1
|
Denschlag D, Heitz F, Pfisterer J, Tutschkow D, Reuss A, Meier W, Harter P, Wimberger P, Mirza MR, Ray-Coquard I, Scambia G, Kim JW, Colombo N, Oaknin A, Sehouli J, Lindemann K, Lebreton C, Eichbaum M, Spiegelberg S, Woopen H, du Bois A. Impact of metformin, statins, and beta blockers on survival in patients with primary ovarian cancer: combined analysis of four prospective trials of AGO-OVAR and ENGOT/GCIG collaborators. Int J Gynecol Cancer 2024; 34:1914-1923. [PMID: 39322609 DOI: 10.1136/ijgc-2024-005663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the association of co-medication with metformin, a statin, or beta blocker with survival in patients with primary ovarian cancer. METHODS Individual data from three phase III, randomized controlled trials (AGO-OVAR 11, AGO-OVAR 12, and AGO-OVAR 16) and one phase II trial (AGO-OVAR 15) were pooled and analyzed. Patients were classified as ever user if the specific co-medication was documented at least once during the trial, and were compared with never users as controls. Association of co-medications and outcomes were adjusted for potential confounders (age, International Federation of Gynecology and Obstetrics stage, histology, residual disease after surgery, Eastern Cooperative Oncology Group (ECOG) performance status, body mass index, Charlson Comorbidity Index, and assigned treatment within the trial) in multivariate Cox regression analyses. RESULTS Overall, n=2857 patients were included. Ever users were: 100 patients received metformin (3.5%), 226 patients received statins (7.9%), and 475 (16.6%) patients received beta blockers (n=391 selective beta blockers; 84 non-selective beta blockers) as co-medication. There were no significant differences regarding the baseline characteristics except that ever users were significantly older, more obese, and had more comorbidities, according to the Charlson Comorbidity Index, compared with controls. Multivariate analyses for progression free survival and overall survival revealed neither a significant impact of metformin on survival (progression free survival hazard ratio (HR) 0.94, 95% confidence interval CI 0.69 to 1.29, p=0.7; overall survival HR 0.82, 95% CI 0.58 to 1.17, p=0.28) nor for statins (progression free survival HR 0.98, 95% CI 0.82 to 1.18, p=0.87; overall survival HR 0.91, 95% CI 0.74 to 1.12, p=0.37). In contrast, ever users of selective beta blockers had a significantly higher risk for recurrence and death (progression free survival HR 1.22, 95% CI 1.05 to 1.41, p=0.009; overall survival HR 1.25 95% CI 1.06 to 1.47, p=0.009). CONCLUSIONS In this analysis, co-medication with metformin or statins had no significant impact on survival in patients with primary ovarian cancer. In contrast, co-medication with a beta blocker was associated with worse survival. However, whether this observation is related to the underlying condition rather than a direct negative impact on tumor biology remains unclear.
Collapse
Affiliation(s)
- Dominik Denschlag
- OB/GYN, Hochtaunus Kliniken gGmbH, Bad Homburg vor der Hohe, Germany
| | - Florian Heitz
- Gynecology and Gynocologic Oncology, Kliniken Essen-Mitte, Essen, Germany
| | | | | | - Alexander Reuss
- Coordinating Center for Clinical Trials, Philipps-Universität Marburg, Marburg, Germany
| | - Werner Meier
- University Hospital of Düsseldorf, Dusseldorf, Germany
| | - Philipp Harter
- Department of Gynecology and Gynecologic Oncology, Ev, Kliniken Essen-Mitte, Essen, Germany
| | - Pauline Wimberger
- Gyncology and Obstetrics, Technische Universitat Dresden Medizinische Fakultat Carl Gustav Carus, Dresden, Germany
| | - Mansoor Raza Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Isabelle Ray-Coquard
- Centre Leon Berard, Lyon, France
- Hesper Lab, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Giovanni Scambia
- Dipartimento Scienze della Salute della Donna e del Bambino, Fondazione Policlinico Universitario A Gemelli IRCCS, Roma, Italy
| | - Jae-Weon Kim
- Seoul National University Hospital, Jongno-gu, Seoul, Korea (the Republic of)
| | - Nicoletta Colombo
- Medical Gynecologic Oncology Unit, University of Milan Bicocca, European Institute of Oncology, Milano, Italy
| | - Ana Oaknin
- Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jalid Sehouli
- Gynecology with Center of Oncological Surgery, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Kristina Lindemann
- Department of Gynecological Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | | | - Hannah Woopen
- Gynecology, Charite-University Medicine of Berlin, European Competence Center for Ovarian Cancer, Berlin, Germany
| | - Andreas du Bois
- Department of Gynecology and Gynecologic Oncology, KEM, Kliniken Essen Mitte, Essen, Germany
| |
Collapse
|
2
|
Manoleras AV, Sloan EK, Chang A. The sympathetic nervous system shapes the tumor microenvironment to impair chemotherapy response. Front Oncol 2024; 14:1460493. [PMID: 39381049 PMCID: PMC11458372 DOI: 10.3389/fonc.2024.1460493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
The tumor microenvironment influences cancer progression and response to treatments, which ultimately impacts the survival of patients with cancer. The sympathetic nervous system (SNS) is a core component of solid tumors that arise in the body. In addition to influencing cancer progression, a role for the SNS in the effectiveness of cancer treatments is beginning to emerge. This review explores evidence that the SNS impairs chemotherapy efficacy. We review findings of studies that evaluated the impact of neural ablation on chemotherapy outcomes and discuss plausible mechanisms for the impact of neural signaling on chemotherapy efficacy. We then discuss implications for clinical practice, including opportunities to block neural signaling to improve response to chemotherapy.
Collapse
Affiliation(s)
| | | | - Aeson Chang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
3
|
Cavalu S, Saber S, Amer AE, Hamad RS, Abdel-Reheim MA, Elmorsy EA, Abdelhamid AM. The multifaceted role of beta-blockers in overcoming cancer progression and drug resistance: Extending beyond cardiovascular disorders. FASEB J 2024; 38:e23813. [PMID: 38976162 DOI: 10.1096/fj.202400725rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
Beta-blockers are commonly used medications that antagonize β-adrenoceptors, reducing sympathetic nervous system activity. Emerging evidence suggests that beta-blockers may also have anticancer effects and help overcome drug resistance in cancer treatment. This review summarizes the contribution of different isoforms of beta-adrenoceptors in cancer progression, the current preclinical and clinical data on associations between beta-blockers use and cancer outcomes, as well as their ability to enhance responses to chemotherapy and other standard therapies. We discuss proposed mechanisms, including effects on angiogenesis, metastasis, cancer stem cells, and apoptotic pathways. Overall, results from epidemiological studies and small clinical trials largely indicate the beneficial effects of beta-blockers on cancer progression and drug resistance. However, larger randomized controlled trials are needed to firmly establish their clinical efficacy and optimal utilization as adjuvant agents in cancer therapy.
Collapse
Affiliation(s)
- Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed E Amer
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
4
|
Bezu L, Akçal Öksüz D, Bell M, Buggy D, Diaz-Cambronero O, Enlund M, Forget P, Gupta A, Hollmann MW, Ionescu D, Kirac I, Ma D, Mokini Z, Piegeler T, Pranzitelli G, Smith L, The EuroPeriscope Group. Perioperative Immunosuppressive Factors during Cancer Surgery: An Updated Review. Cancers (Basel) 2024; 16:2304. [PMID: 39001366 PMCID: PMC11240822 DOI: 10.3390/cancers16132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Surgical excision of the primary tumor represents the most frequent and curative procedure for solid malignancies. Compelling evidence suggests that, despite its beneficial effects, surgery may impair immunosurveillance by triggering an immunosuppressive inflammatory stress response and favor recurrence by stimulating minimal residual disease. In addition, many factors interfere with the immune effectors before and after cancer procedures, such as malnutrition, anemia, or subsequent transfusion. Thus, the perioperative period plays a key role in determining oncological outcomes and represents a short phase to circumvent anesthetic and surgical deleterious factors by supporting the immune system through the use of synergistic pharmacological and non-pharmacological approaches. In line with this, accumulating studies indicate that anesthetic agents could drive both protumor or antitumor signaling pathways during or after cancer surgery. While preclinical investigations focusing on anesthetics' impact on the behavior of cancer cells are quite convincing, limited clinical trials studying the consequences on survival and recurrences remain inconclusive. Herein, we highlight the main factors occurring during the perioperative period of cancer surgery and their potential impact on immunomodulation and cancer progression. We also discuss patient management prior to and during surgery, taking into consideration the latest advances in the literature.
Collapse
Affiliation(s)
- Lucillia Bezu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Département d'Anesthésie, Chirurgie et Interventionnel, Gustave Roussy, 94805 Villejuif, France
- U1138 Metabolism, Cancer and Immunity, Gustave Roussy, 94805 Villejuif, France
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dilara Akçal Öksüz
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Clinic for Anesthesiology, Intensive Care, Emergency Medicine, Pain Therapy and Palliative Medicine, Marienhaus Klinikum Hetzelstift, 67434 Neustadt an der Weinstrasse, Germany
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
| | - Max Bell
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Donal Buggy
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthesiology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland
- School of Medicine, University College, D04 V1W8 Dublin, Ireland
| | - Oscar Diaz-Cambronero
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
- Perioperative Medicine Research, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Faculty of Medicine, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Mats Enlund
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Center for Clinical Research, Uppsala University, SE-72189 Västerås, Sweden
- Department of Anesthesia & Intensive Care, Västmanland Hospital, SE-72189 Västerås, Sweden
| | - Patrice Forget
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), Institute of Applied Health Sciences, Epidemiology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Pain and Opioids after Surgery (PANDOS) ESAIC Research Group, European Society of Anaesthesiology and Intensive Care, 1000 Brussels, Belgium
- IMAGINE UR UM 103, Anesthesia Critical Care, Emergency and Pain Medicine Division, Nîmes University Hospital, Montpellier University, 30900 Nîmes, France
| | - Anil Gupta
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Markus W Hollmann
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands
| | - Daniela Ionescu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesia and Intensive Care, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012 Cluj-Napoca, Romania
- Outcome Research Consortium, Cleveland, OH 44195, USA
| | - Iva Kirac
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Genetic Counselling Unit, University Hospital for Tumors, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Daqing Ma
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW10 9NH, UK
- Department of Anesthesiology, Perioperative and Systems Medicine Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhirajr Mokini
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
- Clinique du Pays de Seine, 77590 Bois le Roi, France
| | - Tobias Piegeler
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, 04275 Leipzig, Germany
| | - Giuseppe Pranzitelli
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, San Timoteo Hospital, 86039 Termoli, Italy
| | - Laura Smith
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
| | | |
Collapse
|
5
|
Ullah A, Chen Y, Singla RK, Cao D, Shen B. Pro-inflammatory cytokines and CXC chemokines as game-changer in age-associated prostate cancer and ovarian cancer: Insights from preclinical and clinical studies' outcomes. Pharmacol Res 2024; 204:107213. [PMID: 38750677 DOI: 10.1016/j.phrs.2024.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Prostate cancer (PC) and Ovarian cancer (OC) are two of the most common types of cancer that affect the reproductive systems of older men and women. These cancers are associated with a poor quality of life among the aged population. Therefore, finding new and innovative ways to detect, treat, and prevent these cancers in older patients is essential. Finding biomarkers for these malignancies will increase the chance of early detection and effective treatment, subsequently improving the survival rate. Studies have shown that the prevalence and health of some illnesses are linked to an impaired immune system. However, the age-associated changes in the immune system during malignancies such as PC and OC are poorly understood. Recent research has suggested that the excessive production of inflammatory immune mediators, such as interleukin-6 (IL-6), interleukin-8 (IL-8), transforming growth factor (TGF), tumor necrosis factor (TNF), CXC motif chemokine ligand 1 (CXCL1), CXC motif chemokine ligand 12 (CXCL12), and CXC motif chemokine ligand 13 (CXCL13), etc., significantly impact the development of PC and OC in elderly patients. Our review focuses on the latest functional studies of pro-inflammatory cytokines (interleukins) and CXC chemokines, which serve as biomarkers in elderly patients with PC and OC. Thus, we aim to shed light on how these biomarkers affect the development of PC and OC in elderly patients. We also examine the current status and future perspective of cytokines (interleukins) and CXC chemokines-based therapeutic targets in OC and PC treatment for elderly patients.
Collapse
Affiliation(s)
- Amin Ullah
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yongxiu Chen
- Gynecology Department, Guangdong Women and Children Hospital, No. 521, Xingnan Road, Panyu District, Guangzhou 511442, China
| | - Rajeev K Singla
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Department of Abdominal Oncology, Cancer Center of West China Hospital and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: beta-blockers in cancer therapy. Oncoimmunology 2023; 12:2284486. [PMID: 38126031 PMCID: PMC10732641 DOI: 10.1080/2162402x.2023.2284486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Compelling evidence supports the hypothesis that stress negatively impacts cancer development and prognosis. Irrespective of its physical, biological or psychological source, stress triggers a physiological response that is mediated by the hypothalamic-pituitary-adrenal axis and the sympathetic adrenal medullary axis. The resulting release of glucocorticoids and catecholamines into the systemic circulation leads to neuroendocrine and metabolic adaptations that can affect immune homeostasis and immunosurveillance, thus impairing the detection and eradication of malignant cells. Moreover, catecholamines directly act on β-adrenoreceptors present on tumor cells, thereby stimulating survival, proliferation, and migration of nascent neoplasms. Numerous preclinical studies have shown that blocking adrenergic receptors slows tumor growth, suggesting potential clinical benefits of using β-blockers in cancer therapy. Much of these positive effects of β-blockade are mediated by improved immunosurveillance. The present trial watch summarizes current knowledge from preclinical and clinical studies investigating the anticancer effects of β-blockers either as standalone agents or in combination with conventional antineoplastic treatments or immunotherapy.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département d’anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
7
|
Pillai U J, Ray A, Maan M, Dutta M. Repurposing drugs targeting metabolic diseases for cancer therapeutics. Drug Discov Today 2023; 28:103684. [PMID: 37379903 DOI: 10.1016/j.drudis.2023.103684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 06/30/2023]
Abstract
Hurdles in the identification of new drugs for cancer treatment have made drug repurposing an increasingly appealing alternative. The approach involves the use of old drugs for new therapeutic purposes. It is cost-effective and facilitates rapid clinical translation. Given that cancer is also considered a metabolic disease, drugs for metabolic disorders are being actively repurposed for cancer therapeutics. In this review, we discuss the repurposing of such drugs approved for two major metabolic diseases, diabetes and cardiovascular disease (CVD), which have shown potential as anti-cancer treatment. We also highlight the current understanding of the cancer signaling pathways that these drugs target.
Collapse
Affiliation(s)
- Jisha Pillai U
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Anindita Ray
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE
| | - Meenu Maan
- Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, UAE; New York University-Abu Dhabi, Abu Dhabi, UAE.
| | - Mainak Dutta
- Department of Biotechnology, BITS Pilani, Dubai Campus, Academic City, Dubai, UAE.
| |
Collapse
|
8
|
Bhat BA, Saifi I, Khamjan NA, Hamdani SS, Algaissi A, Rashid S, Alshehri MM, Ganie SA, Lohani M, Abdelwahab SI, Dar SA. Exploring the tumor immune microenvironment in ovarian cancer: a way-out to the therapeutic roadmap. Expert Opin Ther Targets 2023; 27:841-860. [PMID: 37712621 DOI: 10.1080/14728222.2023.2259096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION Despite cancer treatment strides, mortality due to ovarian cancer remains high globally. While immunotherapy has proven effective in treating cancers with low cure rates, it has limitations. Growing evidence suggests that both tumoral and non-tumoral components of the tumor immune microenvironment (TIME) play a significant role in cancer growth. Therefore, developing novel and focused therapy for ovarian cancer is critical. Studies indicate that TIME is involved in developing ovarian cancer, particularly genome-, transcriptome-, and proteome-wide studies. As a result, TIME may present a prospective therapeutic target for ovarian cancer patients. AREAS COVERED We examined several TIME-targeting medicines and the connection between TIME and ovarian cancer. The key protagonists and events in the TIME and therapeutic strategies that explicitly target these events in ovarian cancer are discussed. EXPERT OPINION We highlighted various targeted therapies against TIME in ovarian cancer, including anti-angiogenesis therapies and immune checkpoint inhibitors. While these therapies are in their infancy, they have shown promise in controlling ovarian cancer progression. The use of 'omics' technology is helping in better understanding of TIME in ovarian cancer and potentially identifying new therapeutic targets. TIME-targeted strategies could account for an additional treatment strategy when treating ovarian cancer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Ifra Saifi
- Department of Botany, Chaudhary Charan Singh University, Meerut India
| | - Nizar A Khamjan
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Syed Suhail Hamdani
- Department of Bioresources, Amar Singh College Campus, Cluster University, Srinagar, India
| | - Abdullah Algaissi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Medical Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Safeena Rashid
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | | | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohtashim Lohani
- Department of Emergency Medical Services, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
9
|
Falcinelli M, Al-Hity G, Baron S, Mampay M, Allen MC, Samuels M, Jones W, Cilibrasi C, Flaherty RL, Giamas G, Thaker PH, Flint MS. Propranolol reduces IFN-γ driven PD-L1 immunosuppression and improves anti-tumour immunity in ovarian cancer. Brain Behav Immun 2023; 110:1-12. [PMID: 36796704 DOI: 10.1016/j.bbi.2023.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
The immune system plays an important role in controlling epithelial ovarian cancer (EOC). EOC is considered to be a "cold tumour," a tumour that has not triggered a strong response by the immune system. However, tumour infiltrating lymphocytes (TILs) and the expression of programmed cell death ligand (PD-L1) are used as prognostic indicators in EOC. Immunotherapy such as PD-(L)1 inhibitors have shown limited benefit in EOC. Since the immune system is affected by behavioural stress and the beta-adrenergic signalling pathway, this study aimed to explore the impact of propranolol (PRO), a beta-blocker, on anti-tumour immunity in both in vitro and in vivo EOC models. Noradrenaline (NA), an adrenergic agonist, did not directly regulate PD-L1 expression but PD-L1 was significantly upregulated by IFN-γ in EOC cell lines. IFN-γ also increased PD-L1 on extracellular vesicles (EVs) released by ID8 cells. PRO significantly decreased IFN-γ levels in primary immune cells activated ex vivo and showed increased viability of the CD8+ cell population in an EV-immune cell co-incubation. In addition, PRO reverted PD-L1 upregulation and significantly decreased IL-10 levels in an immune-cancer cell co-culture. Chronic behavioural stress increased metastasis in mice while PRO monotherapy and the combo of PRO and PD-(L)1 inhibitor significantly decreased stress-induced metastasis. The combined therapy also reduced tumour weight compared to the cancer control group and induced anti-tumour T-cell responses with significant CD8 expression in tumour tissues. In conclusion, PRO showed a modulation of the cancer immune response by decreasing IFN-γ production and, in turn, IFN-γ-mediated PD-L1 overexpression. The combined therapy of PRO and PD-(L)1 inhibitor decreased metastasis and improved anti-tumour immunity offering a promising new therapy.
Collapse
Affiliation(s)
- M Falcinelli
- University of Brighton, School of Pharmacy & Biosciences, Brighton BN2 4GJ, UK
| | - G Al-Hity
- University of Brighton, School of Pharmacy & Biosciences, Brighton BN2 4GJ, UK
| | - S Baron
- University of Brighton, School of Pharmacy & Biosciences, Brighton BN2 4GJ, UK
| | - M Mampay
- University of Brighton, School of Pharmacy & Biosciences, Brighton BN2 4GJ, UK
| | - M C Allen
- University of Brighton, School of Pharmacy & Biosciences, Brighton BN2 4GJ, UK
| | - M Samuels
- University of Sussex, Department for Biochemistry and Biomedicine, Falmer, Brighton BN1 9QG, UK
| | - W Jones
- University of Sussex, Department for Biochemistry and Biomedicine, Falmer, Brighton BN1 9QG, UK
| | - C Cilibrasi
- University of Sussex, Department for Biochemistry and Biomedicine, Falmer, Brighton BN1 9QG, UK
| | - Renee L Flaherty
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, SW3 6JG London, UK
| | - G Giamas
- University of Sussex, Department for Biochemistry and Biomedicine, Falmer, Brighton BN1 9QG, UK
| | - P H Thaker
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St Louis, MO 63110, United States
| | - M S Flint
- University of Brighton, School of Pharmacy & Biosciences, Brighton BN2 4GJ, UK.
| |
Collapse
|
10
|
Yan J, Chen Y, Luo M, Hu X, Li H, Liu Q, Zou Z. Chronic stress in solid tumor development: from mechanisms to interventions. J Biomed Sci 2023; 30:8. [PMID: 36707854 PMCID: PMC9883141 DOI: 10.1186/s12929-023-00903-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
Chronic stress results in disturbances of body hormones through the neuroendocrine system. Cancer patients often experience recurrent anxiety and restlessness during disease progression and treatment, which aggravates disease progression and hinders treatment effects. Recent studies have shown that chronic stress-regulated neuroendocrine systems secret hormones to activate many signaling pathways related to tumor development in tumor cells. The activated neuroendocrine system acts not only on tumor cells but also modulates the survival and metabolic changes of surrounding non-cancerous cells. Current clinical evidences also suggest that chronic stress affects the outcome of cancer treatment. However, in clinic, there is lack of effective treatment for chronic stress in cancer patients. In this review, we discuss the main mechanisms by which chronic stress regulates the tumor microenvironment, including functional regulation of tumor cells by stress hormones (stem cell-like properties, metastasis, angiogenesis, DNA damage accumulation, and apoptotic resistance), metabolic reprogramming and immune escape, and peritumor neuromodulation. Based on the current clinical treatment framework for cancer and chronic stress, we also summarize pharmacological and non-pharmacological therapeutic approaches to provide some directions for cancer therapy.
Collapse
Affiliation(s)
- Jiajing Yan
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Yibing Chen
- grid.207374.50000 0001 2189 3846Department of Gynecology and Obstetrics, First Affiliated Hospital, Genetic and Prenatal Diagnosis Center, Zhengzhou University, Zhengzhou, 450001 China
| | - Minhua Luo
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Xinyu Hu
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Hongsheng Li
- grid.410737.60000 0000 8653 1072Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095 China
| | - Quentin Liu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510631 China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044 Liaoning China
| | - Zhengzhi Zou
- grid.263785.d0000 0004 0368 7397MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China ,grid.263785.d0000 0004 0368 7397Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
11
|
Spilsbury K, Tuesley KM, Pearson SA, Coory MD, Donovan P, Steer CB, Stewart LM, Pandeya N, Jordan SJ. Perioperative Beta-Blocker Supply and Survival in Women With Epithelial Ovarian Cancer and a History of Cardiovascular Conditions. J Clin Oncol 2023; 41:266-275. [PMID: 36001852 DOI: 10.1200/jco.22.00097] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/01/2022] [Accepted: 07/12/2022] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Surgery for epithelial ovarian cancer (EOC) may activate stress-inflammatory responses that stimulate tumor growth and increase metastatic growth. Animal and in vitro studies have shown that inhibition of the catecholamine-induced inflammatory response via beta-adrenergic receptor blockade has antitumor potential in EOC. However, observational studies have reported mixed results. We assessed whether beta-blocker (BB) use at the time of primary ovarian cancer surgery was associated with improved survival in a large population-based study. MATERIALS AND METHODS Using linked administrative data, a population-based cohort of 3,844 Australian women age 50 years or older with a history of cardiovascular conditions who underwent surgery for EOC was followed for survival outcomes. The average treatment effect of selective BB (SBB) and nonselective BB (NSBB) supply at the time of surgery on survival was estimated from a causal inference perspective using covariate-balanced inverse probability of treatment weights with flexible parametric survival models that allowed for time-varying survival effects. RESULTS Around the time of surgery, 560 (14.5%) women were supplied a SBB and 67 (1.7%) were supplied a NSBB. At 2 years postsurgery, the survival proportion was 80% (95% CI, 68 to 88) for women dispensed NSBBs at surgery compared with 69% (95% CI, 67 to 70) for women not supplied NSBBs. The survival advantage appeared to extend to at least 8 years postsurgery. No association was observed for women dispensed a SBB around the time of surgery. CONCLUSION Perioperative supply of NSBBs appeared to confer a survival advantage for women age over 50 years with a history of cardiovascular conditions. Long-term clinical trials are required to confirm these findings.
Collapse
Affiliation(s)
- Katrina Spilsbury
- Institute for Health Research, The University of Notre Dame Australia, Fremantle, Australia
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Karen M Tuesley
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Sallie-Anne Pearson
- Centre for Big Data Research in Health, The University of New South Wales, Sydney, Australia
| | - Michael D Coory
- Faculty of Medicine, Dentistry and Health Sciences University of Melbourne, Melbourne, Australia
| | - Peter Donovan
- Clinical Pharmacology Department, Royal Brisbane and Women's Hospital, Brisbane, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Christopher B Steer
- Border Medical Oncology, Albury-Wodonga Regional Cancer Center, Albury, Australia
- University of NSW Rural Clinical School, Albury Campus, Albury, New South Wales, Australia
| | - Louise M Stewart
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Nirmala Pandeya
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Susan J Jordan
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
12
|
Liu Y, Tian S, Ning B, Huang T, Li Y, Wei Y. Stress and cancer: The mechanisms of immune dysregulation and management. Front Immunol 2022; 13:1032294. [PMID: 36275706 PMCID: PMC9579304 DOI: 10.3389/fimmu.2022.1032294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in the understanding of psychoneuroimmunology in the past decade have emphasized the notion that stress and cancer are interlinked closely. Durable chronic stress accelerated tumorigenesis and progression, which is unfavorable for clinical outcomes of cancer patients. Available evidence has provided unprecedented knowledge about the role and mechanisms of chronic stress in carcinogenesis, the most well-known one is dysfunction of the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS). With abnormal activation of neuroendocrine system, stress-related hormones contribute to increased oncogenes expression, exacerbated chronic inflammation and impaired immunologic function. In addition, accumulating studies have demonstrated that diverse stress interventions including pharmacological approaches, physical exercises and psychological relaxation have been administered to assist in mental disorders reduction and life quality improvement in cancer patients. In this review, we systematically summarize the connection and mechanisms in the stress-immune-cancer axis identified by animal and clinical studies, as well as conclude the effectiveness and deficiencies of existing stress management strategies.
Collapse
Affiliation(s)
- Yixin Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Sheng Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Biao Ning
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Tianhe Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yi Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Sharawy I. Neuroimmune crosstalk and its impact on cancer therapy and research. Discov Oncol 2022; 13:80. [PMID: 35997976 PMCID: PMC9399329 DOI: 10.1007/s12672-022-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer is a major health problem as it is the first or second leading cause of death worldwide. The global cancer burden is expected to rise 47% relative to 2020 cancer incidence. Recently, the fields of neuroscience, neuroimmunology and oncology have elaborated the neuroimmune crosstalk role in tumor initiation, invasion, progression, and metastases. The nervous system exerts a broad impact on the tumor microenvironment by interacting with a complex network of cells such as stromal, endothelial, malignant cells and immune cells. This communication modulates cancer proliferation, invasion, metastasis, induce resistance to apoptosis and promote immune evasion. This paper has two aims, the first aim is to explain neuroimmune crosstalk in cancer, tumor innervation origin and peripheral nervous system, exosomes, and miRNA roles. The second aim is to elaborate neuroimmune crosstalk impact on cancer therapy and research highlighting various potential novel strategies such as use of immune checkpoint inhibitors and anti-neurogenic drugs as single agents, drug repurposing, miRNA-based and si-RNA-based therapies, tumor denervation, cellular therapies, and oncolytic virus therapy.
Collapse
Affiliation(s)
- Iman Sharawy
- Clinical Oncology and Nuclear Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
14
|
Propranolol: A “Pick and Roll” Team Player in Benign Tumors and Cancer Therapies. J Clin Med 2022; 11:jcm11154539. [PMID: 35956154 PMCID: PMC9369479 DOI: 10.3390/jcm11154539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/10/2022] Open
Abstract
Research on cancer therapies focuses on processes such as angiogenesis, cell signaling, stemness, metastasis, and drug resistance and inflammation, all of which are influenced by the cellular and molecular microenvironment of the tumor. Different strategies, such as antibodies, small chemicals, hormones, cytokines, and, recently, gene editing techniques, have been tested to reduce the malignancy and generate a harmful microenvironment for the tumor. Few therapeutic agents have shown benefits when administered alone, but a few more have demonstrated clear improvement when administered in combination with other therapeutic molecules. In 2008 (and for the first time in the clinic), the therapeutic benefits of the β-adrenergic receptor antagonist, propranolol, were described in benign tumors, such as infantile hemangioma. Propranolol, initially prescribed for high blood pressure, irregular heart rate, essential tremor, and anxiety, has shown, in the last decade, increasing evidence of its antitumoral properties in more than a dozen different types of cancer. Moreover, the use of propranolol in combination therapies with other drugs has shown synergistic antitumor effects. This review highlights the clinical trials in which propranolol is taking part as adjuvant therapy at single administration or in combinatorial human trials, arising as a good pick and roll partner in anticancer strategies.
Collapse
|
15
|
Li W, Wan J, Chen C, Zhou C, Liao P, Hu Q, Hu J, Wang Y, Zhang Y, Peng C, Huang Y, Huang W, Zhang W, Mcleod HL, He Y. Dissecting the role of cell signaling versus CD8 + T cell modulation in propranolol antitumor activity. J Mol Med (Berl) 2022; 100:1299-1306. [PMID: 35895125 DOI: 10.1007/s00109-022-02238-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Preclinical and early clinical mechanistic studies of antitumor activity from the beta-adrenergic receptor (β-AR) blocker propranolol have revealed both cell signaling and immune function pathway effects. Intertumoral studies were performed using propranolol, a β1-AR selective agent (atenolol), and a β2-AR selective agent (ICI 118,551) in a preclinical in vivo model, as a step to dissect the contribution of cell signaling and CD8+ immunological effects on anticancer activity. We found that repression of β2-AR but not β1-AR signaling selectively suppressed cell viability and inhibited xenograft growth in vivo. Moreover, western blot analysis indicated that the phosphorylation levels of AKT/MEK/ERK were significantly decreased following the inhibition of β2-AR. Furthermore, propranolol was found to activate the tumor microenvironment by inducing an increased intratumoral frequency of CD8+ T cells, whereas neither selective β1 nor β2-AR blockers had a significant effect on the tumor immune microenvironment. Thus, the results of this mechanistic dissection support a predominant role of tumor cell signaling, rather than the accumulation of CD8+ T cells, as the basis for propranolol antitumor activity. KEY MESSAGES : Molecular signaling of AKT/MAPK pathway contributes to propranolol caused cancer control. CD8+ T cells in tumor microenvironment were activated upon propranolol exposure. The basis for propranolol antitumor activity was predominantly dependent on cell signaling, rather than the activation of CD8+ T cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Jielin Wan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Cuiyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Chengfang Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Ping Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Qian Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Jiali Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Yuanfei Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Weihua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China
| | - Howard L Mcleod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Intermountain Precision Genomics, Intermountain Healthcare, St. George, UT, 84770, USA.
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
16
|
Chang A, Sloan EK, Antoni MH, Knight JM, Telles R, Lutgendorf SK. Biobehavioral Pathways and Cancer Progression: Insights for Improving Well-Being and Cancer Outcomes. Integr Cancer Ther 2022; 21:15347354221096081. [PMID: 35579197 PMCID: PMC9118395 DOI: 10.1177/15347354221096081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022] Open
Abstract
The relationship between psychosocial factors and cancer has intrigued people for centuries. In the last several decades there has been an expansion of mechanistic research that has revealed insights regarding how stress activates neuroendocrine stress-response systems to impact cancer progression. Here, we review emerging mechanistic findings on key pathways implicated in the effect of stress on cancer progression, including the cellular immune response, inflammation, angiogenesis, and metastasis, with a primary focus on the mediating role of the sympathetic nervous system. We discuss converging findings from preclinical and clinical cancer research that describe these pathways and research that reveals how these stress pathways may be targeted via pharmacological and mind-body based interventions. While further research is required, the body of work reviewed here highlights the need for and feasibility of an integrated approach to target stress pathways in cancer patients to achieve comprehensive cancer treatment.
Collapse
Affiliation(s)
- Aeson Chang
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
| | - Erica K. Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology, Monash University, Parkville, VIC, Australia
- Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Peter MacCallum Cancer Centre, Division of Surgery, Melbourne, VIC, Australia
| | - Michael H. Antoni
- Departments of Psychology, Psychiatry, and Behavioral Sciences, and Cancer Control Program, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jennifer M. Knight
- Department of Psychiatry and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rachel Telles
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Susan K. Lutgendorf
- Departments of Psychological and Brain Sciences, Obstetrics and Gynecology, and Urology, and Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
17
|
Tian W, Liu Y, Cao C, Zeng Y, Pan Y, Liu X, Peng Y, Wu F. Chronic Stress: Impacts on Tumor Microenvironment and Implications for Anti-Cancer Treatments. Front Cell Dev Biol 2021; 9:777018. [PMID: 34869378 PMCID: PMC8640341 DOI: 10.3389/fcell.2021.777018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic stress is common among cancer patients due to the psychological, operative, or pharmaceutical stressors at the time of diagnosis or during the treatment of cancers. The continuous activations of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS), as results of chronic stress, have been demonstrated to take part in several cancer-promoting processes, such as tumorigenesis, progression, metastasis, and multi-drug resistance, by altering the tumor microenvironment (TME). Stressed TME is generally characterized by the increased proportion of cancer-promoting cells and cytokines, the reduction and malfunction of immune-supportive cells and cytokines, augmented angiogenesis, enhanced epithelial-mesenchymal transition, and damaged extracellular matrix. For the negative effects that these alterations can cause in terms of the efficacies of anti-cancer treatments and prognosis of patients, supplementary pharmacological or psychotherapeutic strategies targeting HPA, SNS, or psychological stress may be effective in improving the prognosis of cancer patients. Here, we review the characteristics and mechanisms of TME alterations under chronic stress, their influences on anti-cancer therapies, and accessory interventions and therapies for stressed cancer patients.
Collapse
Affiliation(s)
- Wentao Tian
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Liu
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Chenghui Cao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Pan
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Scheff NN, Saloman JL. Neuroimmunology of cancer and associated symptomology. Immunol Cell Biol 2021; 99:949-961. [PMID: 34355434 DOI: 10.1111/imcb.12496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
Evolutionarily the nervous system and immune cells have evolved to communicate with each other to control inflammation and host responses against injury. Recent findings in neuroimmune communication demonstrate that these mechanisms extend to cancer initiation and progression. Lymphoid structures and tumors, which are often associated with inflammatory infiltrate, are highly innervated by multiple nerve types (e.g. sympathetic, parasympathetic, sensory). Recent preclinical and clinical studies demonstrate that targeting the nervous system could be a therapeutic strategy to promote anti-tumor immunity while simultaneously reducing cancer-associated neurological symptoms, such as chronic pain, fatigue, and cognitive impairment. Sympathetic nerve activity is associated with physiological or psychological stress, which can be induced by tumor development and cancer diagnosis. Targeting the stress response through suppression of sympathetic activity or activation of parasympathetic activity has been shown to drive activation of effector T cells and inhibition of myeloid derived suppressor cells within the tumor. Additionally, there is emerging evidence that sensory nerves may regulate tumor growth and metastasis by promoting or inhibiting immunosuppression in a tumor-type specific manner. Since neural effects are often tumor-type specific, further study is required to optimize clinical therapeutic strategies. This review examines the emerging evidence that neuroimmune communication can regulate anti-tumor immunity as well as contribute to development of cancer-related neurological symptoms.
Collapse
Affiliation(s)
- Nicole N Scheff
- Biobehavioral Cancer Control Program UPMC Hillman Cancer Center, Center for Neuroscience, and Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jami L Saloman
- Biobehavioral Cancer Control Program UPMC Hillman Cancer Center, Center for Neuroscience, and Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Chen G, Qiu L, Gao J, Wang J, Dang J, Li L, Jin Z, Liu X. Stress Hormones: Emerging Targets in Gynecological Cancers. Front Cell Dev Biol 2021; 9:699487. [PMID: 34307378 PMCID: PMC8299464 DOI: 10.3389/fcell.2021.699487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 01/06/2023] Open
Abstract
In the past decade, several discoveries have documented the existence of innervation in ovarian cancer and cervical cancer. Notably, various neurotransmitters released by the activation of the sympathetic nervous system can promote the proliferation and metastasis of tumor cells and regulate immune cells in the tumor microenvironment. Therefore, a better understanding of the mechanisms involving neurotransmitters in the occurrence and development of gynecological cancers will be beneficial for exploring the feasibility of using inexpensive β-blockers and dopamine agonists in the clinical treatment of gynecological cancers. Additionally, this article provides some new insights into targeting tumor innervation and neurotransmitters in the tumor microenvironment.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Qiu
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Jinghai Gao
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jianhong Dang
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lingling Li
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhijun Jin
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiaojun Liu
- Department of Obstetrics and Gynecology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
20
|
Hatefi A, Zare Shahneh A, Ansari Pirsaraie Z, Alizadeh AM, Atashnak MP, Masoudi R, Pio F. The stimulation and inhibition of beta-2 adrenergic receptor on the inflammatory responses of ovary and immune system in the aged laying hens. BMC Vet Res 2021; 17:195. [PMID: 34022889 PMCID: PMC8140518 DOI: 10.1186/s12917-021-02892-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022] Open
Abstract
Background Ovarian chronic inflammation has been known to incidence in the laying hen mainly via increasing laying frequency and microbial infection, especially during late stage of production period. This study was aimed to evaluate beta-2 adrenergic agonist (Beta-2 Adrenergic Agonist, BAA) Salmeterol and beta blocker (Beta Blocker, BB) Propranolol on the gene expression of the ovarian pro- and anti-inflammatory mediators, inflammatory responses of immune system, ovarian functions and, hormones in the laying hens on the late stage of production period. Forty-eight White Leghorn hens aged 92 weeks were used for 4 weeks to be supplemented by Salmeterol and Propranolol. Ovulation rate and follicular growth were determined based on laying frequency and ovarian visual evaluation, respectively; the mRNA expressions of follicular beta-2 adrenergic receptor (Beta-2 Adrenergic Receptor, β2ADR), cyclooxygenases (Cyclooxygenases, COX) 1 and 2, and cytokines were measured by real-time PCR. The plasma concentration of ovarian hormones, cellular, and humoral immune responses were measured via ELISA, heterophil to lymphocyte ratio (Heterophil to Lymphocyte ratio, H:L), and sheep red blood cell (Sheep Red Blood Cell, SRBC) test, respectively. Results As compared to control, both of BAA Salmeterol and BB Propranolol resulted in a significant decrease in the mRNA expression of β2ADR, cyclooxygenases, and pro- and anti-inflammatory cytokines (P < 0.01). A significant elevation was observed in the ovulation rate (P < 0.05), plasma estradiol content on both treated groups (P < 0.05), and the content of progesterone and was just significantly (P < 0.05) increased in Salmeterol group. H:L was reduced in BAA group (P < 0.05), and immunoglobulin (Ig) M was elevated in both treated hens, when compared to control. The results indicated that Salmeterol significantly increases body weight (P < 0.05). Conclusion The stimulation and inhibition of beta-2 adrenergic signaling could reduce ovarian inflammatory condition in addition to enhancing laying efficiency in the aged laying hens.
Collapse
Affiliation(s)
- Ali Hatefi
- Department of Animal Science, University of Tehran, Karaj, Iran.
| | | | | | | | - Mohammad Pouya Atashnak
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Reza Masoudi
- Animal Science Research Institute of Iran (ASRI), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Frederic Pio
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
21
|
Dai S, Mo Y, Wang Y, Xiang B, Liao Q, Zhou M, Li X, Li Y, Xiong W, Li G, Guo C, Zeng Z. Chronic Stress Promotes Cancer Development. Front Oncol 2020; 10:1492. [PMID: 32974180 PMCID: PMC7466429 DOI: 10.3389/fonc.2020.01492] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
Stress is an inevitable part of life. Chronic stress on account of reasons like adversity, depression, anxiety, or loneliness/social isolation can endanger human health. Recent studies have shown that chronic stress can induce tumorigenesis and promote cancer development. This review describes the latest progress of research on the molecular mechanisms by which chronic stress promotes cancer development. Primarily, chronic stress activates the classic neuroendocrine system [the hypothalamic-pituitary-adrenal (HPA) axis] and the sympathetic nervous system (SNS) and leads to a decline and dysfunction of the prefrontal cortex and the hippocampus under stress. Stress hormones produced during the activation of both the HPA axis and the SNS can promote tumorigenesis and cancer development through a variety of mechanisms. Chronic stress can also cause corresponding changes in the body's immune function and inflammatory response, which is significant because a long-term inflammatory response and the decline of the body's immune surveillance capabilities are implicated in tumorigenesis. Stress management is essential for both healthy people and cancer patients. Whether drugs that limit the signaling pathways downstream of the HPA axis or the SNS can suppress chronic stress-induced cancers or prolong patient survival deserves further study.
Collapse
Affiliation(s)
- Shirui Dai
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Liao P, Song K, Zhu Z, Liu Z, Zhang W, Li W, Hu J, Hu Q, Chen C, Chen B, McLeod HL, Pei H, Chen L, He Y. Propranolol Suppresses the Growth of Colorectal Cancer Through Simultaneously Activating Autologous CD8 + T Cells and Inhibiting Tumor AKT/MAPK Pathway. Clin Pharmacol Ther 2020; 108:606-615. [PMID: 32418204 DOI: 10.1002/cpt.1894] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Propranolol suppresses tumor growth in a variety of preclinical solid tumor models, with a number of proposed cell signaling and immunological mechanisms. We want to confirm the potential mechanisms, including reduced phosphorylation of AKT/MAPK pathways, as well as enhanced CD8+ T-cell-mediated antitumor immune response. To clarify the mechanism of propranolol activity in colorectal cancer, the therapeutic activity of propranolol was then assessed in CT26WT tumors engrafted in BALB/C mice. Then the effect of propranolol treatment was also examined by randomizing patients undergoing surgical resection of a previously untreated colorectal cancer to propranolol or placebo group and treated for 1 week prior to surgery. CT26WT tumor size was smaller after propranolol than vehicle control. Propranolol downregulated the expression of p-AKT/p-ERK/p-MEK in tumor tissue. The frequency of tumor CD8+ T cells was significantly elevated in propranolol-treated mice. The expression of GzmB/IFN-γ/T-bet in the CD8+ T-cell population was significantly increased in propranolol treated mice tumor tissue. In propranolol-treated surgical specimens, the expression of p-ERK was decreased and the frequency of CD8+ was significantly elevated. The expression of GzmB in the CD8+ T-cell population was significantly increased in propranolol-treated subjects. Together, these data show propranolol simultaneously activating autologous CD8+ T cells and decreasing the expression of p-AKT/p-ERK/p-MEK in mouse tumor models, while inhibiting the expression of p-ERK in clinical colorectal cancer. Effort is now needed to further dissect whether both pathways are required for antitumor effect, as the activity of this old drug is moved forward.
Collapse
Affiliation(s)
- Ping Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kun Song
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhanwei Zhu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiali Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cuiyu Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bohua Chen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,USF Taneja College of Pharmacy, Tampa, Florida, USA
| | - Haiping Pei
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Preventing Lethal Prostate Cancer with Diet, Supplements, and Rx: Heart Healthy Continues to Be Prostate Healthy and "First Do No Harm" Part III. Curr Urol Rep 2020; 21:22. [PMID: 32367257 DOI: 10.1007/s11934-020-00972-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW To discuss the overall and latest observations of the effect of diet, lifestyle, supplements, preventive vaccinations, and some prescription heart healthy medications for prostate cancer prevention within a 3-part series of publications. RECENT FINDINGS The concept of maximizing heart health to prevent aggressive prostate cancer continues to be solidified with additional prospective observational and randomized controlled trial data. Heart healthy is prostate healthy, but heart unhealthy is prostate unhealthy. The primary goal for medical providers of reducing all-cause and cardiovascular disease (CVD) morbidity and mortality correlates with maximizing prostate cancer prevention. The obesity epidemic in children and adults along with research from multiple, diverse disciplines has only strengthened the nexus between heart and prostate health. Greater dietary adherence toward a variety of healthy foods is associated with a graded reduction in the probability of CVD and aggressive cancer. Preventing prostate cancer via dietary supplements should encourage a "first do no harm" or less-is-more approach until future evidence can reverse the concerning trend that more supplementation has resulted in either no impact or an increased risk of prostate cancer. Supplements to reduce side effects of some cancer treatments appear to have more encouraging data. A discussion of quality control (QC) before utilizing any pill also requires attention. Medications or interventions that potentially improve heart health including statins, aspirin, and metformin (S.A.M.), specific beta-blocker medications, and even preventive vaccines are in general generic, low cost, "natural," and should continue to garner research interest. A watershed moment in medical education has arrived where the past perception of a diverse number of trees seemingly separated by vast distances, in reality, now appears to exist within the same forest.
Collapse
|
24
|
Ghali GZ, Ghali MGZ. β adrenergic receptor modulated signaling in glioma models: promoting β adrenergic receptor-β arrestin scaffold-mediated activation of extracellular-regulated kinase 1/2 may prove to be a panacea in the treatment of intracranial and spinal malignancy and extra-neuraxial carcinoma. Mol Biol Rep 2020; 47:4631-4650. [PMID: 32303958 PMCID: PMC7165076 DOI: 10.1007/s11033-020-05427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/03/2020] [Indexed: 12/03/2022]
Abstract
Neoplastically transformed astrocytes express functionally active cell surface β adrenergic receptors (βARs). Treatment of glioma models in vitro and in vivo with β adrenergic agonists variably amplifies or attenuates cellular proliferation. In the majority of in vivo models, β adrenergic agonists generally reduce cellular proliferation. However, treatment with β adrenergic agonists consistently reduces tumor cell invasive potential, angiogenesis, and metastasis. β adrenergic agonists induced decreases of invasive potential are chiefly mediated through reductions in the expression of matrix metalloproteinases types 2 and 9. Treatment with β adrenergic agonists also clearly reduce tumoral neoangiogenesis, which may represent a putatively useful mechanism to adjuvantly amplify the effects of bevacizumab. Bevacizumab is a monoclonal antibody targeting the vascular endothelial growth factor receptor. We may accordingly designate βagonists to represent an enhancer of bevacizumab. The antiangiogenic effects of β adrenergic agonists may thus effectively render an otherwise borderline effective therapy to generate significant enhancement in clinical outcomes. β adrenergic agonists upregulate expression of the major histocompatibility class II DR alpha gene, effectively potentiating the immunogenicity of tumor cells to tumor surveillance mechanisms. Authors have also demonstrated crossmodal modulation of signaling events downstream from the β adrenergic cell surface receptor and microtubular polymerization and depolymerization. Complex effects and desensitization mechanisms of the β adrenergic signaling may putatively represent promising therapeutic targets. Constant stimulation of the β adrenergic receptor induces its phosphorylation by β adrenergic receptor kinase (βARK), rendering it a suitable substrate for alternate binding by β arrestins 1 or 2. The binding of a β arrestin to βARK phosphorylated βAR promotes receptor mediated internalization and downregulation of cell surface receptor and contemporaneously generates a cell surface scaffold at the βAR. The scaffold mediated activation of extracellular regulated kinase 1/2, compared with protein kinase A mediated activation, preferentially favors cytosolic retention of ERK1/2 and blunting of nuclear translocation and ensuant pro-transcriptional activity. Thus, βAR desensitization and consequent scaffold assembly effectively retains the cytosolic homeostatic functions of ERK1/2 while inhibiting its pro-proliferative effects. We suggest these mechanisms specifically will prove quite promising in developing primary and adjuvant therapies mitigating glioma growth, angiogenesis, invasive potential, and angiogenesis. We suggest generating compounds and targeted mutations of the β adrenergic receptor favoring β arrestin binding and scaffold facilitated activation of ERK1/2 may hold potential promise and therapeutic benefit in adjuvantly treating most or all cancers. We hope our discussion will generate fruitful research endeavors seeking to exploit these mechanisms.
Collapse
Affiliation(s)
- George Zaki Ghali
- United States Environmental Protection Agency, Arlington, VA, USA.,Emeritus Professor, Department of Toxicology, Purdue University, West Lafayette, IN, USA
| | - Michael George Zaki Ghali
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Avenue, Box-0112, San Francisco, CA, 94143, USA. .,Department of Neurological Surgery, Karolinska Institutet, Nobels väg 6, Solna and Alfred Nobels Allé 8, Huddinge, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
25
|
Lamboy-Caraballo R, Ortiz-Sanchez C, Acevedo-Santiago A, Matta J, N.A. Monteiro A, N. Armaiz-Pena G. Norepinephrine-Induced DNA Damage in Ovarian Cancer Cells. Int J Mol Sci 2020; 21:ijms21062250. [PMID: 32213975 PMCID: PMC7139728 DOI: 10.3390/ijms21062250] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple studies have shown that psychological distress in epithelial ovarian cancer (EOC) patients is associated with worse quality of life and poor treatment adherence. This may influence chemotherapy response and prognosis. Moreover, although stress hormones can reduce cisplatin efficacy in EOC treatment, their effect on the integrity of DNA remains poorly understood. In this study, we investigated whether norepinephrine and epinephrine can induce DNA damage and modulate cisplatin-induced DNA damage in three EOC cell lines. Our data show that norepinephrine and epinephrine exposure led to increased nuclear γ-H2AX foci formation in EOC cells, a marker of double-strand DNA breaks. We further characterized norepinephrine-induced DNA damage by subjecting EOC cells to alkaline and neutral comet assays. Norepinephrine exposure caused DNA double-strand breaks, but not single-strand breaks. Interestingly, pre-treatment with propranolol abrogated norepinephrine-induced DNA damage indicating that its effects may be mediated by β-adrenergic receptors. Lastly, we determined the effects of norepinephrine on cisplatin-induced DNA damage. Our data suggest that norepinephrine reduced cisplatin-induced DNA damage in EOC cells and that this effect may be mediated independently of β-adrenergic receptors. Taken together, these results suggest that stress hormones can affect DNA integrity and modulate cisplatin resistance in EOC cells.
Collapse
Affiliation(s)
- Rocio Lamboy-Caraballo
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA; (R.L.-C.); (J.M.)
| | | | | | - Jaime Matta
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA; (R.L.-C.); (J.M.)
- Division of Cancer Biology, Ponce Research Institute, Ponce, PR 00716, USA;
| | - Alvaro N.A. Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Guillermo N. Armaiz-Pena
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Ponce Health Sciences University, Ponce, PR 00716, USA; (R.L.-C.); (J.M.)
- Division of Cancer Biology, Ponce Research Institute, Ponce, PR 00716, USA;
- Division of Women’s Health, Ponce Research Institute, Ponce, PR 00716, USA
- Correspondence:
| |
Collapse
|
26
|
Colon-Echevarria CB, Lamboy-Caraballo R, Aquino-Acevedo AN, Armaiz-Pena GN. Neuroendocrine Regulation of Tumor-Associated Immune Cells. Front Oncol 2019; 9:1077. [PMID: 31737559 PMCID: PMC6828842 DOI: 10.3389/fonc.2019.01077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Mounting preclinical and clinical evidence continues to support a role for the neuroendocrine system in the modulation of tumor biology and progression. Several studies have shown data supporting a link between chronic stress and cancer progression. Dysregulation of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in promoting angiogenesis, tumor cell proliferation and survival, alteration of the immune response and exacerbating inflammatory networks in the tumor microenvironment. Here, we review how SNS and HPA dysregulation contributes to disturbances in immune cell populations, modifies cancer biology, and impacts immunotherapy response. We also highlight several interventions aimed at circumventing the adverse effects stress has on cancer patients.
Collapse
Affiliation(s)
- Claudia B Colon-Echevarria
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Ponce Health Sciences University, Ponce, PR, United States
| | - Rocio Lamboy-Caraballo
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Ponce Health Sciences University, Ponce, PR, United States
| | - Alexandra N Aquino-Acevedo
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Ponce Health Sciences University, Ponce, PR, United States
| | - Guillermo N Armaiz-Pena
- Division of Pharmacology, Department of Basic Sciences, School of Medicine, Ponce Health Sciences University, Ponce, PR, United States.,Divisions of Cancer Biology and Women's Health, Ponce Research Institute, Ponce, PR, United States
| |
Collapse
|