People's Republic of China
| | - Hongtao Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, 832002, Xinjiang, People's Republic of China
| | - Dongmei Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, 832002, Xinjiang, People's Republic of China.
| | - Renfu Shao
- School of Science, Technology and Engineering, Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Zemin Pan
- Department of Biochemistry and Molecular Biology, School of Medicine, Xinjiang Endemic and Ethnic Disease and Education Ministry Key Laboratory, Shihezi University, Shihezi, 832002, Xinjiang, People's Republic of China.
| |
Collapse
|
8
|
Human Papillomavirus in Breast Carcinogenesis: A Passenger, a Cofactor, or a Causal Agent? BIOLOGY 2021; 10:biology10080804. [PMID: 34440036 PMCID: PMC8389583 DOI: 10.3390/biology10080804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Breast cancer (BC) is the most frequent tumor in women worldwide. A minority of BC patients have a family history of the disease, suggesting the importance of environmental and lifestyle factors. Human papillomavirus (HPV) infection has been detected in a subset of tumors, suggesting a potential role in BC. In this review, we summarized relevant information in respect to this topic and we propose a model of HPV-mediated breast carcinogenesis. Evidence suggests that breast tissue is accessible to HPV, which may be a causal agent of BC in a subset of cases. Abstract Breast cancer (BC) is the most commonly diagnosed malignancy in women worldwide as well as the leading cause of cancer-related death in this gender. Studies have identified that human papillomavirus (HPV) is a potential risk factor for BC development. While vaccines that protect against oncogenic HPVs infection have been commercially available, global disparities persist due to their high cost. Interestingly, numerous authors have detected an increased high risk (HR)-HPV infection in BC specimens when compared with non-tumor tissues. Therefore, it was suggested that HR-HPV infection could play a role in breast carcinogenesis in a subset of cases. Additional epidemiological and experimental evidence is still needed regarding the role of HR-HPV infection in the development and progression of BC.
Collapse
|
9
|
Hampson IN, Oliver AW, Hampson L. Potential Effects of Human Papillomavirus Type Substitution, Superinfection Exclusion and Latency on the Efficacy of the Current L1 Prophylactic Vaccines. Viruses 2020; 13:v13010022. [PMID: 33374445 PMCID: PMC7823767 DOI: 10.3390/v13010022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
There are >200 different types of human papilloma virus (HPV) of which >51 infect genital epithelium, with ~14 of these classed as high-risk being more commonly associated with cervical cancer. During development of the disease, high-risk types have an increased tendency to develop a truncated non-replicative life cycle, whereas low-risk, non-cancer-associated HPV types are either asymptomatic or cause benign lesions completing their full replicative life cycle. HPVs can also be present as non-replicative so-called “latent” infections and they can also show superinfection exclusion, where cells with pre-existing infections with one type cannot be infected with a different HPV type. Thus, the HPV repertoire and replication status present in an individual can form a complex dynamic meta-community which changes with respect to both time and exposure to different HPV types. In light of these considerations, it is not clear how current prophylactic HPV vaccines will affect this system and the potential for iatrogenic outcomes is discussed in light of recent outcome data.
Collapse
|
10
|
Aguayo F, Muñoz JP, Perez-Dominguez F, Carrillo-Beltrán D, Oliva C, Calaf GM, Blanco R, Nuñez-Acurio D. High-Risk Human Papillomavirus and Tobacco Smoke Interactions in Epithelial Carcinogenesis. Cancers (Basel) 2020; 12:E2201. [PMID: 32781676 PMCID: PMC7465661 DOI: 10.3390/cancers12082201] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical, anogenital, and some head and neck cancers (HNC) are etiologically associated with high-risk human papillomavirus (HR-HPV) infection, even though additional cofactors are necessary. Epidemiological studies have established that tobacco smoke (TS) is a cofactor for cervical carcinogenesis because women who smoke are more susceptible to cervical cancer when compared to non-smokers. Even though such a relationship has not been established in HPV-related HNC, a group of HPV positive patients with this malignancy are smokers. TS is a complex mixture of more than 4500 chemical compounds and approximately 60 of them show oncogenic properties such as benzo[α]pyrene (BaP) and nitrosamines, among others. Some of these compounds have been evaluated for carcinogenesis through experimental settings in collaboration with HR-HPV. Here, we conducted a comprehensive review of the suggested molecular mechanisms involved in cooperation with both HR-HPV and TS for epithelial carcinogenesis. Furthermore, we propose interaction models in which TS collaborates with HR-HPV to promote epithelial cancer initiation, promotion, and progression. More studies are warranted to clarify interactions between oncogenic viruses and chemical or physical environmental factors for epithelial carcinogenesis.
Collapse
Affiliation(s)
- Francisco Aguayo
- Universidad de Tarapacá, Arica 1000000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, Santiago 8330024, Chile
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Francisco Perez-Dominguez
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Diego Carrillo-Beltrán
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Carolina Oliva
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Rances Blanco
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Daniela Nuñez-Acurio
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| |
Collapse
|
11
|
Pokrývková B, Saláková M, Šmahelová J, Vojtěchová Z, Novosadová V, Tachezy R. Detailed Characteristics of Tonsillar Tumors with Extrachromosomal or Integrated Form of Human Papillomavirus. Viruses 2019; 12:v12010042. [PMID: 31905862 PMCID: PMC7019694 DOI: 10.3390/v12010042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
The human papillomavirus (HPV) integration, the critical step in viral carcinogenesis, most frequently occurs in the E2 gene, which results in its inactivation and in an increase of E6/E7 transcription. However, in a substantial number of tumors, the virus is present in an extrachromosomal form. For those tumors, the transformation mechanisms are not fully elucidated. Here we evaluated the possible mechanism of inactivating the E2 without interruption of the gene, methylation or mutation of the E2 binding sites (E2BSs) in HPV16-positive tonsillar tumors by next-generation and Sanger sequencing. Viral genome status was analyzed by the amplification of papillomavirus oncogene transcripts assay (APOT) and mRNA mapping, and expression of viral oncogenes was performed by qPCR. The methylation of E2BSs was significantly higher in tumors with an integrated, in comparison to extrachromosomal, form of the viral genome. No mutations were detected in the E2BSs. The viral oncogenes were equally expressed in samples with an integrated and extrachromosomal form of the virus. Only the nucleotide variants were identified in the E2 gene. No proposed mechanism of E2 inactivation was confirmed in tonsillar tumors with an extrachromosomal form of the HPV genome. The expression of E6/E7 genes seems to be sufficient to initiate and maintain the carcinogenic process.
Collapse
Affiliation(s)
- Barbora Pokrývková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic; (B.P.); (J.Š.); (Z.V.); (R.T.)
| | - Martina Saláková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic; (B.P.); (J.Š.); (Z.V.); (R.T.)
- Correspondence: ; Tel.: +42-032-587-3920
| | - Jana Šmahelová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic; (B.P.); (J.Š.); (Z.V.); (R.T.)
| | - Zuzana Vojtěchová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic; (B.P.); (J.Š.); (Z.V.); (R.T.)
| | - Vendula Novosadová
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic;
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25250 Vestec, Czech Republic; (B.P.); (J.Š.); (Z.V.); (R.T.)
| |
Collapse
|
12
|
Kottaridi C, Leventakou D, Pouliakis A, Pergialiotis V, Chrelias G, Patsouri E, Zacharatou A, Panopoulou E, Damaskou V, Sioulas V, Chrelias C, Kalantaridou S, Panayiotides IG. Searching HPV genome for methylation sites involved in molecular progression to cervical precancer. J Cancer 2019; 10:4588-4595. [PMID: 31528222 PMCID: PMC6746133 DOI: 10.7150/jca.30081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Human Papilloma Virus has been considered as the main cause for cervical cancer. In this study we investigated epigenetic changes and especially methylation of specific sites of HPV genome. The main goal was to correlate methylation status with histological grade as well as to determine its accuracy in predicting the disease severity by establishing optimum methylation cutoffs. Methods: In total, sections from 145 cases genotyped as HPV16 were obtained from formalin- fixed, paraffin-embedded tissue of cervical biopsies, conization or hysterectomy specimens. Highly accurate pyrosequencing of bisulfite converted DNA, was used to quantify the methylation percentages of UTR promoter, enhancer and 5' UTR, E6 CpGs 494, 502, 506 and E7 CpGs 765, 780, 790. The samples were separated in different groupings based on the histological outcome. Statistical analysis was performed by SAS 9.4 for Windows and methylation cutoffs were identified by MATLAB programming language. Results: The most important methylation sites were at the enhancer and especially UTR 7535 and 7553 sites. Specifically for CIN3+ (i.e. HSIL or SCC) discrimination, a balanced sensitivity vs. specificity (68.1%, 66.2% respectively) with positive predictive value (PPV) and negative predictive value (NPV) (66.2%, 68.2% respectively) was achieved for UTR 7535 methylation of 6.1% cutoff with overall accuracy 67.1%, while for UTR 7553 a sensitivity 60.9%, specificity 69.0%, PPV=65.6%, NPV=64.5% and overall accuracy=65.0% at threshold 10.1% was observed. Conclusion: Viral HPV16 genome was found methylated in NF-1 binding sites of UTR in cases with high grade disease. Methylation percentages of E6 and E7 CpG sites were elevated at the cancer group.
Collapse
Affiliation(s)
- Christine Kottaridi
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Danai Leventakou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Abraham Pouliakis
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Vasileios Pergialiotis
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - George Chrelias
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Eugenia Patsouri
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Andriani Zacharatou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Eleni Panopoulou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Vasileia Damaskou
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Vasileios Sioulas
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Charalambos Chrelias
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Sofia Kalantaridou
- 3 rd Department of Gynaecology and Obstetrics, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| | - Ioannis G Panayiotides
- 2 nd Department of Pathology, University General Hospital "ATTIKON", School of Medicine, National and Kapodistrian University of Athens, Athens 12464, Greece
| |
Collapse
|
13
|
Brant AC, Menezes AN, Felix SP, de Almeida LM, Sammeth M, Moreira MAM. Characterization of HPV integration, viral gene expression and E6E7 alternative transcripts by RNA-Seq: A descriptive study in invasive cervical cancer. Genomics 2018; 111:1853-1861. [PMID: 30552977 DOI: 10.1016/j.ygeno.2018.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 12/27/2022]
Abstract
Scarce data are available on the expression of papillomavirus genome and the frequency of alternatively spliced E6E7 mRNAs in invasive cervical cancer. We carried out a comprehensive characterization of HPV expression by RNA-Seq analysis in 22 invasive cervical cancer with HPV16 or HPV18, characterizing the presence of integrated/episomal viral DNA, the integration sites in human genome and the proportion of alternative splicing products of E6 and E7 genes. The expression patterns suggested the presence of episomal and/or integrated viral DNA, with integration detected in most tumors, frequently occurring within human genes in HPV18+ and in intergenic regions in HPV16+ tumors. Alternative splicing of E6E7 transcripts showed E6*I as the most frequent isoform for both viral types, followed by E6*II and E6/E7 (unspliced) transcripts in HPV16+, and by E6/E7 in HPV18+ tumors. Previously described E6*VI and E6*V transcript isoforms for HPV16, and E6*X for HPV18, were rare or not detected.
Collapse
Affiliation(s)
- Ayslan C Brant
- Genetics Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil; Post-Graduate Program in Genetics, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Albert N Menezes
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Shayany P Felix
- Genetics Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Liz M de Almeida
- Department of Population Research, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.
| | - Michael Sammeth
- Department of Bioinformatics, Transcriptomics and Functional Genomics, Federal University of Rio de Janeiro (UFRJ), Brazil.
| | - Miguel A M Moreira
- Genetics Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Lillsunde Larsson G, Kaliff M, Sorbe B, Helenius G, Karlsson MG. HPV16 viral characteristics in primary, recurrent and metastatic vulvar carcinoma. PAPILLOMAVIRUS RESEARCH 2018; 6:63-69. [PMID: 30391517 PMCID: PMC6249404 DOI: 10.1016/j.pvr.2018.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/06/2018] [Accepted: 10/28/2018] [Indexed: 01/06/2023]
Abstract
Vulvar carcinoma is the fourth most common gynecological malignancy. Two separate carcinogenic pathways are suggested, where one is associated with the human papillomavirus (HPV) and HPV16 the most common genotype. The aim of this study was to evaluate HPV-markers in a set of primary tumors, metastases and recurrent lesions of vulvar squamous cell carcinomas (VSCC). Ten HPV16-positive VSCC with metastatic regional lymph nodes, distant lymphoid/hematogenous metastases or local recurrent lesions were investigated for HPV genotype, HPV16 variant, HPV16 viral load, HPV16 integration and HPV16 E2BS3 and 4 methylation. In all 10 analyzed case series, the same HPV genotype (HPV16), HPV16 variant and level of viral load were detected in all lesions within a patient case. Primary tumors with a high E2/E6 ratio were found to have fewer vulvar recurrences and/or metastases after diagnosis and treatment. Also, a significantly lower viral load was evident in regional lymph nodes compared to primary tumors. The data presented strengthens the evidence for a clonal HPV-induced pathway for vulvar carcinoma.
Collapse
Affiliation(s)
- Gabriella Lillsunde Larsson
- School of Health Sciences, Örebro University, SE-701 82 Örebro, Sweden; Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Malin Kaliff
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Bengt Sorbe
- Department of Oncology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Gisela Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Mats G Karlsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
15
|
Dai S, Yao Y, Yan Z, Zhou Z, Shi L, Wang X, Sun L, Zhang R, Yao Y. The association of human papillomavirus type 16 E2 variations with cervical cancer in a Han Chinese population. INFECTION GENETICS AND EVOLUTION 2018; 64:241-248. [PMID: 30008422 DOI: 10.1016/j.meegid.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Human papillomavirus type 16 (HPV16) is considered to be the primary pathogen related to cervical cancer. The HPV16 E2 protein plays an important role in tumourigenicity of cervical carcinoma. In the current study, we enrolled 121 HPV16-positive cervical cancer patients in the case group and 130 HPV16-positive asymptomatic individuals in the control group, and we investigated the association between HPV16 E2 gene variations and cervical cancer. The HPV16 E2 DNA was amplified and sequenced. We identified two HPV variants (EUR and As) in the control group; the As variant was predominant (68.5%), followed by the EUR variant (31.5%). In the case group, three HPV variants (EUR, As and AA) were observed; the As variant was predominant (72.7%), followed by the EUR variant (22.3%) and the AA variant (5.0%). Our results showed a significant difference in the distribution of the HPV16 variants between the case and control groups (P < 0.05). Moreover, in the HPV16 E2 gene variation analysis, the distribution of sixteen variations was significantly different between the case and control groups (P < 0.05), and all of these variations were present in the AA variant. In the subgroup analysis, the frequency of the T3575G (S274A) variation in the EUR variant was significantly different between the case and control groups (P = 0.029); however, there was no significant difference in the frequency of the variations in the As variant between the case and control groups. Our findings in the current study could provide a better understanding of the relationship between HPV16 variants, E2 gene variations and cervical cancer.
Collapse
Affiliation(s)
- Shuying Dai
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; School of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yueting Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University & Yunnan Tumour Hospital, Kunming 650118, China
| | - Ziyun Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, China
| | - Xiaona Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, China
| | - Le Sun
- School of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Rongping Zhang
- School of Pharmaceutical Science, Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China.
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
16
|
Khanal S, Shumway BS, Zahin M, Redman RA, Strickley JD, Trainor PJ, Rai SN, Ghim SJ, Jenson AB, Joh J. Viral DNA integration and methylation of human papillomavirus type 16 in high-grade oral epithelial dysplasia and head and neck squamous cell carcinoma. Oncotarget 2018; 9:30419-30433. [PMID: 30100997 PMCID: PMC6084396 DOI: 10.18632/oncotarget.25754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/25/2018] [Indexed: 12/19/2022] Open
Abstract
This study evaluated the integration and methlyation of human papillomavirus type 16 (HPV16) in head and neck squamous cell carcinoma (HNSCC) and its oral precursor, high-grade oral epithelial dysplasia (hgOED). Archival samples of HPV16-positive hgOED (N = 19) and HNSCC (N = 15) were evaluated, along with three HNSCC (UMSCC-1, -47 and -104) and two cervical cancer (SiHa and CaSki) cell lines. HgOED cases were stratified into three groups with increasing degrees of cytologic changes (mitosis, karyorrhexis and apoptosis). The viral load was higher and the E2/E6 ratio lower (indicating a greater tendency toward viral integration) in group 3 than in groups 1 or 2 (p = 0.002, 0.03). Methylation was not observed in hgOED cases and occurred variably in only three HNSCC cases (26.67%, 60.0% and 93.3%). In HNSCC cell lines, lower E7 expression correlated with higher levels of methylation. HgOED with increased cytologic change, now termed HPV-associated oral epithelial dysplasia (HPV-OED), exhibited an increased viral load and a tendency toward DNA integration, suggesting a potentially increased risk for malignant transformation. More detailed characterization and clinical follow-up of HPV-OED patients is needed to determine whether HPV-OED is a true precursor to HPV-associated HNSCC and to clarify the involvement of HPV in HNSCC carcinogenesis.
Collapse
Affiliation(s)
- Sujita Khanal
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian S Shumway
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Maryam Zahin
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Rebecca A Redman
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - John D Strickley
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Patrick J Trainor
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shesh N Rai
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shin-Je Ghim
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | | | - Joongho Joh
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, USA.,Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
17
|
Amaro-Filho SM, Pereira Chaves CB, Felix SP, Basto DL, de Almeida LM, Moreira MAM. HPV DNA methylation at the early promoter and E1/E2 integrity: A comparison between HPV16, HPV18 and HPV45 in cervical cancer. PAPILLOMAVIRUS RESEARCH 2018; 5:172-179. [PMID: 29649654 PMCID: PMC6046686 DOI: 10.1016/j.pvr.2018.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/26/2022]
Abstract
Objectives To compare and describe type-specific characteristics of HPV16, HPV18 and HPV45 in cervical cancer with respect to 3′LCR methylation and disruption of E1/E2. Methods The methylation level of 137 cervical cancer samples (70 with HPV16, 37 with HPV18, and 30 with HPV45) of Brazilian patients was analyzed by pyrosequencing. PCR amplifications were performed to characterize E1 and E2 disruption as an episomal surrogate. Results The 3′LCR of HPV16 showed a higher methylation at all CpG sites (7%, 9%, 11%, 10% and 10%) than homologous HPV18 regions (4%, 5%. 6%, 9% and 5%) and HPV45 regions (7%, 7% and 5%). Presence of intact E1/E2 was associated with higher HPV16 and HPV18 methylation levels at all CpG sites (p < 0.05). Disruption of E1/E2 was more frequently found in HPV45 (97%) and HPV18 (84%) than in HPV16 DNA (30%). HPV16 disruption was more frequently found in E1 (48%) unlike HPV18, where it was found in E2 (61%). Concomitant disruption of E1/E2 was most frequent in HPV45 (72%). Conclusions The findings showed a higher methylation associated with intact E1/E2 for HPV16 and HPV18. The closely phylogenetic related HPV18 and HPV45 share a similar methylation level and the frequency of viral genome disruption.
Collapse
Affiliation(s)
- Sérgio Menezes Amaro-Filho
- Genetics Program, Instituto Nacional de Câncer (INCA), Andre Cavalcanti 37, Rio de Janeiro, RJ 20231-050, Brazil.
| | | | - Shayany Pinto Felix
- Genetics Program, Instituto Nacional de Câncer (INCA), Andre Cavalcanti 37, Rio de Janeiro, RJ 20231-050, Brazil.
| | - Diogo Lisbôa Basto
- Genetics Program, Instituto Nacional de Câncer (INCA), Andre Cavalcanti 37, Rio de Janeiro, RJ 20231-050, Brazil.
| | | | | |
Collapse
|
18
|
Human papillomavirus type 16 E5-mediated upregulation of Met in human keratinocytes. Virology 2018; 519:1-11. [PMID: 29609071 DOI: 10.1016/j.virol.2018.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
Human papillomaviruses (HPVs) cause benign lesions that can lead to malignancy. How cellular changes induced by viral oncogenes contribute to the progeny virion production is not always clear. Stromally-derived growth factors and their receptors are critical for development of malignancy, but their impact on the pre-malignant HPV life cycle is unknown. We show that HPV16 increases levels of Met, a growth factor receptor critical for tumor cell invasion, motility, and cancer metastasis. The viral oncogene E5 is primarily responsible for Met upregulation, with E6 playing a minor role. Met induction by E5 requires the epidermal growth factor receptor, which is also increased by E5 at the mRNA level. E5-induced Met contributes motility of HPV-containing cells. Finally, Met signaling is necessary for viral gene expression, particularly in the differentiation-dependent phase of the viral life cycle. These studies show a new role for E5 in epithelial-stromal interactions, with implications for cancer development.
Collapse
|
19
|
Anayannis NV, Schlecht NF, Ben-Dayan M, Smith RV, Belbin TJ, Ow TJ, Blakaj DM, Burk RD, Leonard SM, Woodman CB, Parish JL, Prystowsky MB. Association of an intact E2 gene with higher HPV viral load, higher viral oncogene expression, and improved clinical outcome in HPV16 positive head and neck squamous cell carcinoma. PLoS One 2018; 13:e0191581. [PMID: 29451891 PMCID: PMC5815588 DOI: 10.1371/journal.pone.0191581] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
To assess the relationship of E2 gene disruption with viral gene expression and clinical outcome in human papillomavirus (HPV) positive head and neck squamous cell carcinoma, we evaluated 31 oropharyngeal and 17 non-oropharyngeal HPV16 positive carcinomas using two PCR-based methods to test for disruption of E2, followed by Sanger sequencing. Expression of HPV16 E6, E7 and E2 transcripts, along with cellular ARF and INK4A, were also assessed by RT-qPCR. Associations between E2 disruption, E2/E6/E7 expression, and clinical outcome were evaluated by Kaplan-Meier analysis for loco-regional recurrence and disease-specific survival. The majority (n = 21, 68%) of HPV16 positive oropharyngeal carcinomas had an intact E2 gene, whereas the majority of HPV16 positive non-oropharyngeal carcinomas (n = 10, 59%) had a disrupted E2 gene. Three of the oropharyngeal tumors and two of the non-oropharyngeal tumors had deletions within E2. Detection of an intact E2 gene was associated with a higher DNA viral load and increased E2/E6/E7, ARF and INK4A expression in oropharyngeal tumors. Oropharyngeal carcinomas with an intact E2 had a lower risk of loco-regional recurrence (log-rank p = 0.04) and improved disease-specific survival (p = 0.03) compared to tumors with disrupted E2. In addition, high E7 expression was associated with lower risk of loco-regional recurrence (p = 0.004) as was high E6 expression (p = 0.006). In summary, an intact E2 gene is more common in HPV16 positive oropharyngeal than non-oropharyngeal carcinomas; the presence of an intact E2 gene is associated with higher HPV viral load, higher viral oncogene expression, and improved clinical outcome compared to patients with a disrupted E2 gene in oropharyngeal cancer.
Collapse
Affiliation(s)
- Nicole V. Anayannis
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
| | - Nicolas F. Schlecht
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
- Department of Medicine (Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, United States of America
| | - Miriam Ben-Dayan
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
| | - Richard V. Smith
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
| | - Thomas J. Belbin
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
- Discipline of Oncology, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Thomas J. Ow
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
- Department of Otorhinolaryngology-Head and Neck Surgery, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
| | - Duk M. Blakaj
- The James Cancer Center, Ohio State University, Columbus, OH, United States of America
| | - Robert D. Burk
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
- Department of Pediatrics (Genetics), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
- Department of Microbiology & Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
- Department of Obstetrics, Gynecology & Women’s Health, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
| | - Sarah M. Leonard
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ciaran B. Woodman
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Michael B. Prystowsky
- Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, United States of America
| |
Collapse
|
20
|
Hong D, Liu J, Hu Y, Lu X, Li B, Li Y, Hu D, Lu W, Xie X, Cheng X. Viral E6 is overexpressed via high viral load in invasive cervical cancer with episomal HPV16. BMC Cancer 2017; 17:136. [PMID: 28202002 PMCID: PMC5311840 DOI: 10.1186/s12885-017-3124-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/08/2017] [Indexed: 11/18/2022] Open
Abstract
Background The integration of HR-HPV genome into host DNA is regarded as a key step for the development of cervical cancer. However, HR-HPV genome indeed exists as episome except for integrant. It may be alternative mechanisms in episome-associated carcinogenesis, although, by which HPV 16 episome induces cervical carcinogenesis is unclear now. Methods Ninety-three invasive cervical cancer tissues with HPV16 positive were collected. Viral physical status was calculated from comparing E2 to E6-copies and detection of viral load was made with realtime-PCR using copy numbers of E6. HPV16 E6 mRNA transcript levels were measured by realtime-PCR. The methylation frequency of HPV16 promoter was detected by PCR and pyrosequencing. Results In 93 samples, 21.5% (20/93) presented purely integrated viral genome, 53.8% (50/93) mixed viral genome, and 24.7% (23/93) purely episomal viral genome. Mean E6 expression in samples with purely episomal viral genomes was 7.13-fold higher than that with purely integrated viral genomes. Meanwhile, viral load in samples with purely episomal viral genomes was 4.53-fold higher than that with purely integrated viral genomes. E6 mRNA expression increased with the viral load in purely episomal cases. There were no differences of mean methylation frequency between purely episomal and integrated virus and among five CpG positions of HPV16 promoter for all samples. And there also was no correlation between E6 mRNA expression and methylation of HPV16 promoter among all samples with purely HPV16 episomal virus. Conclusions HPV16 with the purely episomal viral genomes exists in a definite proportion of invasive cervical cancer, and episomal HPV16 also overexpresses E6 mRNA, probably through a high level of viral load.
Collapse
Affiliation(s)
- Die Hong
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China
| | - Jia Liu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China
| | - Ying Hu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China
| | - Xiaonan Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China
| | - Baohua Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China
| | - Yang Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China
| | - Dongxiao Hu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Women's Reproductive Health Laboratory of Zhejiang Province, Zhejiang University, Xueshi Rd 1#, Hangzhou, 310006, China.
| |
Collapse
|
21
|
Woodby B, Scott M, Bodily J. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:169-238. [PMID: 27865458 PMCID: PMC5727914 DOI: 10.1016/bs.pmbts.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.
Collapse
Affiliation(s)
- B Woodby
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - M Scott
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - J Bodily
- Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
22
|
Durzynska J, Lesniewicz K, Poreba E. Human papillomaviruses in epigenetic regulations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:36-50. [PMID: 28528689 DOI: 10.1016/j.mrrev.2016.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 12/12/2022]
Abstract
Human Papillomaviruses (HPVs) are double-stranded DNA viruses, that infect epithelial cells and are etiologically involved in the development of human cancer. Today, over 200 types of human papillomaviruses are known. They are divided into low-risk and high-risk HPVs depending on their potential to induce carcinogenesis, driven by two major viral oncoproteins, E6 and E7. By interacting with cellular partners, these proteins are involved in interdependent viral and cell cycles in stratified differentiating epithelium, and concomitantly induce epigenetic changes in infected cells and those undergoing malignant transformation. E6 and E7 oncoproteins interact with and/or modulate expression of many proteins involved in epigenetic regulation, including DNA methyltransferases, histone-modifying enzymes and subunits of chromatin remodeling complexes, thereby influencing host cell transcription program. Furthermore, HPV oncoproteins modulate expression of cellular micro RNAs. Most of these epigenetic actions in a complex dynamic interplay participate in the maintenance of persistent infection, cell transformation, and development of invasive cancer by a considerable deregulation of tumor suppressor and oncogenes. In this study, we have undertaken to discuss a number of studies concerning epigenetic regulations in HPV-dependent cells and to focus on those that have biological relevance to cancer progression.
Collapse
Affiliation(s)
- Julia Durzynska
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Krzysztof Lesniewicz
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Elzbieta Poreba
- Department of Molecular Virology, Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
23
|
Molano M, Tabrizi SN, Garland SM, Roberts JM, Machalek DA, Phillips S, Chandler D, Hillman RJ, Grulich AE, Jin F, Poynten IM, Templeton DJ, Cornall AM. CpG Methylation Analysis of HPV16 in Laser Capture Microdissected Archival Tissue and Whole Tissue Sections from High Grade Anal Squamous Intraepithelial Lesions: A Potential Disease Biomarker. PLoS One 2016; 11:e0160673. [PMID: 27529629 PMCID: PMC4987059 DOI: 10.1371/journal.pone.0160673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/22/2016] [Indexed: 11/18/2022] Open
Abstract
Incidence and mortality rates of anal cancer are increasing globally. More than 90% of anal squamous cell carcinomas (ASCC) are associated with human papillomavirus (HPV). Studies on HPV-related anogenital lesions have shown that patterns of methylation of viral and cellular DNA targets could potentially be developed as disease biomarkers. Lesion-specific DNA isolated from formalin-fixed paraffin-embedded (FFPE) tissues from existing or prospective patient cohorts may constitute a valuable resource for methylation analysis. However, low concentrations of DNA make these samples technically challenging to analyse using existing methods. We therefore set out to develop a sensitive and reproducible nested PCR-pyrosequencing based method to accurately quantify methylation at 10 CpG sites within the E2BS1, E2BS2,3,4 and Sp1 binding sites in the viral upstream regulatory region of HPV16 genome. Methylation analyses using primary and nested PCR-pyrosequencing on 52 FFPE tissue [26 paired whole tissue sections (WTS) and laser capture microdissected (LCM) tissues] from patients with anal squamous intraepithelial lesions was performed. Using nested PCR, methylation results were obtained for the E2BS1, E2BS2,3,4 and Sp1 binding sites in 86.4% of the WTS and 81.8% of the LCM samples. Methylation patterns were strongly correlated within median values of matched pairs of WTS and LCM sections, but overall methylation was higher in LCM samples at different CpG sites. High grade lesions showed low methylation levels in the E2BS1 and E2BS2 regions, with increased methylation detected in the E2BS,3,4/Sp1 regions, showing the highest methylation at CpG site 37. The method developed is highly sensitive in samples with low amounts of DNA and demonstrated to be suitable for archival samples. Our data shows a possible role of specific methylation in the HPV16 URR for detection of HSIL.
Collapse
Affiliation(s)
- Monica Molano
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
| | - Sepehr N. Tabrizi
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne and Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Suzanne M. Garland
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne and Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | | | - Dorothy A. Machalek
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Samuel Phillips
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | | | - Richard J. Hillman
- Western Sydney Sexual Health Centre, Western Sydney Local Health District, Parramatta, New South Wales, Australia
- Sydney Medical School, Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew E. Grulich
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Fengyi Jin
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - I. Mary Poynten
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - David J. Templeton
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- RPA Sexual Health, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Alyssa M. Cornall
- Regional HPV Labnet Reference Laboratory, Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- * E-mail:
| | | |
Collapse
|
24
|
Qiu C, Zhi Y, Shen Y, Gong J, Li Y, Rong S, Okunieff P, Zhang L, Li X. Performance of the HPV-16 L1 methylation assay and HPV E6/E7 mRNA test for the detection of squamous intraepithelial lesions in cervical cytological samples. J Virol Methods 2015; 224:35-41. [PMID: 26297960 DOI: 10.1016/j.jviromet.2015.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 01/19/2023]
Abstract
HPV-16 L1 methylation and E6/E7 mRNA have suggested that they had close relationship with cervical neoplastic progression. This study aimed to evaluate the clinical performance of the HPV-16 L1 methylation assay and E6/E7 mRNA test for detecting high-grade cervical lesions (CIN2+). A total of 81 women with liquid-based cytology (LBC) samples, histological results, and positive HPV-DNA test for HPV type 16 only were included in this study. HPV-16 L1 methylation and E6/E7 mRNA levels were measured using methylation-sensitive high resolution melting (MS-HRM) analysis and Quantivirus®HPV E6/E7 RNA 3.0 assay (bDNA), respectively, in the same residue of LBC samples. The current date showed a positive correlation between the HPV-16 L1 methylation and the E6/E7 mRNA levels. The L1 methylation and mRNA levels both increased with disease severity. The mRNA test method showed higher sensitivity and NPV (98.0 and 91.7% vs. 89.8 and 80.8%), while lower specificity and PPV (34.4 and 69.6% vs. 65.6 and 80.0%), than the L1 methylation assay for detecting histology-confirmed CIN2+. When using the detection method of mRNA test combined with L1 methylation assay, we obtained a sensitivity of 89.8% and a specificity of 71.9%. These findings suggest that assessment of HPV-16 L1 methylation testing combined with E6/E7 mRNA testing may be a promising method for the triage of women with HPV type 16 only.
Collapse
Affiliation(s)
- Cui Qiu
- Department of Cytopathology, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou 450052, China
| | - Yanfang Zhi
- Department of Cytopathology, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou 450052, China
| | - Yong Shen
- The Cancer Hospital Affiliated to Zhengzhou University, No. 127 Dongming Street, Jinshui District, Zhengzhou 450008, China
| | - Jiaomei Gong
- The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Street, Guancheng Hui District, Zhengzhou 450014, China
| | - Ya Li
- Department of Cytopathology, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou 450052, China
| | - Shouhua Rong
- Department of Cytopathology, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou 450052, China
| | - Paul Okunieff
- University of Florida Shands Cancer Center, Gainesville, FL, USA
| | - Lulu Zhang
- Engineering Research Center of Microbial Tumer Marker and Drug Sensitive Test, Xinxiang, Henan, 453400, China
| | - Xiaofu Li
- Department of Cytopathology, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou 450052, China.
| |
Collapse
|
25
|
Qiu C, Zhi Y, Shen Y, Gong J, Li Y, Li X. High-resolution melting analysis of HPV-16L1 gene methylation: A promising method for prognosing cervical cancer. Clin Biochem 2015; 48:855-9. [PMID: 25982893 DOI: 10.1016/j.clinbiochem.2015.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Methylation-sensitive high-resolution melting (MS-HRM) is a new technique for DNA methylation analysis, but it is rarely used for the detection of viral DNA methylation. In this study, we investigated the HPV-16L1 gene methylation that is detected by MS-HRM as a potential biomarker for prognosing cervical dysplasia and cancer. DESIGN AND METHODS A total of 114 HPV-16 infected patients (normal (17), CIN1 (25), CIN2 (29), CIN3 (32), SCC (11)) who underwent liquid-based cytology test and biopsy were included in this study. 17 cases with HPV-16 infection and negative cytologic and histologic results served as the control group. The HPV-16L1 gene methylation statuses of these samples were investigated using a methylation-sensitive high-resolution melting (MS-HRM) assay after bisulfite modification. RESULTS The HPV-16L1 gene methylation statuses of all the 114 specimens were successfully detected by MS-HRM, and we observed increasing methylation levels in severe lesions, as determined using histologic assays. In addition, the methylation levels of CIN2+ (CIN2, CIN3 and SCC) were significantly higher than that of CIN2- (normal and CIN1, P<0.001). When taking CIN2+ as the reference, our HPV-16L1 DNA methylation assay achieved 91.7% sensitivity and 59.5% specificity, respectively. CONCLUSIONS The results of the present work demonstrated that HPV-16L1 gene methylation was closely associated with cervical precancerosis and cancer. Moreover, using MS-HRM to detect HPV-16L1 gene methylation may be a powerful assay for the triage of HPV-16-positive females, which could identify patients with high risk of invasive cancer.
Collapse
Affiliation(s)
- Cui Qiu
- Department of Cytopathology, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou 450052, China
| | - Yanfang Zhi
- Department of Cytopathology, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou 450052, China
| | - Yong Shen
- The Cancer Hospital Affiliated to Zhengzhou University, No. 127 Dongming Street, Jinshui District, Zhengzhou 450008, China
| | - Jiaomei Gong
- The Second Affiliated Hospital of Zhengzhou University, No. 2 Jingba Street, Guancheng Hui District, Zhengzhou 450014, China
| | - Ya Li
- Department of Cytopathology, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou 450052, China
| | - Xiaofu Li
- Department of Cytopathology, The Third Affiliated Hospital of Zhengzhou University, No. 7 Front Kangfu Street, Er'qi District, Zhengzhou 450052, China.
| |
Collapse
|
26
|
Guo Y, Hu J, Zhu L, Sun J, Xie L, Kong F, Han L, Li F. Physical Status and Variant Analysis of Human Papillomavirus 16 in Women from Shanghai. Gynecol Obstet Invest 2015; 81:61-70. [DOI: 10.1159/000381775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/18/2015] [Indexed: 11/19/2022]
|
27
|
Prabhavathy D, Vijayalakshmi R, Kanchana MP, Karunagaran D. HPV16 E2 enhances the expression of NF-κB and STAT3 target genes and potentiates NF-κB activation by inflammatory mediators. Cell Immunol 2015; 292:70-7. [PMID: 25460081 DOI: 10.1016/j.cellimm.2014.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 09/07/2014] [Accepted: 09/29/2014] [Indexed: 02/06/2023]
Abstract
HPV-transformed cells exhibit activation of NF-κB and STAT3 (mediators of inflammation), but very little is known about their regulation under inflammatory conditions before HPV integration. This study reports that cervical tissues with stromal inflammation and intact HPV16 E2 gene show increased expression of target genes of NF-κB and/or STAT3 which can regulate cell survival (cyclin D1, c-Myc, survivin and Bcl2) and inflammatory responses (TNF-α, IL-1β, IL-6, IL-8 and CCR2). Increased expression of RelA, p-IκBα, STAT3, p-STAT3 (Ser727), Pin1 (peptidyl-prolyl cis/trans isomerase) and MCM2 in the squamous epithelia of cervices with stromal inflammation supports early activation of NF-κB-STAT3. Furthermore, HPV16 E2 potentiated NF-κB activation induced by inflammatory mediators, IL-1β and SDF-1α, in HEK293 cells. These results reveal a novel role for E2 in regulating the activities of NF-κB and STAT3 that may have implications in carcinogenic progression of HPV16-infected cells under conditions of stromal inflammation.
Collapse
|
28
|
Lillsunde Larsson G, Helenius G, Sorbe B, Karlsson MG. Viral load, integration and methylation of E2BS3 and 4 in human papilloma virus (HPV) 16-positive vaginal and vulvar carcinomas. PLoS One 2014; 9:e112839. [PMID: 25393237 PMCID: PMC4231157 DOI: 10.1371/journal.pone.0112839] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/17/2014] [Indexed: 12/19/2022] Open
Abstract
Objective To investigate if viral load, integration and methylation of E2BS3 and 4 represent different ways of tumor transformation in vaginal and vulvar carcinoma and to elucidate its clinical impact. Methods Fifty-seven samples, positive for HPV16, were selected for the study. Detection of viral load was made with realtime-PCR using copy numbers of E6 and integration was calculated from comparing E2 to E6-copies. Methylation of E2BS3 and 4 was analysed using bisulphite treatment of tumor DNA, followed by PCR and pyrosequencing. Results Vaginal tumors were found to have a higher viral load (p = 0.024) compared to vulvar tumors but a high copy number (> median value, 15 000) as well as high methylation (>50%) was significantly (p = 0.010 and p = 0.045) associated with a worse cancer-specific survival rate in vulvar carcinoma, but not in vaginal carcinoma. Four groups could be defined for the complete series using a Cluster Two step analysis; (1) tumors holding episomal viral DNA, viral load below 150 000 copies not highly methylated (n = 25, 46.3%); (2) tumors harboring episomal viral DNA and being highly methylated (>50%; n = 6, 11.1%); (3) tumors with viral DNA fully integrated (n = 11, 20.4%), and (4) tumors harboring episomal viral DNA and being medium- or unmethylated (<50%) and having a high viral load (> total mean value 150 000; n = 12, 22.2%). The completely integrated tumors were found to be distinct group, whilst some overlap between the groups with high methylation and high viral load was observed. Conclusion HPV16- related integration, methylation in E2BS3 and 4 and viral load may represent different viral characteristics driving vaginal and vulvar carcinogenesis. HPV16- related parameters were found to be of clinical importance in the vulvar series only.
Collapse
Affiliation(s)
- Gabriella Lillsunde Larsson
- Department of Laboratory Medicine, Örebro University Hospital, Örebro, Sweden
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
- * E-mail:
| | - Gisela Helenius
- Department of Laboratory Medicine, Örebro University Hospital, Örebro, Sweden
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Bengt Sorbe
- Department of Oncology, Örebro University Hospital, Örebro, Sweden
| | - Mats G. Karlsson
- Department of Laboratory Medicine, Örebro University Hospital, Örebro, Sweden
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
29
|
Durzyńska J. IGF axis and other factors in HPV-related and HPV-unrelated carcinogenesis (review). Oncol Rep 2014; 32:2295-306. [PMID: 25333772 PMCID: PMC4240475 DOI: 10.3892/or.2014.3505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/26/2014] [Indexed: 12/20/2022] Open
Abstract
The insulin-like growth factor (IGF) axis promotes the growth of cells, tissues and organs. IGF-1 is mainly produced in the liver but is also secreted from local tissues. In the circulation, IGF-1 is bound to insulin-like binding proteins (IGFBPs), and when released it activates the insulin-like growth factor receptor (IGF-1R). The signal is further transmitted by intracellular signaling pathways leading to gene expression that regulates, among others, cell proliferation and survival. This review presents the IGF axis in the context of cell transformation and cancer development. Aspects involving IGF-1 deficiency and protection from cancer are also briefly described. Furthermore, human papillomaviruses (HPVs) interplaying with IGF axis components in cervical cancer development are described. These small dsDNA viruses are divided into low-risk and high-risk HPVs with regard to the potency of their oncogenic actions; they mainly infect epithelial or mucosal cells. Special attention is drawn to expression of two major HPV oncogenes (E6 and E7) initiating and maintaining cervical carcinogenesis, which is a multistep and multifactorial process; therefore, involvement of additional factors such as mitochondrial DNA changes, sex hormones, retinoic and folic acids are also discussed. Finally, IGF axis components and HPV oncogenes as targets in anticancer treatment are presented which include IGF-1R downregulation, RNA interference and anti-HPV therapeutic vaccines. The review concludes that despite an enormous advancement in research on IGF and HPV-related cancers, more molecular studies and clinical trials are needed before commercialized therapies are widely available for oncology patients.
Collapse
Affiliation(s)
- Julia Durzyńska
- Department of Molecular Virology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, 60-614 Poznań, Poland
| |
Collapse
|
30
|
Marongiu L, Godi A, Parry JV, Beddows S. Human Papillomavirus 16, 18, 31 and 45 viral load, integration and methylation status stratified by cervical disease stage. BMC Cancer 2014; 14:384. [PMID: 24885011 PMCID: PMC4053304 DOI: 10.1186/1471-2407-14-384] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/27/2014] [Indexed: 11/30/2022] Open
Abstract
Background Persistent infection with oncogenic Human Papillomavirus (HPV) is associated with the development of cervical cancer with each genotype differing in their relative contribution to the prevalence of cervical disease. HPV DNA testing offers improved sensitivity over cytology testing alone but is accompanied by a generally low specificity. Potential molecular markers of cervical disease include type-specific viral load (VL), integration of HPV DNA into the host genome and methylation of the HPV genome. The aim of this study was to evaluate the relationship between HPV type-specific viral load, integration and methylation status and cervical disease stage in samples harboring HPV16, HPV18, HPV31 or HPV45. Methods Samples singly infected with HPV16 (n = 226), HPV18 (n = 32), HPV31 (n = 75) or HPV45 (n = 29) were selected from a cohort of 4,719 women attending cervical screening in England. Viral load and integration status were determined by real-time PCR while 3’L1-URR methylation status was determined by pyrosequencing or sequencing of multiple clones derived from each sample. Results Viral load could differentiate between normal and abnormal cytology with a sensitivity of 75% and a specificity of 80% (odds ratio [OR] 12.4, 95% CI 6.2–26.1; p < 0.001) with some variation between genotypes. Viral integration was poorly associated with cervical disease. Few samples had fully integrated genomes and these could be found throughout the course of disease. Overall, integration status could distinguish between normal and abnormal cytology with a sensitivity of 72% and a specificity of 50% (OR 2.6, 95% CI 1.0–6.8; p = 0.054). Methylation levels were able to differentiate normal and low grade cytology from high grade cytology with a sensitivity of 64% and a specificity of 82% (OR 8.2, 95% CI 3.8–18.0; p < 0.001). However, methylation varied widely between genotypes with HPV18 and HPV45 exhibiting a broader degree and higher magnitude of methylated CpG sites than HPV16 and HPV31. Conclusions This study lends support for HPV viral load and CpG methylation status, but not integration status, to be considered as potential biomarkers of cervical disease.
Collapse
Affiliation(s)
| | | | | | - Simon Beddows
- Virus Reference Department, Public Health England, 61 Colindale Avenue, London NW9 5EQ, U,K.
| |
Collapse
|
31
|
Abstract
Epigenetic change is part of the carcinogenic process and a deep reservoir for biomarker discovery. Reversible methylation of cytosines is noteworthy because it can be measured accurately and easily by various molecular methods and DNA methylation patterns are linked to important tumourigenic pathways. Clinically relevant methylation changes are known in common human cancers such as cervix, prostate, breast, colon, bladder, stomach and lung. Differential methylation may have a central role in the development and outcome of most if not all human malignancies. The advent of deep sequencing holds great promise for epigenomics, with bioinformatics tools ready to reveal large numbers of new targets for prognosis and therapeutic intervention. This review focuses on two selected cancers, namely cervix and prostate, which illustrate the more general themes of epigenetic diagnostics in cancer. Also discussed is differential methylation of specific human and viral DNA targets and laboratory methods for measuring methylation biomarkers.
Collapse
Affiliation(s)
- Attila T Lorincz
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|