1
|
Meagher NS, Köbel M, Karnezis AN, Talhouk A, Anglesio MS, Berchuck A, Gayther SA, Pharoah PPD, Webb PM, Ramus SJ, Gorringe KL. Cellular origins of mucinous ovarian carcinoma. J Pathol 2025; 266:9-25. [PMID: 40028669 PMCID: PMC11985703 DOI: 10.1002/path.6407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 03/05/2025]
Abstract
Mucinous ovarian carcinoma (MOC) is a rare histotype of epithelial ovarian cancer. Its origins are obscure: while many mucinous tumours in the ovary are metastases from the gastrointestinal tract, MOC can occur as an ovarian primary; however, the cell of origin is not well established. In this review we summarise the pathological, epidemiological, and molecular evidence for the cellular origins of MOC. We propose a model for the origins of the various tumours of the ovary with mucinous differentiation. We distinguish Müllerian from gastrointestinal-type mucinous differentiation. A small proportion of the latter arise from teratoma and a distinct terminology has been proposed. Other gastrointestinal mucinous tumours are associated with Brenner tumours and arise from their associated benign lesions, Walthard nests. The remaining mucinous tumours develop either through mucinous metaplasia in established Müllerian tumours or with even greater plasticity through gastrointestinal metaplasia of epithelial or mesothelial ovarian inclusions. This model remains to be validated and mechanistically understood and we discuss future research directions. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nicola S Meagher
- The Daffodil CentreThe University of Sydney, a joint venture with Cancer Council NSWSydneyNew South WalesAustralia
- School of Clinical Medicine, UNSW Medicine and HealthUniversity of NSW SydneySydneyNew South WalesAustralia
| | | | | | - Aline Talhouk
- University of British ColumbiaVancouverBritish ColumbiaCanada
| | | | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic OncologyDuke University Medical CenterDurhamNCUSA
| | - Simon A Gayther
- University of Texas Health Science Centre San AntonioSan AntonioTXUSA
| | - Paul PD Pharoah
- Department of Computational BiomedicineCedars‐Sinai Medical CentreLos AngelesCAUSA
| | - Penelope M Webb
- QIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Susan J Ramus
- School of Clinical Medicine, UNSW Medicine and HealthUniversity of NSW SydneySydneyNew South WalesAustralia
- Adult Cancer Program, Lowy Cancer Research CentreUniversity of NSWSydneyNew South WalesAustralia
| | - Kylie L Gorringe
- The Sir Peter MacCallum Dept of OncologyUniversity of MelbourneMelbourneVictoriaAustralia
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Prat J, D'Angelo E, Espinosa I. Ovarian Carcinomas: Clinicopathologic and Molecular Features With Comments on 2014 FIGO Staging. Am J Surg Pathol 2025; 49:e1-e14. [PMID: 39807827 DOI: 10.1097/pas.0000000000002352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
According to histopathology and molecular genetics, there are 5 major subtypes of ovarian carcinomas: high-grade serous (70%), endometrioid (10%), clear cell (10%), mucinous (3% to 4%), and low-grade serous (<5%) carcinomas. These tumors, which constitute over 95% of cases, represent distinct diseases with different prognoses and therapy. This review outlines contemporary advances in molecular pathology, which have expanded our knowledge of the biology of epithelial ovarian cancer and are also important to patient management. We also comment on some controversial points of the FIGO staging classification that we proposed in 2014.
Collapse
Affiliation(s)
- Jaime Prat
- Autonomous University of Barcelona, Sant Quintin, Barcelona, Spain
| | - Emanuela D'Angelo
- Hospital de la Santa Creu i Sant Pau, Sant Quintin, Barcelona, Spain
| | - Iñigo Espinosa
- Department of Medical and Biotechnological Sciences, University "G. D'Annunzio", Via dei Vestini, Chieti-Pescara Italy
| |
Collapse
|
3
|
Wan X, Fang M, Yuan L, Zhang H, Wang D. Case report: Short-course hypofractionated radiation therapy combined with immune checkpoint inhibitors for the treatment of advanced ovarian mucinous cystadenocarcinoma. Front Oncol 2025; 15:1430474. [PMID: 39902234 PMCID: PMC11788304 DOI: 10.3389/fonc.2025.1430474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/03/2025] [Indexed: 02/05/2025] Open
Abstract
Background Ovarian mucinous cystadenocarcinoma is a rare subtype of ovarian epithelial carcinoma that is resistant to platinum-based chemotherapy and has a poor prognosis, and there is no standard treatment plan for patients for whom multiline treatment has failed. Case presentation oma with FIGO stage IVB disease who was sequentially treated with paclitaxel liposomes+carboplatin, 5-Fu+CF+oxaliplatin, capecitabine+oxaliplatin, bevacizumab+FOLFOX4, S-1, and bevacizumab+oxaliplatin+raltitrexed chemotherapy. After the progression of the disease, a combination of short-course hypofractionated radiation therapy and immune checkpoint inhibitors was used. The radiotherapy target area was the metastatic lymph nodes in the right posterior part of the hepatic artery, with a radiation dose of 30 Gy/10 F. Camrelizumab, an immune checkpoint inhibitor, was administered intravenously every three weeks at a dose of 200 mg each time. The therapeutic effect was significant, with CA125 levels within the normal range. Metastatic lymph nodes disappeared from the abdominal cavity. The therapeutic effect achieved a complete response (CR). Currently, CA125 levels are within the normal range, and abdominal CT reveals no tumor recurrence or metastasis. The duration of response (DoR) reached over four years. Conclusion Ovarian mucinous cystadenocarcinoma is a rare tumor with poor treatment efficacy and poor prognosis. Short-course hypofractionated radiation therapy combined with PD-1 inhibitors may be an effective and safe treatment strategy.
Collapse
Affiliation(s)
- Xinan Wan
- Department of Oncology, The Second People’s Hospital of Wuhu City, Wuhu, China
| | | | | | | | | |
Collapse
|
4
|
Köbel M, Parra-Herran C, Gorringe K. Diagnosis and Risk Stratification of Ovarian Mucinous Neoplasms: Pattern of Invasion, Immunohistochemistry, and Molecular Diagnostics. Adv Anat Pathol 2025; 32:85-97. [PMID: 39523705 DOI: 10.1097/pap.0000000000000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Ovarian mucinous tumors are subclassified in multiple categories. Recent studies have highlighted issues in interobserver reproducibility. This review will focus on some new developments including criteria and ancillary tests that may help to improve interobserver reproducibility at clinically important thresholds. These issues include proposals for a separate terminology of teratoma-associated ovarian mucinous neoplasms, the role of TP53 immunohistochemistry in distinction of crowded mucinous borderline tumors and expansile mucinous carcinomas as well as the assignment of the infiltrative pattern of invasion, which recently has been validated as important prognostic factor even in low stage mucinous ovarian carcinoma.
Collapse
Affiliation(s)
- Martin Köbel
- Department of Pathology, University of Calgary, Alberta, Canada
| | - Carlos Parra-Herran
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Kylie Gorringe
- Sir Peter MacCallum Department of Oncology, The University of Melbourne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Sun G, Liu Y. Tertiary lymphoid structures in ovarian cancer. Front Immunol 2024; 15:1465516. [PMID: 39569184 PMCID: PMC11576424 DOI: 10.3389/fimmu.2024.1465516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
Ovarian cancer (OC) is a significant cause of cancer-related mortality in women worldwide. Despite advances in treatment modalities, including surgery and chemotherapy, the overall prognosis for OC patients remains poor, particularly for patients with advanced or recurrent disease. Immunotherapy, particularly immune checkpoint blockade (ICB), has revolutionized cancer treatment in various malignancies but has shown limited efficacy in treating OC, which is primarily attributed to the immunologically. Tertiary lymphoid structures (TLSs), which are ectopic aggregates of immune cells, have emerged as potential mediators of antitumor immunity. This review explores the composition, formation, and induction of tumor associated TLS (TA-TLS) in OC, along with their role and therapeutic implications in disease development and treatment. By elucidating the roles TA-TLSs and their cellular compositions played in OC microenvironment, novel therapeutic targets may be identified to overcome immune suppression and enhance immunotherapy efficacy in ovarian cancer.
Collapse
Affiliation(s)
- Guojuan Sun
- The Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Liu
- Department of Gynaecology and Obstetrics, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Kawecka W, Adamiak-Godlewska A, Lewkowicz D, Urbańska K, Semczuk A. Diagnostic difficulties in the differentiation between an ovarian metastatic low‑grade appendiceal mucinous neoplasm and primary ovarian mucinous cancer: A case report and literature review. Oncol Lett 2024; 28:500. [PMID: 39233821 PMCID: PMC11369849 DOI: 10.3892/ol.2024.14633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 09/06/2024] Open
Abstract
Low-grade appendiceal mucinous neoplasm (LAMN) is a tumor that primarily originates from the appendix and belongs to the family of appendiceal mucinous neoplasms (AMNs). In 50% of female patients, AMNs (particularly LAMNs) have a tendency to metastasize to organs in the genital tract, where the neoplasm can mimic the features of primary ovarian mucinous cancer (POMC). The present case report reviewed the difficulties in differentiating between these two types of tumors. In the present case report, a 61-year-old female patient was admitted to the Second Department of Gynecological Surgery and Gynecological Oncology, University Clinical Hospital no. 4 at Lublin Medical University (Lublin, Poland) with the diagnosis of a right ovarian mass. After performing ultrasound and computed tomography (CT) scans and laboratory analysis, the patient underwent total abdominal hysterectomy, bilateral salpingo-oophorectomy, omentectomy, appendectomy and resection of the Douglas peritoneum. Notably, the postoperative pathological assessment revealed LAMN with metastases to the right ovary and omentum. Immunohistochemically, cytokeratin 20 and caudal type homeobox 2 both stained positively, whereas paired box gene 8 stained negatively. After surgery, the patient received the recommended hyperthermic intraperitoneal chemotherapy at the Department of Surgical Oncology at Lublin Medical University. After 1 year, a CT scan was performed, which indicated no evidence of recurrent disease. In conclusion, observations from the present case report suggest that gynecologists should be conscious of the possibility of malignancies of gastrointestinal origin in cases of ovarian tumors instead of making direct assumptions of POMC. If the mucinous mass involves the base of the appendix or if there is a suspicion of positive margins, then cytoreductive surgery and right-sided hemicolectomy must be performed. In addition, identifying the origin of mucinous tumors in the right ovary and/or the appendix requires the histopathological examination of a panel of markers using immunohistochemistry.
Collapse
Affiliation(s)
- Weronika Kawecka
- The Second Department of Gynecological Surgery and Gynecological Oncology, University Clinical Hospital no. 4, Lublin Medical University, PL-20090 Lublin, Poland
| | - Aneta Adamiak-Godlewska
- The Second Department of Gynecological Surgery and Gynecological Oncology, University Clinical Hospital no. 4, Lublin Medical University, PL-20090 Lublin, Poland
| | - Dorota Lewkowicz
- Department of Clinical Pathomorphology, Lublin Medical University, PL-20090 Lublin, Poland
| | - Karolina Urbańska
- Students' Research Group at The Second Department of Gynecological Surgery and Gynecological Oncology, Lublin Medical University, PL-20090 Lublin, Poland
| | - Andrzej Semczuk
- The Second Department of Gynecological Surgery and Gynecological Oncology, University Clinical Hospital no. 4, Lublin Medical University, PL-20090 Lublin, Poland
| |
Collapse
|
7
|
Wakazono E, Taki M, Watanabe K, Yamanoi K, Murakami R, Kakiuchi N, Yamaguchi K, Hamanishi J, Minamiguchi S, Ogawa S, Mandai M. A case report of mucinous borderline ovarian tumor with recurrence as invasive carcinoma with high copy number alterations. Int Cancer Conf J 2024; 13:520-524. [PMID: 39398914 PMCID: PMC11464969 DOI: 10.1007/s13691-024-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024] Open
Abstract
Mucinous borderline ovarian tumors (MBOTs) have a very low recurrence rate and a good prognosis, especially in the early stages, but some MBOTs occasionally recur with the progression to mucinous ovarian carcinomas (MOCs). Here, we present a case of MBOT that recurred as invasive MOC within 3 years. To examine the reason for the progression from MBOT to MOC, whole-exome sequencing of our case identified identical mutations and copy number alterations in KRAS, CDKN2A, and TP53 in both the MBOT and recurrent MOC. The recurrent MOC had a greater copy number alteration burden compared to the primary MBOT. These findings suggest that MBOT may have progressed to MOC via recurrence, wherein the increased burden of copy number alterations could be its key driver. It was also suggested that TP53 mutations already present in MBOT may contribute to the increased copy number alterations leading to MOC. Supplementary Information The online version contains supplementary material available at 10.1007/s13691-024-00722-1.
Collapse
Affiliation(s)
- Emi Wakazono
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Koichi Watanabe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Yamanoi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Sachiko Minamiguchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
8
|
Craig O, Lee S, Pilcher C, Saoud R, Abdirahman S, Salazar C, Williams N, Ascher D, Vary R, Luu J, Cowley K, Ramm S, Li MX, Thio N, Li J, Semple T, Simpson K, Gorringe K, Holien J. A new method for network bioinformatics identifies novel drug targets for mucinous ovarian carcinoma. NAR Genom Bioinform 2024; 6:lqae096. [PMID: 39184376 PMCID: PMC11344246 DOI: 10.1093/nargab/lqae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Mucinous ovarian carcinoma (MOC) is a subtype of ovarian cancer that is distinct from all other ovarian cancer subtypes and currently has no targeted therapies. To identify novel therapeutic targets, we developed and applied a new method of differential network analysis comparing MOC to benign mucinous tumours (in the absence of a known normal tissue of origin). This method mapped the protein-protein network in MOC and then utilised structural bioinformatics to prioritise the proteins identified as upregulated in the MOC network for their likelihood of being successfully drugged. Using this protein-protein interaction modelling, we identified the strongest 5 candidates, CDK1, CDC20, PRC1, CCNA2 and TRIP13, as structurally tractable to therapeutic targeting by small molecules. siRNA knockdown of these candidates performed in MOC and control normal fibroblast cell lines identified CDK1, CCNA2, PRC1 and CDC20, as potential drug targets in MOC. Three targets (TRIP13, CDC20, CDK1) were validated using known small molecule inhibitors. Our findings demonstrate the utility of our pipeline for identifying new targets and highlight potential new therapeutic options for MOC patients.
Collapse
Affiliation(s)
- Olivia Craig
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Samuel Lee
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Courtney Pilcher
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - Rita Saoud
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Suad Abdirahman
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Carolina Salazar
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nathan Williams
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| | - David B Ascher
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4067, Australia
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Robert Vary
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Jennii Luu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Karla J Cowley
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Susanne Ramm
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Mark Xiang Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Niko Thio
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Jason Li
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Tim Semple
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
| | - Kaylene J Simpson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3052, Australia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3052, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jessica K Holien
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Carlton, VIC 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- School of Science, STEM College, RMIT University, Bundoora, VIC 3082, Australia
| |
Collapse
|
9
|
Gao L, Huang T, Zhong L, Peng L, Huang Z, Lu Y. Fertility-Sparing Surgery and Adjuvant Chemotherapy with Trastuzumab Result in Complete Remission in a Young Woman with Rare Primary Mucinous Ovarian Cancer due to ERBB2 Co-amplification with CDK12 and Chromosome 11q13.3 Amplicon: A Case Report and Literature Review. Reprod Sci 2024; 31:1626-1631. [PMID: 38216775 DOI: 10.1007/s43032-023-01443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
Primary mucinous ovarian carcinoma (PMOC) is a rare tumor, accounting for approximately 3% of all epithelial ovarian cancers (EOCs), with clinical risk factors and biologic features distinct from that of EOC. The prognosis for women with recurrent and high-grade PMOC remains poor, likely related to a poor response to conventional chemotherapy for EOC. A 27-year-old Chinese woman sought medical attention in January 2021 for abdominal distention from a large pelvic mass. After extensive investigations and workup, she was diagnosed with PMOC of the right ovary. Following multidisciplinary team (MDT) discussions, the patient underwent fertility-sparing surgery (FSS) (abdominal left adnexectomy, right partial oophorectomy, pelvic lymph node dissection, para-aortic lymph node dissection, omentectomy) as she yearned to preserve her fertility and the contralateral ovary appeared normal. Deep genetic analyses revealed ERBB2 co-amplification with CDK12 and chromosome 11q13.3 amplicon. Treatment with fertility-sparing surgery and adjuvant chemotherapy with trastuzumab results in complete remission. This novel strategy utilizing precise diagnostics and characterization of the histo-type of rare tumors allowed personalized targeting with optimum drug response for women who yearn fertility preservation and remission from the disease, especially when there is very limited clinical experience on management of such rare ovarian tumors.
Collapse
Affiliation(s)
- Lvfen Gao
- Department of Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Ting Huang
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Lijuan Zhong
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Lilin Peng
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhongwei Huang
- Department of Obstetrics & Gynaecology, NUHS Tower Block Level 12, 1E Kent Ridge Road, Singapore, 119228, Singapore.
- NUS Bia-Echo Asia Centre for Reproductive Longevity and Equality, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| | - Yuanzhi Lu
- Department of Clinical Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Han R, Madariaga A, Gonzalez-Ochoa E, Smith AC, Wang L, Lheureux S, Rouzbahman M. HER2-low and Overexpression in Mucinous Ovarian Cancer: Analysis of ASCO/CAP and ToGA Immunohistochemical Scoring. Int J Gynecol Pathol 2024; 43:275-283. [PMID: 38436360 DOI: 10.1097/pgp.0000000000000972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Mucinous ovarian carcinoma is an uncommon malignancy characterized by resistance to chemotherapy and poor survival in the metastatic setting. HER2 amplification is a frequent late event in carcinogenesis, yet the incidence of HER2-low in mucinous ovarian carcinoma is unknown. Further, the optimal method for determining overexpression in these tumors is not established. We sought to assess the ASCO/CAP and ToGA trial scoring methods for HER2 IHC with correlation to FISH, p53, and mismatch repair protein status and to determine the incidence of HER2-low in mucinous ovarian carcinoma. A total of 29 tumors from 23 patients were included. Immunohistochemistry for HER2, p53, MLH1, PMS2, MSH2, and MSH6 was performed. Scoring was performed according to the ASCO/CAP and ToGA trial criteria. HER2 FISH was performed and scored according to the ASCO/CAP criteria. The proportion of HER2-low, defined as 1+ or 2+ staining with negative FISH, was determined. Using ASCO/CAP, 26% demonstrated 3+ while 35% demonstrated 2+ staining. Using ToGA, 30% demonstrated 3+ while 57% demonstrated 2+ staining. By FISH, 26% were positive for HER2 amplification. Both systems captured all FISH-positive cases; the use of ASCO/CAP resulted in fewer equivocal and false-positive cases. Among HER2-negative cases, 88% were HER2-low. Aberrant p53 expression was detected in 55% of cases; mismatch repair deficiency was not identified in any cases. ASCO/CAP guidelines are accurate and resource-effective in determining HER2 overexpression in mucinous ovarian carcinoma. HER2-low is common in these tumors; further studies to determine the role of HER2-targeted therapy including antibody-drug conjugates are indicated.
Collapse
|
11
|
Peters I, Marchetti C, Scambia G, Fagotti A. New windows of surgical opportunity for gynecological cancers in the era of targeted therapies. Int J Gynecol Cancer 2024; 34:352-362. [PMID: 38438181 DOI: 10.1136/ijgc-2023-004580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Precision medicine through molecular profiling has taken a prominent role in the treatment of solid tumors and it is widely expected that this will continue to expand. With respect to gynecological cancers, a major change has particularly been observed in the treatment landscape of epithelial ovarian, endometrial, and cervical cancers. Regarding the former, maintenance therapy with either poly(ADP-ribose) polymerase inhibitors (PARPi) and/or bevacizumab has become an indispensable treatment option following the traditional combination of cytoreductive surgery and platinum-based chemotherapy. Considering endometrial cancer, the molecular classification system has now been incorporated into virtually every guideline available and molecular-directed treatment strategies are currently being researched, presumably leading to a further transformation of its treatment paradigm. After all, treatment with immune-checkpoint inhibitors that target the programmed cell death 1 (PD-1) receptor has already been shown to significantly improve disease outcomes in these patients, especially in those with mismatch repair deficient, microsatellite stability-high (MMRd-MSI-H) disease. Similarly, in recurrent/metastatic cervical cancer patients, these agents elicited improved survival rates when being added to platinum-based chemotherapy with or without bevacizumab. Interestingly, implications of these targeted therapies for surgical management have been touched on to a minor extent, but are at least as intriguing. This review therefore aims to address the wide-ranging opportunities the molecular tumor characteristics and their corresponding targeted therapies have to offer for the surgical management of epithelial ovarian, endometrial, and cervical cancers, both in the primary and recurrent setting.
Collapse
Affiliation(s)
- Inge Peters
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Claudia Marchetti
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Giovanni Scambia
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Anna Fagotti
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
12
|
Jones MA, Timms KM, Hatcher S, Cogan ES, Comeaux MS, Perry M, Morris B, Swedlund B, Elks CE, Lao-Sirieix P, Dearden S, Egile C, Brown JS, Harrington EA, Hodgson D, Stern M, Slavin TP, Mancini-DiNardo D. The landscape of BRCA1 and BRCA2 large rearrangements in an international cohort of over 20 000 ovarian tumors identified using next-generation sequencing. Genes Chromosomes Cancer 2023; 62:589-596. [PMID: 37222498 DOI: 10.1002/gcc.23150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Approximately half of ovarian tumors have defects within the homologous recombination repair pathway. Tumors carrying pathogenic variants (PVs) in BRCA1/BRCA2 are more likely to respond to poly-ADP ribose polymerase (PARP) inhibitor treatment. Large rearrangements (LRs) are a challenging class of variants to identify and characterize in tumor specimens and may therefore be underreported. This study describes the prevalence of pathogenic BRCA1/BRCA2 LRs in ovarian tumors and discusses the importance of their identification using a comprehensive testing strategy. METHODS Sequencing and LR analyses of BRCA1/BRCA2 were conducted in 20 692 ovarian tumors received between March 18, 2016 and February 14, 2023 for MyChoice CDx testing. MyChoice CDx uses NGS dosage analysis to detect LRs in BRCA1/BRCA2 genes using dense tiling throughout the coding regions and limited flanking regions. RESULTS Of the 2217 PVs detected, 6.3% (N = 140) were LRs. Overall, 0.67% of tumors analyzed carried a pathogenic LR. The majority of detected LRs were deletions (89.3%), followed by complex LRs (5.7%), duplications (4.3%), and retroelement insertions (0.7%). Notably, 25% of detected LRs encompassed a single or partial single exon. This study identified 84 unique LRs, 2 samples each carried 2 unique LRs in the same gene. We identified 17 LRs that occurred in multiple samples, some of which were specific to certain ancestries. Several cases presented here illustrate the intricacies involved in characterizing LRs, particularly when multiple events occur within the same gene. CONCLUSIONS Over 6% of PVs detected in the ovarian tumors analyzed were LRs. It is imperative for laboratories to utilize testing methodologies that will accurately detect LRs at a single exon resolution to optimize the identification of patients who may benefit from PARP inhibitor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Matt Stern
- Myriad Genetics, Inc, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
13
|
Nasioudis D, Fernandez ML, Wong N, Powell DJ, Mills GB, Westin S, Fader AN, Carey MS, Simpkins F. The spectrum of MAPK-ERK pathway genomic alterations in gynecologic malignancies: Opportunities for novel therapeutic approaches. Gynecol Oncol 2023; 177:86-94. [PMID: 37657193 DOI: 10.1016/j.ygyno.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/30/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE To investigate the incidence of MAPK/ERK pathway genomic alterations among patients with gynecologic malignancies. METHODS We accessed the American Association of Cancer Research Genomics Evidence of Neoplasia Information Exchange publicly available dataset (v13.0). Patients with malignant tumors of the ovary, uterus, and cervix were identified. Following stratification by tumor site and histology, we examined the prevalence of MAPK/ERK pathway gene alterations (somatic mutation, and/or structural chromosome alterations). We included the following RAS-MAPK pathway genes known to be implicated in the dysregulation of the pathway; KRAS, NRAS, BRAF, HRAS, MAP2K1, RAF1, PTPN11, NF1, and ARAF. Data from the OncoKB database, as provided by cBioPortal, were utilized to determine pathogenic gene alterations. RESULTS We identified a total of 10,233 patients with gynecologic malignancies; 48.2% (n = 4937) with ovarian, 45.2% (n = 4621) with uterine and 6.6% (n = 675) with cervical cancer respectively. The overall incidence of MAPK pathway gene alterations was 21%; the most commonly altered gene was KRAS (13%), followed by NF1 (7%), NRAS (1.3%), and BRAF (1.2%). The highest incidence was observed among patients with mucinous ovarian (71%), low-grade serous ovarian (48%), endometrioid ovarian (37%), and endometrioid endometrial carcinoma (34%). CONCLUSIONS Approximately 1 in 5 patients with a gynecologic tumor harbor a MAPK/ERK pathway genomic alteration. Novel treatment strategies capitalizing on these alterations are warranted.
Collapse
Affiliation(s)
- Dimitrios Nasioudis
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marta Llaurado Fernandez
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Nelson Wong
- Department of Experimental Therapeutics, BC Cancer, BC, Canada
| | - Daniel J Powell
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gordon B Mills
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shannon Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amanda N Fader
- Kelly Gynecologic Oncology Service, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mark S Carey
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Fiona Simpkins
- Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Bartl T, Alberts A, Papadopoulos SC, Wolf A, Muellauer L, Hofstetter G, Grimm C, Cacsire Castillo-Tong D. Biomarkers for checkpoint inhibitor therapy in mucinous epithelial ovarian cancer. Int J Gynecol Cancer 2023; 33:1419-1426. [PMID: 37094966 DOI: 10.1136/ijgc-2023-004360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
OBJECTIVE The prognosis of patients with advanced stage mucinous epithelial ovarian cancer remains poor due to a modest response to platinum-based chemotherapy and the absence of therapeutic alternatives. As targeted approaches may help to overcome these limitations, the present study evaluates biomarkers indicative of potential immune-checkpoint inhibitor therapy response. METHODS All patients who underwent primary cytoreductive surgery from January 2001 to December 2020 and for whom formalin-fixed paraffin-embedded tissue samples were available were included (n=35; 12 International Federation of Gynecology and Obstetrics (FIGO) stage ≥IIb). To define sub-groups potentially suitable for checkpoint inhibition, expression of programmed death-ligand 1 (PD-L1), tumor-infiltrating lymphocytes (CD3+, CD8+, CD20+, CD45+, CD68+, FoxP3+), and AT-rich interactive domain-containing protein 1A (ARID1A) immunostaining were evaluated in whole tissue sections and compared with clinicopathologic parameters and next-generation sequencing results, where available (n=11). Survival analyses were performed to assess whether identified sub-groups were associated with specific clinical outcomes. RESULTS In total, 34.3% (n=12/35) of tumors were PD-L1 positive. PD-L1 expression was associated with infiltrative histotype (p=0.027) and correlated with higher CD8+ (r=0.577, p<0.001) and CD45+ (r=0.424, p=0.011), but reduced ARID1A expression (r=-4.39, p=0.008). CD8+ expression was associated with longer progression-free survival (hazard ratio (HR) 0.85 (95% CI 0.72 to 0.99), p=0.047) and disease-specific survival (HR 0.85 (95% CI 0.73 to 1.00), p=0.044) in the sub-group with FIGO stage ≥IIb. Three (8.6%) samples demonstrated high PD-L1 expression at a combined positive score of >10, which was associated with increased CD8+ expression (p=0.010) and loss of ARID1A expression (p=0.034). Next-generation sequencing, which was available for all samples with a combined positive score of >10, showed KRAS mutations, BRCA wild-type status, and mismatch repair proficiency in all cases, but did not reveal genetic alterations potentially associated with a pro-immunogenic tumor environment. CONCLUSIONS A sub-group of mucinous ovarian cancers appear to demonstrate a pro-immunogenic tumor environment with high PD-L1 expression, decreased ARID1A expression, and characteristic tumor-infiltrating lymphocyte infiltration patterns. Further clinical validation of anti-PD-L1/PD-1 targeting in selected mucinous ovarian cancers appears promising.
Collapse
Affiliation(s)
- Thomas Bartl
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Wien, Austria
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Wien, Austria
| | - Anita Alberts
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Wien, Austria
| | - Sofia-Christina Papadopoulos
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Wien, Austria
| | - Andrea Wolf
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Wien, Austria
| | | | - Gerda Hofstetter
- Department of Pathology, Medical University of Vienna, Wien, Austria
| | - Christoph Grimm
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Wien, Austria
| | - Dan Cacsire Castillo-Tong
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Wien, Austria
| |
Collapse
|
15
|
Craig O, Nigam A, Dall GV, Gorringe K. Rare Epithelial Ovarian Cancers: Low Grade Serous and Mucinous Carcinomas. Cold Spring Harb Perspect Med 2023; 13:a038190. [PMID: 37277207 PMCID: PMC10513165 DOI: 10.1101/cshperspect.a038190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ovarian epithelial cancer histotypes can be divided into common and rare types. Common types include high-grade serous ovarian carcinomas and the endometriosis-associated cancers, endometrioid and clear-cell carcinomas. The less common histotypes are mucinous and low-grade serous, each comprising less than 10% of all epithelial carcinomas. Although histologically and epidemiologically distinct from each other, these histotypes share some genetic and natural history features that distinguish them from the more common types. In this review, we will consider the similarities and differences of these rare histological types, and the clinical challenges they pose.
Collapse
Affiliation(s)
- Olivia Craig
- Department of Laboratory Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Abhimanyu Nigam
- Department of Laboratory Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Kylie Gorringe
- Department of Laboratory Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
16
|
Wang Y, Liu L, Yu Y. Mucins and mucinous ovarian carcinoma: Development, differential diagnosis, and treatment. Heliyon 2023; 9:e19221. [PMID: 37664708 PMCID: PMC10468386 DOI: 10.1016/j.heliyon.2023.e19221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Mucinous ovarian carcinoma (MOC) is a rare histological type of epithelial ovarian cancer. It has poor response to conventional platinum-based chemotherapy regimens and PARPi-based maintenance treatment, resulting in short survival and poor prognosis in advanced-disease patients. MOC is characterized by mucus that is mainly composed of mucin in the cystic cavity. Our review discusses in detail the role of mucins in MOC. Mucins are correlated with MOC development. Furthermore, they are valuable in the differential diagnosis of primary and secondary ovarian mucinous tumors. Some types of mucins have been studied in the context of chemoresistance and targeted therapy for ovarian cancer. This review may provide a new direction for the diagnosis and treatment of advanced MOC.
Collapse
Affiliation(s)
- Yicong Wang
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Lifeng Liu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| | - Yongai Yu
- Department of Obstetrics and Gynecology, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
17
|
Neil AJ, Muto MG, Kolin DL, Konstantinopoulos PA. Durable remission in a patient with ERBB2-amplified recurrent mucinous ovarian carcinoma treated with Trastuzumab-Carboplatin-Paclitaxel. Gynecol Oncol Rep 2023; 48:101237. [PMID: 37449085 PMCID: PMC10336730 DOI: 10.1016/j.gore.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Patients with advanced stage or recurrent mucinous ovarian carcinoma exhibit poor response to standard platinum- and taxane-based chemotherapy and poor prognosis. We report a 29-year-old patient with recurrent ERBB2-amplified mucinous ovarian carcinoma (with expansile growth pattern at initial diagnosis and previously treated with adjuvant capecitabine/oxaliplatin) who underwent optimal secondary cytoreduction followed by 6 cycles of carboplatin/paclitaxel/trastuzumab and 1-year maintenance trastuzumab. This patient remains without radiologic or biochemical evidence of disease for more than 3 years after secondary cytoreduction. This case supports routine assessment of HER2 status in patients with advanced or recurrent mucinous ovarian carcinoma and highlights the potential of HER2-targeted therapy with trastuzumab in combination with standard carboplatin and paclitaxel in this disease. This case also raises the possibility that expansile mucinous ovarian carcinomas with ERBB2 amplification and p53 mutant immunohistochemical staining pattern (as this patient had) may be associated with a more aggressive behavior and higher risk of relapse.
Collapse
Affiliation(s)
- Alexander J. Neil
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael G. Muto
- Division of Gynecologic Oncology and Reproductive Biology, Brigham and Women's Hospital, Boston, MA, USA
| | - David L. Kolin
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | | |
Collapse
|
18
|
Ali AT, Al-ani O, Al-ani F. Epidemiology and risk factors for ovarian cancer. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2023; 22:93-104. [PMID: 37674925 PMCID: PMC10477765 DOI: 10.5114/pm.2023.128661] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 09/08/2023]
Abstract
Ovarian cancer is a complex disease, mostly observed in postmenopausal women, and is associated with poor survival rates. It is the sixth most common cancer and the fifth most common cause of death due to cancer among women in developed countries. Thus, despite representing less than one third of all gynaecologic cancers, deaths due to ovarian cancer account for more than two thirds of deaths due to gynaecologic cancers. Its prevalence is higher in Western Europe and Northern America than Asia and Africa. In sub-Saharan Africa, there is a considerably lower prevalence of ovarian cancer than other parts of Africa. Ovarian cancer is multifaceted, involving many factors, complex biological processes and unpredictable consequences. Unlike other female cancers that have early warning symptoms, ovarian cancer's symptoms are non-specific. As a result, ovarian cancers are normally undetected until advanced stages (III or IV). The major risk factors for ovarian cancer include older age, genetics, family history, hormone replacement therapy, nulliparity, and dietary fat. Controversial factors include obesity, infertility, talc powder, radiation exposure, fertility medications and in vitro fertilization. The current review discusses the aetiology, epidemiology and risk factors for ovarian cancer. Nevertheless, identification of the main risk factors for ovarian cancer may increase the awareness among women of the general population. This should help to decrease the incidence rate of ovarian cancer and increase the five-year survival rate.
Collapse
Affiliation(s)
- Aus Tariq Ali
- Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Osamah Al-ani
- Faculty of Medicine, Odessa National Medical University, Odessa, Ukraine
| | - Faisal Al-ani
- Faculty of Medicine, Odessa National Medical University, Odessa, Ukraine
| |
Collapse
|
19
|
Wiedenhoefer R, Schmoeckel E, Grube M, Sulyok M, Pasternak I, Beschorner C, Greif K, Brucker S, Mayr D, Kommoss S, Fend F, Staebler A, Fischer AK. L1-CAM in Mucinous Ovarian Carcinomas and Borderline Tumors: Impact on Tumor Recurrence and Potential Role in Tumor Progression. Am J Surg Pathol 2023; 47:558-567. [PMID: 36852510 DOI: 10.1097/pas.0000000000002027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Mucinous ovarian carcinoma (MOC) is a rare histotype of primary ovarian carcinoma. Frequent pathogenic molecular alterations include mutations in KRAS , TP53 , and overexpression of human epidermal growth factor receptor 2, but without having prognostic relevance. As L1-CAM (cell adhesion molecule) has previously shown prognostic relevance in other epithelial tumors of the female genital tract, we analyzed whether L1-CAM expression affected MOC prognosis. In addition, we investigated L1-CAM expression in mucinous borderline tumors (MBOTs) with and without adjacent MOC to identify its potential role in the pathogenesis of MOC. We examined a well-characterized collective of 39 MOCs by immunohistochemistry and compared their expression with clinicopathologic data. L1-CAM positivity was defined as any (even single-cell) positivity. Furthermore, we compared the L1-CAM expression in 20 MBOT regions adjacent to a MOC with that of 15 pure MBOTs. L1-CAM expression in MOC was significantly associated with recurrence, independent of tumor stage. Overall, 7/20 positive cases recurred versus 0/19 L1-CAM-negative cases ( P =0.032), showing a significant difference in time to progression. Furthermore, the presence of at least 1 defined molecular alteration (L1-CAM, aberrant p53, or human epidermal growth factor receptor 2) was found more frequently in the MBOT regions adjacent to a MOC (14/20) than in pure MBOTs (3/15) ( P =0.024). Expression of the tumor marker L1-CAM is frequent (51%) in MOC and is associated with tumor recurrence. The lack of L1-CAM may serve to characterize cases with a low risk of recurrence. Furthermore, the presence of specific molecular alterations in MBOTs is associated with adjacent carcinomas and may define potential pathways in tumor progression.
Collapse
Affiliation(s)
| | | | - Marcel Grube
- Department of Women's Health, Tuebingen University Hospital, Tuebingen
| | | | - Iana Pasternak
- Department of Women's Health, Tuebingen University Hospital, Tuebingen
| | | | | | - Sara Brucker
- Department of Women's Health, Tuebingen University Hospital, Tuebingen
| | - Doris Mayr
- Institute of Pathology, LMU Munich, Munich, Germany
| | - Stefan Kommoss
- Department of Women's Health, Tuebingen University Hospital, Tuebingen
| | | | | | | |
Collapse
|
20
|
Hada T, Miyamoto M, Ohtsuka Y, Suminokura J, Ito T, Kishimoto N, Nishitani S, Takada M, Imauji A, Tanabe R, Takano M. Genetic analysis for mucinous ovarian carcinoma with infiltrative and expansile invasion and mucinous borderline tumor: a retrospective analysis. Diagn Pathol 2023; 18:49. [PMID: 37081552 PMCID: PMC10120221 DOI: 10.1186/s13000-023-01340-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Mucinous carcinoma (MC) is a histological subtype of ovarian cancer that has a worse prognosis at advanced stages than the most prevalent histological subtype, high-grade serous carcinomas. Invasive patterns have been recognized as prognostic factors for MCs. MCs with infiltrative invasion were more aggressive than those with expansile invasion. MC with an expansile pattern exhibited behavior similar to mucinous borderline tumors (MBT). However, genomic analysis of invasive patterns is insufficient. This study aimed to compare genetic information between groups with MC and infiltrative invasion (Group A) and those with MC with expansile invasion or MBT (Group B). METHODS Ten cases each of MC with infiltrative invasion, MC with expansile invasion, and MBT between 2005 and 2020 were identified. Deoxyribonucleic acid (DNA) extraction from formalin-fixed paraffin-embedded tissues was performed, and cases with DNA fragmentation or the possibility of DNA fragmentation were excluded. Mutant base candidates and tumor mutation burden (TMB) values (mutations/megabase) were calculated. RESULTS After assessing the quality of purified DNA, seven cases of MC with infiltrative invasion, five cases of MC with expansile invasion, and three cases of MBT were included. More patients in group A experienced recurrence or progression (p < 0.01) and died of disease (p = 0.03). Moreover, the TMB value was statistically higher in group A than in group B (p = 0.049). There were no statistical differences in the incidence of the mutations of KRAS, TP53, and CREBBP. KRAS, TP53, and CREBBP mutations were discovered in 8/15 (53.3%), 6/15 (40.0%), and 5/15 (33.3%) cases, respectively. CONCLUSIONS Genetic analysis revealed that Group A had higher TMB than Group B. Therefore, this result might be useful for future treatment.
Collapse
Affiliation(s)
- Taira Hada
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Morikazu Miyamoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Yuka Ohtsuka
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Jin Suminokura
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Tsubasa Ito
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Naohisa Kishimoto
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Soko Nishitani
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Minori Takada
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Akari Imauji
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Risa Tanabe
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Masashi Takano
- Department of Obstetrics and Gynecology, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
21
|
Li J, Liang H, Xiao W, Wei P, Chen H, Chen Z, Yang R, Jiang H, Zhang Y. Whole-exome mutational landscape and molecular marker study in mucinous and clear cell ovarian cancer cell lines 3AO and ES2. BMC Cancer 2023; 23:321. [PMID: 37024829 PMCID: PMC10080944 DOI: 10.1186/s12885-023-10791-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Ovarian cancer is one of the most lethal cancers in women because it is often diagnosed at an advanced stage. The molecular markers investigated thus far have been unsatisfactory. METHODS We performed whole-exome sequencing on the human ovarian cancer cell lines 3AO and ES2 and the normal ovarian epithelial cell line IOSE-80. Molecular markers of ovarian cancer were screened from shared mutation genes and copy number variation genes in the 6q21-qter region. RESULTS We found that missense mutations were the most common mutations in the gene (93%). The MUC12, FLG and MUC16 genes were highly mutated in 3AO and ES2 cells. Copy number amplification occurred mainly in 4p16.1 and 11q14.3, and copy number deletions occurred in 4q34.3 and 18p11.21. A total of 23 hub genes were screened, of which 16 were closely related to the survival of ovarian cancer patients. The three genes CCDC170, THBS2 and COL14A1 are most significantly correlated with the survival and prognosis of ovarian cancer. In particular, the overall survival of ovarian cancer patients with high CCDC170 gene expression was significantly prolonged (P < 0.001). The expression of CCDC170 in normal tissues was significantly higher than that in ovarian cancer tissues (P < 0.05), and its expression was significantly decreased in advanced ovarian cancer. Western blotting and immunofluorescence assays also showed that the expression of CCDC170 in ovarian cancer cells was significantly lower than that in normal cells (P < 0.001, P < 0.01). CONCLUSIONS CCDC170 is expected to become a new diagnostic molecular target and prognostic indicator for ovarian cancer patients, which can provide new ideas for the design of antitumor drugs.
Collapse
Affiliation(s)
- Jianxiong Li
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, PR China
| | - Huaguo Liang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Wentao Xiao
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, PR China
| | - Peng Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Hongmei Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zexin Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Ruihui Yang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Huan Jiang
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, PR China
| | - Yongli Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
22
|
Razia S, Nakayama K, Yamashita H, Ishibashi T, Ishikawa M, Kanno K, Sato S, Kyo S. Histological and Genetic Diversity in Ovarian Mucinous Carcinomas: A Pilot Study. Curr Oncol 2023; 30:4052-4059. [PMID: 37185420 PMCID: PMC10137024 DOI: 10.3390/curroncol30040307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
Tumor heterogeneity remains an ongoing challenge in the field of cancer therapy. Intratumor heterogeneity significantly complicates the diagnosis of cancer and presents challenging clinical problems due to resistance to drug therapy. This study aimed to elucidate the genetic changes histologically (mucinous cystadenoma (MCA), mucinous borderline tumor (MBT), and mucinous ovarian carcinoma (MOC)) in a portion of mucinous ovarian tumors within the same sample. Seven tumor samples obtained from different patients were used to evaluate the genetic mutations in each component. Intratumor genetic heterogeneity was observed in all patients; among them, BRAF (V600E) and p53 (T118I, P142S, T150I, and T170M) point mutations were observed in the MBT component, while KRAS (G12D and G13D) and PIK3CA (E545K) mutations were found in the MOC component. The current findings suggest that diverse genetic alterations occur in mucinous tumors, according to tumor histology. Tumor heterogeneity and genetic diversity in mucinous ovarian tumors might be the cause of treatment failure. Knowledge of intertumor heterogeneity may lead to an increased understanding of the tumor response to treatment.
Collapse
Affiliation(s)
- Sultana Razia
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Kosuke Kanno
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Seiya Sato
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| |
Collapse
|
23
|
Through the Looking Glass: Updated Insights on Ovarian Cancer Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13040713. [PMID: 36832201 PMCID: PMC9955065 DOI: 10.3390/diagnostics13040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynaecological malignancy and the eighth most prevalent cancer in women, with an abysmal mortality rate of two million worldwide. The existence of multiple overlapping symptoms with other gastrointestinal, genitourinary, and gynaecological maladies often leads to late-stage diagnosis and extensive extra-ovarian metastasis. Due to the absence of any clear early-stage symptoms, current tools only aid in the diagnosis of advanced-stage patients, wherein the 5-year survival plummets further to less than 30%. Therefore, there is a dire need for the identification of novel approaches that not only allow early diagnosis of the disease but also have a greater prognostic value. Toward this, biomarkers provide a gamut of powerful and dynamic tools to allow the identification of a spectrum of different malignancies. Both serum cancer antigen 125 (CA-125) and human epididymis 4 (HE4) are currently being used in clinics not only for EOC but also peritoneal and GI tract cancers. Screening of multiple biomarkers is gradually emerging as a beneficial strategy for early-stage diagnosis, proving instrumental in administration of first-line chemotherapy. These novel biomarkers seem to exhibit an enhanced potential as a diagnostic tool. This review summarizes existing knowledge of the ever-growing field of biomarker identification along with potential future ones, especially for ovarian cancer.
Collapse
|
24
|
McCabe A, Zaheed O, McDade SS, Dean K. Investigating the suitability of in vitro cell lines as models for the major subtypes of epithelial ovarian cancer. Front Cell Dev Biol 2023; 11:1104514. [PMID: 36861035 PMCID: PMC9969113 DOI: 10.3389/fcell.2023.1104514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most fatal gynaecological malignancy, accounting for over 200,000 deaths worldwide per year. EOC is a highly heterogeneous disease, classified into five major histological subtypes-high-grade serous (HGSOC), clear cell (CCOC), endometrioid (ENOC), mucinous (MOC) and low-grade serous (LGSOC) ovarian carcinomas. Classification of EOCs is clinically beneficial, as the various subtypes respond differently to chemotherapy and have distinct prognoses. Cell lines are often used as in vitro models for cancer, allowing researchers to explore pathophysiology in a relatively cheap and easy to manipulate system. However, most studies that make use of EOC cell lines fail to recognize the importance of subtype. Furthermore, the similarity of cell lines to their cognate primary tumors is often ignored. Identification of cell lines with high molecular similarity to primary tumors is needed in order to better guide pre-clinical EOC research and to improve development of targeted therapeutics and diagnostics for each distinctive subtype. This study aims to generate a reference dataset of cell lines representative of the major EOC subtypes. We found that non-negative matrix factorization (NMF) optimally clustered fifty-six cell lines into five groups, putatively corresponding to each of the five EOC subtypes. These clusters validated previous histological groupings, while also classifying other previously unannotated cell lines. We analysed the mutational and copy number landscapes of these lines to investigate whether they harboured the characteristic genomic alterations of each subtype. Finally we compared the gene expression profiles of cell lines with 93 primary tumor samples stratified by subtype, to identify lines with the highest molecular similarity to HGSOC, CCOC, ENOC, and MOC. In summary, we examined the molecular features of both EOC cell lines and primary tumors of multiple subtypes. We recommend a reference set of cell lines most suited to represent four different subtypes of EOC for both in silico and in vitro studies. We also identify lines displaying poor overall molecular similarity to EOC tumors, which we argue should be avoided in pre-clinical studies. Ultimately, our work emphasizes the importance of choosing suitable cell line models to maximise clinical relevance of experiments.
Collapse
Affiliation(s)
- Aideen McCabe
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| | - Oza Zaheed
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
| | - Simon Samuel McDade
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Kellie Dean
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
25
|
Nugawela D, Gorringe KL. Targeted therapy for mucinous ovarian carcinoma: evidence from clinical trials. Int J Gynecol Cancer 2023; 33:102-108. [PMID: 36603894 PMCID: PMC9811085 DOI: 10.1136/ijgc-2022-003658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/12/2022] [Indexed: 01/10/2023] Open
Abstract
Mucinous ovarian carcinoma is a rare subtype of epithelial ovarian cancer. Despite being a chemoresistant tumour type, surgical resection and chemotherapy are still the current standard for management. This narrative review aims to explore the current evidence for targeted therapies in mucinous ovarian carcinoma. A review of the literature was performed to identify clinical trials and case reports of targeted therapy in patients with mucinous ovarian carcinoma. The databases and registers (PubMed, MEDLINE, Embase, Europe PMC, Cochrane Central Register of Clinical Trials, clinicaltrials.gov) were searched for articles published between January 2009 to June 2021 using keywords specific for mucinous ovarian carcinoma and targeted therapy. Records were screened and assessed for eligibility based on inclusion and exclusion criteria. From 684 records, 21 studies met the criteria to be included in the review. A total of 11 different targeted therapies were identified, each demonstrating varying degrees of clinical evidence supporting further investigation in patients with mucinous ovarian carcinoma. Targeted therapies identified in this review that warrant further investigations are bevacizumab, trastuzumab, nintedanib, AZD1775, sunitinib, cediranib and pazopanib. Many of the therapeutic agents may be investigated further in combination with other targeted therapies or chemotherapy. More clinical trials focusing on targeted therapy specifically in patients with mucinous ovarian cancer are required to inform clinical use. Multinational efforts are likely to be required to successfully conduct trials in this rare tumor type.
Collapse
Affiliation(s)
| | - Kylie L Gorringe
- Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Meagher NS, Hamilton P, Milne K, Thornton S, Harris B, Weir A, Alsop J, Bisinoto C, Brenton JD, Brooks-Wilson A, Chiu DS, Cushing-Haugen KL, Fereday S, Garsed DW, Gayther SA, Gentry-Maharaj A, Gilks B, Jimenez-Linan M, Kennedy CJ, Le ND, Piskorz AM, Riggan MJ, Shah M, Singh N, Talhouk A, Widschwendter M, Bowtell DDL, Candido Dos Reis FJ, Cook LS, Fortner RT, García MJ, Harris HR, Huntsman DG, Karnezis AN, Köbel M, Menon U, Pharoah PDP, Doherty JA, Anglesio MS, Pike MC, Pearce CL, Friedlander ML, DeFazio A, Nelson BH, Ramus SJ. Profiling the immune landscape in mucinous ovarian carcinoma. Gynecol Oncol 2023; 168:23-31. [PMID: 36368129 PMCID: PMC10374276 DOI: 10.1016/j.ygyno.2022.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Mucinous ovarian carcinoma (MOC) is a rare histotype of ovarian cancer, with low response rates to standard chemotherapy, and very poor survival for patients diagnosed at advanced stage. There is a limited understanding of the MOC immune landscape, and consequently whether immune checkpoint inhibitors could be considered for a subset of patients. METHODS We performed multicolor immunohistochemistry (IHC) and immunofluorescence (IF) on tissue microarrays in a cohort of 126 MOC patients. Cell densities were calculated in the epithelial and stromal components for tumor-associated macrophages (CD68+/PD-L1+, CD68+/PD-L1-), T cells (CD3+/CD8-, CD3+/CD8+), putative T-regulatory cells (Tregs, FOXP3+), B cells (CD20+/CD79A+), plasma cells (CD20-/CD79a+), and PD-L1+ and PD-1+ cells, and compared these values with clinical factors. Univariate and multivariable Cox Proportional Hazards assessed overall survival. Unsupervised k-means clustering identified patient subsets with common patterns of immune cell infiltration. RESULTS Mean densities of PD1+ cells, PD-L1- macrophages, CD4+ and CD8+ T cells, and FOXP3+ Tregs were higher in the stroma compared to the epithelium. Tumors from advanced (Stage III/IV) MOC had greater epithelial infiltration of PD-L1- macrophages, and fewer PD-L1+ macrophages compared with Stage I/II cancers (p = 0.004 and p = 0.014 respectively). Patients with high epithelial density of FOXP3+ cells, CD8+/FOXP3+ cells, or PD-L1- macrophages, had poorer survival, and high epithelial CD79a + plasma cells conferred better survival, all upon univariate analysis only. Clustering showed that most MOC (86%) had an immune depleted (cold) phenotype, with only a small proportion (11/76,14%) considered immune inflamed (hot) based on T cell and PD-L1 infiltrates. CONCLUSION In summary, MOCs are mostly immunogenically 'cold', suggesting they may have limited response to current immunotherapies.
Collapse
Affiliation(s)
- Nicola S Meagher
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia; Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia; The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Australia.
| | - Phineas Hamilton
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Katy Milne
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Shelby Thornton
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Bronwyn Harris
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Ashley Weir
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Christiani Bisinoto
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Derek S Chiu
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada
| | - Kara L Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aleksandra Gentry-Maharaj
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Catherine J Kennedy
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia; The University of Sydney, Sydney, New South Wales, Australia
| | - Nhu D Le
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Anna M Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Marjorie J Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Naveena Singh
- Department of Pathology, Barts Health National Health Service Trust, London, UK; Department of Anatomical Pathology, Vancouver General Hospital, Vancouver, Canada
| | - Aline Talhouk
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | | | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Francisco J Candido Dos Reis
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Linda S Cook
- Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA; Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | - Renée T Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - María J García
- Computational Oncology Group, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Holly R Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - David G Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA, USA
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada
| | - Usha Menon
- MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jennifer A Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Michael S Anglesio
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, BC, Canada; Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; Department of Population Health and Public Health Sciences, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Michael L Friedlander
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia; Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, New South Wales, Australia; Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, New South Wales, Australia
| | - Anna DeFazio
- The Daffodil Centre, The University of Sydney, A Joint Venture with Cancer Council New South Wales, Australia; Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia; The University of Sydney, Sydney, New South Wales, Australia
| | - Brad H Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Susan J Ramus
- School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia; Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
27
|
Dundr P, Bártů M, Bosse T, Bui QH, Cibula D, Drozenová J, Fabian P, Fadare O, Hausnerová J, Hojný J, Hájková N, Jakša R, Laco J, Lax SF, Matěj R, Méhes G, Michálková R, Šafanda A, Němejcová K, Singh N, Stolnicu S, Švajdler M, Zima T, Stružinská I, McCluggage WG. Primary Mucinous Tumors of the Ovary: An Interobserver Reproducibility and Detailed Molecular Study Reveals Significant Overlap Between Diagnostic Categories. Mod Pathol 2023; 36:100040. [PMID: 36788074 DOI: 10.1016/j.modpat.2022.100040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 01/19/2023]
Abstract
Primary ovarian mucinous tumors represent a heterogeneous group of neoplasms, and their diagnosis may be challenging. We analyzed 124 primary ovarian mucinous tumors originally diagnosed as mucinous borderline tumors (MBTs) or mucinous carcinomas (MCs), with an emphasis on interobserver diagnostic agreement and the potential for diagnostic support by molecular profiling using a next-generation sequencing targeted panel of 727 DNA and 147 RNA genes. Fourteen experienced pathologists independently assigned a diagnosis from preset options, based on a review of a single digitized slide from each tumor. After excluding 1 outlier participant, there was a moderate agreement in diagnosing the 124 cases when divided into 3 categories (κ = 0.524, for mucinous cystadenoma vs MBT vs MC). A perfect agreement for the distinction between mucinous cystadenoma/MBT as a combined category and MC was found in only 36.3% of the cases. Differentiating between MBTs and MCs with expansile invasion was particularly problematic. After a reclassification of the tumors into near-consensus diagnostic categories on the basis of the initial participant results, a comparison of molecular findings between the MBT and MC groups did not show major and unequivocal differences between MBTs and MCs or between MCs with expansile vs infiltrative pattern of invasion. In contrast, HER2 overexpression or amplification was found only in 5.3% of MBTs and in 35.3% of all MCs and in 45% of MCs with expansile invasion. Overall, HER2 alterations, including mutations, were found in 42.2% of MCs. KRAS mutations were found in 65.5% and PIK3CA mutations in 6% of MCs. In summary, although the diagnostic criteria are well-described, diagnostic agreement among our large group of experienced gynecologic pathologists was only moderate. Diagnostic categories showed a molecular overlap. Nonetheless, molecular profiling may prove to be therapeutically beneficial in advanced-stage, recurrent, or metastatic MCs.
Collapse
Affiliation(s)
- Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Michaela Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Quang Hiep Bui
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - David Cibula
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Drozenová
- Department of Pathology, Charles University, Third Faculty of Medicine, University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Pavel Fabian
- Department of Oncological Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego, San Diego, California
| | - Jitka Hausnerová
- Department of Pathology, University Hospital Brno and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Jan Hojný
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Nikola Hájková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radek Jakša
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jan Laco
- The Fingerland Department of Pathology, Charles University, Faculty of Medicine Hradec Králové and University Hospital in Hradec Králové, Czech Republic
| | - Sigurd F Lax
- Department of Pathology, General Hospital Graz II, Graz, Austria; Johannes Kepler University Linz, Linz, Austria
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic; Department of Pathology, Charles University, Third Faculty of Medicine, University Hospital Královské Vinohrady, Prague, Czech Republic; Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Romana Michálková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Adam Šafanda
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, London, United Kingdom; Blizard Institute of Core Pathology, Queen Mary University of London, London, United Kingdom
| | - Simona Stolnicu
- Department of Pathology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Romania
| | - Marián Švajdler
- Šikl's Department of Pathology, The Faculty of Medicine and Faculty Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ivana Stružinská
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast, United Kingdom
| |
Collapse
|
28
|
Algethami M, Kulkarni S, Sadiq MT, Tang HKC, Brownlie J, Jeyapalan JN, Mongan NP, Rakha EA, Madhusudan S. Towards Personalized Management of Ovarian Cancer. Cancer Manag Res 2022; 14:3469-3483. [PMID: 36545222 PMCID: PMC9762171 DOI: 10.2147/cmar.s366681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Despite advances in surgery and chemotherapy, the overall outcomes for patients with advanced ovarian cancer remain poor. Although initial response rates to platinum-based chemotherapy is about 60-80%, most patients will have recurrence and succumb to the disease. However, a DNA repair-directed precision medicine strategy has recently generated real hope in improving survival. The clinical development of PARP inhibitors has transformed lives for many patients with BRCA germline-deficient and/or platinum-sensitive epithelial ovarian cancers. Antiangiogenic agents and intraperitoneal chemotherapy approaches may also improve outcomes in patients. Moreover, evolving immunotherapeutic opportunities could also positively impact patient outcomes. Here we review the current clinical state of PARP inhibitors and other clinically viable targeted approaches in ovarian cancer.
Collapse
Affiliation(s)
- Mashael Algethami
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Sanat Kulkarni
- Department of Medicine, City Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, B18 7QH, UK
| | - Maaz T Sadiq
- Cancer Centre, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham, B15 2GW, UK
| | - Hiu K C Tang
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK
| | - Juliette Brownlie
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Jennie N Jeyapalan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Nigel P Mongan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Emad A Rakha
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
| | - Srinivasan Madhusudan
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, NG7 3RD, UK
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG51PB, UK
| |
Collapse
|
29
|
Meagher NS, Gorringe KL, Wakefield M, Bolithon A, Pang CNI, Chiu DS, Anglesio MS, Mallitt KA, Doherty JA, Harris HR, Schildkraut JM, Berchuck A, Cushing-Haugen KL, Chezar K, Chou A, Tan A, Alsop J, Barlow E, Beckmann MW, Boros J, Bowtell DD, Brand AH, Brenton JD, Campbell I, Cheasley D, Cohen J, Cybulski C, Elishaev E, Erber R, Farrell R, Fischer A, Fu Z, Gilks B, Gill AJ, Gourley C, Grube M, Harnett PR, Hartmann A, Hettiaratchi A, Høgdall CK, Huzarski T, Jakubowska A, Jimenez-Linan M, Kennedy CJ, Kim BG, Kim JW, Kim JH, Klett K, Koziak JM, Lai T, Laslavic A, Lester J, Leung Y, Li N, Liauw W, Lim BW, Linder A, Lubiński J, Mahale S, Mateoiu C, McInerny S, Menkiszak J, Minoo P, Mittelstadt S, Morris D, Orsulic S, Park SY, Pearce CL, Pearson JV, Pike MC, Quinn CM, Mohan GR, Rao J, Riggan MJ, Ruebner M, Salfinger S, Scott CL, Shah M, Steed H, Stewart CJ, Subramanian D, Sung S, Tang K, Timpson P, Ward RL, Wiedenhoefer R, Thorne H, Cohen PA, Crowe P, Fasching PA, Gronwald J, Hawkins NJ, Høgdall E, Huntsman DG, James PA, Karlan BY, Kelemen LE, Kommoss S, Konecny GE, Modugno F, et alMeagher NS, Gorringe KL, Wakefield M, Bolithon A, Pang CNI, Chiu DS, Anglesio MS, Mallitt KA, Doherty JA, Harris HR, Schildkraut JM, Berchuck A, Cushing-Haugen KL, Chezar K, Chou A, Tan A, Alsop J, Barlow E, Beckmann MW, Boros J, Bowtell DD, Brand AH, Brenton JD, Campbell I, Cheasley D, Cohen J, Cybulski C, Elishaev E, Erber R, Farrell R, Fischer A, Fu Z, Gilks B, Gill AJ, Gourley C, Grube M, Harnett PR, Hartmann A, Hettiaratchi A, Høgdall CK, Huzarski T, Jakubowska A, Jimenez-Linan M, Kennedy CJ, Kim BG, Kim JW, Kim JH, Klett K, Koziak JM, Lai T, Laslavic A, Lester J, Leung Y, Li N, Liauw W, Lim BW, Linder A, Lubiński J, Mahale S, Mateoiu C, McInerny S, Menkiszak J, Minoo P, Mittelstadt S, Morris D, Orsulic S, Park SY, Pearce CL, Pearson JV, Pike MC, Quinn CM, Mohan GR, Rao J, Riggan MJ, Ruebner M, Salfinger S, Scott CL, Shah M, Steed H, Stewart CJ, Subramanian D, Sung S, Tang K, Timpson P, Ward RL, Wiedenhoefer R, Thorne H, Cohen PA, Crowe P, Fasching PA, Gronwald J, Hawkins NJ, Høgdall E, Huntsman DG, James PA, Karlan BY, Kelemen LE, Kommoss S, Konecny GE, Modugno F, Park SK, Staebler A, Sundfeldt K, Wu AH, Talhouk A, Pharoah PD, Anderson L, DeFazio A, Köbel M, Friedlander ML, Ramus SJ. Gene-Expression Profiling of Mucinous Ovarian Tumors and Comparison with Upper and Lower Gastrointestinal Tumors Identifies Markers Associated with Adverse Outcomes. Clin Cancer Res 2022; 28:5383-5395. [PMID: 36222710 PMCID: PMC9751776 DOI: 10.1158/1078-0432.ccr-22-1206] [Show More Authors] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Advanced-stage mucinous ovarian carcinoma (MOC) has poor chemotherapy response and prognosis and lacks biomarkers to aid stage I adjuvant treatment. Differentiating primary MOC from gastrointestinal (GI) metastases to the ovary is also challenging due to phenotypic similarities. Clinicopathologic and gene-expression data were analyzed to identify prognostic and diagnostic features. EXPERIMENTAL DESIGN Discovery analyses selected 19 genes with prognostic/diagnostic potential. Validation was performed through the Ovarian Tumor Tissue Analysis consortium and GI cancer biobanks comprising 604 patients with MOC (n = 333), mucinous borderline ovarian tumors (MBOT, n = 151), and upper GI (n = 65) and lower GI tumors (n = 55). RESULTS Infiltrative pattern of invasion was associated with decreased overall survival (OS) within 2 years from diagnosis, compared with expansile pattern in stage I MOC [hazard ratio (HR), 2.77; 95% confidence interval (CI), 1.04-7.41, P = 0.042]. Increased expression of THBS2 and TAGLN was associated with shorter OS in MOC patients (HR, 1.25; 95% CI, 1.04-1.51, P = 0.016) and (HR, 1.21; 95% CI, 1.01-1.45, P = 0.043), respectively. ERBB2 (HER2) amplification or high mRNA expression was evident in 64 of 243 (26%) of MOCs, but only 8 of 243 (3%) were also infiltrative (4/39, 10%) or stage III/IV (4/31, 13%). CONCLUSIONS An infiltrative growth pattern infers poor prognosis within 2 years from diagnosis and may help select stage I patients for adjuvant therapy. High expression of THBS2 and TAGLN in MOC confers an adverse prognosis and is upregulated in the infiltrative subtype, which warrants further investigation. Anti-HER2 therapy should be investigated in a subset of patients. MOC samples clustered with upper GI, yet markers to differentiate these entities remain elusive, suggesting similar underlying biology and shared treatment strategies.
Collapse
Affiliation(s)
- Nicola S. Meagher
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Kylie L. Gorringe
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Wakefield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Adelyn Bolithon
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Bioinformatics Unit, Children's Medical Research Institute, Westmead, Sydney, Australia
| | - Derek S. Chiu
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Michael S. Anglesio
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kylie-Ann Mallitt
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Centre for Big Data Research in Health, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Jennifer A. Doherty
- Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Holly R. Harris
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Joellen M. Schildkraut
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Andrew Berchuck
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Kara L. Cushing-Haugen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ksenia Chezar
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Angela Chou
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Adeline Tan
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, Crawley, Western Australia, Australia
- Western Women's Pathology, Western Diagnostic Pathology, Wembley, Western Australia, Australia
| | - Jennifer Alsop
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Ellen Barlow
- Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, New South Wales, Australia
| | - Matthias W. Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jessica Boros
- The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - David D.L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Alison H. Brand
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Dane Cheasley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Joshua Cohen
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Esther Elishaev
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander Universität Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Rhonda Farrell
- The University of Sydney, Sydney, New South Wales, Australia
- Prince of Wales Private Hospital, Randwick, New South Wales, Australia
| | - Anna Fischer
- Institute of Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Zhuxuan Fu
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania
| | - Blake Gilks
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony J. Gill
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | | | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcel Grube
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Paul R. Harnett
- The University of Sydney, Sydney, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Arndt Hartmann
- Institute of Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Anusha Hettiaratchi
- The Health Precincts Biobank (formerly the Health Science Alliance Biobank), UNSW Biospecimen Services, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Claus K. Høgdall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Department of Genetics and Pathology, University of Zielona Góra, Zielona Góra, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | | | - Catherine J. Kennedy
- The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kayla Klett
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | - Tiffany Lai
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Angela Laslavic
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jenny Lester
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Yee Leung
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, Crawley, Western Australia, Australia
- Department of Gynaecological Oncology, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
- Australia New Zealand Gynaecological Oncology Group, Camperdown, New South Wales, Australia
| | - Na Li
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Winston Liauw
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Cancer Care Centre, St George Hospital, Sydney, New South Wales, Australia
| | - Belle W.X. Lim
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Anna Linder
- Department of Obstetrics and Gynecology, Inst of Clinical Science, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Sakshi Mahale
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Constantina Mateoiu
- Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Simone McInerny
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Janusz Menkiszak
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland
| | - Parham Minoo
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Suzana Mittelstadt
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - David Morris
- St George and Sutherland Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Sandra Orsulic
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Sang-Yoon Park
- Center for Gynecologic Cancer, National Cancer Center Institute for Cancer Control, Goyang, Republic of Korea
| | - Celeste Leigh Pearce
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - John V. Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Malcolm C. Pike
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Carmel M. Quinn
- The Health Precincts Biobank (formerly the Health Science Alliance Biobank), UNSW Biospecimen Services, Mark Wainwright Analytical Centre, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Ganendra Raj Mohan
- Department of Gynaecological Oncology, King Edward Memorial Hospital, Subiaco, Western Australia, Australia
- Department of Gynaecological Oncology, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
- School of Medicine, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Marjorie J. Riggan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Stuart Salfinger
- Department of Gynaecological Oncology, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Clare L. Scott
- Sir Peter MacCallum Department of Medical Oncology, The University of Melbourne, Parkville, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Helen Steed
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
- Section of Gynecologic Oncology Surgery, North Zone, Alberta Health Services, Edmonton, Alberta, Canada
| | - Colin J.R. Stewart
- School for Women's and Infants' Health, University of Western Australia, Perth, Western Australia, Australia
| | | | - Soseul Sung
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Katrina Tang
- Department of Anatomical Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Paul Timpson
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Robyn L. Ward
- The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekka Wiedenhoefer
- Institute of Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Heather Thorne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Paul A. Cohen
- Division of Obstetrics and Gynaecology, Medical School, University of Western Australia, Crawley, Western Australia, Australia
- Department of Gynaecological Oncology, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
| | - Philip Crowe
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Department of Surgery, Prince of Wales Private Hospital, Randwick, New South Wales, Australia
| | - Peter A. Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Nicholas J. Hawkins
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
| | - Estrid Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David G. Huntsman
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Paul A. James
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Beth Y. Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Linda E. Kelemen
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Stefan Kommoss
- Department of Women's Health, Tübingen University Hospital, Tübingen, Germany
| | - Gottfried E. Konecny
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, California
| | - Francesmary Modugno
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania
- Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, Pennsylvania
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sue K. Park
- Cancer Research Institute, Seoul National University, Seoul, Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Annette Staebler
- Institute of Pathology and Neuropathology, Tübingen University Hospital, Tübingen, Germany
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Inst of Clinical Science, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anna H. Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Aline Talhouk
- British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, BC Cancer, and Vancouver General Hospital, Vancouver, British Columbia, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul D.P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Lyndal Anderson
- The University of Sydney, Sydney, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Anna DeFazio
- The University of Sydney, Sydney, New South Wales, Australia
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales, Australia
- The Daffodil Centre, a joint venture with Cancer Council NSW, The University of Sydney, Sydney, New South Wales, Australia
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, Alberta, Canada
| | - Michael L. Friedlander
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Gynaecological Cancer Centre, Royal Hospital for Women, Sydney, New South Wales, Australia
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Susan J. Ramus
- School of Clinical Medicine, Faculty of Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Kurnit KC, Frumovitz M. Primary mucinous ovarian cancer: options for surgery and chemotherapy. Int J Gynecol Cancer 2022; 32:1455-1462. [PMID: 36229081 DOI: 10.1136/ijgc-2022-003806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Primary mucinous ovarian cancer is a rare type of epithelial ovarian cancer. In this comprehensive review we discuss management recommendations for the treatment of mucinous ovarian cancer. Although most tumors are stage I at diagnosis, 15-20% are advanced stage at diagnosis. Traditionally, patients with primary mucinous ovarian cancer have been treated similarly to those with the more common serous ovarian cancer. However, recent studies have shown that mucinous ovarian cancer is very different from other types of epithelial ovarian cancer. Primary mucinous ovarian cancer is less likely to spread to lymph nodes or the upper abdomen and more likely to affect younger women, who may desire fertility-sparing therapies. Surgical management of mucinous ovarian cancer mirrors surgical management of other types of epithelial ovarian cancer and includes a bilateral salpingo-oophorectomy and total hysterectomy. When staging is indicated, it should include pelvic washing, omentectomy, and peritoneal biopsies; lymph node evaluation should be considered in patients with infiltrative tumors. The appendix should be routinely evaluated intra-operatively, but an appendectomy may be omitted if the appendix appears grossly normal. Fertility preservation can be considered in patients with gross disease confined to one ovary and a normal-appearing contralateral ovary. Patients with recurrent platinum-sensitive disease whose disease distribution suggests a high likelihood of complete gross resection may be candidates for secondary debulking. Primary mucinous ovarian cancer seems to be resistant to standard platinum-and-taxane regimens used frequently for other types of ovarian cancer. Gastrointestinal cancer regimens are another option; these include 5-fluorouracil and oxaliplatin, or capecitabine and oxaliplatin. Data on heated intra-peritoneal chemotherapy (HIPEC) for mucinous ovarian cancer are scarce, but HIPEC may be worth considering. For patients with recurrence or progression on first-line chemotherapy, we advocate enrollment in a clinical trial if one is available. For this reason, it may be beneficial to perform molecular testing in all patients with recurrent or progressive mucinous ovarian cancer.
Collapse
Affiliation(s)
- Katherine C Kurnit
- Department of Obstetrics and Gynecology, University of Chicago Medicine, Chicago, Illinois, USA
| | - Michael Frumovitz
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
31
|
Colic E, Patel PU, Kent OA. Aberrant MAPK Signaling Offers Therapeutic Potential for Treatment of Ovarian Carcinoma. Onco Targets Ther 2022; 15:1331-1346. [PMID: 36388156 PMCID: PMC9645123 DOI: 10.2147/ott.s361512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/01/2022] [Indexed: 08/22/2023] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy worldwide due to lack of effective screening, vague early symptoms, poor description of biomarkers, and absence of effective treatment regimes. Epithelial ovarian carcinoma (EOC) is categorized into five distinct disease subtypes which collectively account for ~90% of ovarian carcinomas. Most women present at advanced stages contributing to a poor overall 5-year survival rate. Standard treatment for EOC is cytoreductive surgery and platinum-based chemotherapy; however, most patients suffer from recurrence and platinum-resistant disease, which highlights an urgent need for targeted therapy. The high frequency of molecular alterations affecting gain-of-function signaling through the RAS mitogen-activated protein kinase (MAPK) pathway in EOC has prompted pre-clinical and clinical efforts toward research into the effectiveness of MAPK pathway inhibition as a second-line treatment. The RAS/MAPK pathway is a highly conserved signal transduction cascade, often disrupted in cancer, that regulates tumorigenic phenotypes including cellular proliferation, survival, migration, apoptosis, and differentiation. Herein, the role of the MAPK pathway in EOC with emphasis on targetability of the pathway is described. Pre-clinical and clinical efforts to target MAPK signaling in EOC have identified several MAPK pathway inhibitors that offer efficacious potential for monotherapy and in combination with other compounds. Thus, inhibition of the RAS/MAPK pathway is emerging as a tractable strategy for treatment of ovarian cancer that may permit development of personalized therapy and improved prognosis for women challenged by this disease.
Collapse
Affiliation(s)
- Eva Colic
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Preya U Patel
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Oliver A Kent
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Hamdani SAM, Azhar M, Wahab A, Yasmeen T, Siddiqui N. Evaluation of Outcomes of Mucinous Ovarian Cancer Treated at a Tertiary Care Cancer Hospital in Pakistan. South Asian J Cancer 2022; 12:81-86. [PMID: 36860587 PMCID: PMC9970748 DOI: 10.1055/s-0042-1755582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Syed Abdul Mannan HamdaniObjective To evaluate the clinicopathological features and survival outcomes of mucinous ovarian cancer (MOC) patients in an Asian population. Study Design Descriptive observational study. Place and Duration of Study Shaukat Khanum Memorial Cancer Hospital, Lahore, Pakistan, from January 2001 to December 2016. Methods Data of MOC were evaluated for demographics, tumor stage, clinical characteristics, tumor markers, treatment modalities, and outcomes from electronic Hospital Information System. Results Nine-hundred patients with primary ovarian cancer were reviewed, out of which 94 patients (10.4%) had MOC. The median age was 36 ± 12.4 years. The most common presentation was abdominal distension 51 (54.3%), while the rest presented with abdominal pain and irregular menstruation. Using FIGO (The International Federation of Gynecology and Obstetrics) staging, 72 (76.6%) had stage I, 3 (3.2%) stage II, stage III in 12 (12.8%), and 7 (7.4%) had stage IV disease. The majority of patients 75 (79.8%) had early-stage (stage I/II), while 19 (20.2%) presented with advanced-stage (III & IV). The median follow-up duration was 52 months (range 1-199 months). Among patients with early-stage (I&II), 3- and 5-year progression-free survival (PFS) was 95%, while for advanced stage (III&IV), PFS was 16% and 8%, respectively. The overall survival (OS) in early-stage I&II was 97%, while for advanced stages III & IV, the OS was 26%. Conclusion MOC is a challenging and rare subtype of ovarian cancer requiring special attention and recognition. Most patients treated at our center presented with early stages and had excellent outcomes, while advanced-stage disease had dismal results.
Collapse
Affiliation(s)
- Syed Abdul Mannan Hamdani
- Department of Medical Oncology, Shaukat Khanum Cancer Hospital, Lahore, Pakistan,Address for correspondence Syed Abdul Mannan Hamdani, MBBS, FCPS Department of Medical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Centre7A, Khayaban-e-Firdousi, Block R3 Block R 3 M.A Johar Town, LahorePunjab
| | - Musa Azhar
- Department of Medical Oncology, Shaukat Khanum Cancer Hospital, Lahore, Pakistan
| | - Abdul Wahab
- Department of Medical Oncology, Shaukat Khanum Cancer Hospital, Lahore, Pakistan
| | - Tahira Yasmeen
- Department of Medical Oncology, Shaukat Khanum Cancer Hospital, Lahore, Pakistan
| | - Neelam Siddiqui
- Department of Medical Oncology, Shaukat Khanum Cancer Hospital, Lahore, Pakistan
| |
Collapse
|
33
|
Genomic and TCR profiling data reveal the distinct molecular traits in epithelial ovarian cancer histotypes. Oncogene 2022; 41:3093-3103. [PMID: 35468938 DOI: 10.1038/s41388-022-02277-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 11/08/2022]
Abstract
Epithelial ovarian cancer (EOC) is classified into five major histotypes: high-grade serous (HGSOC), low-grade serous (LGSOC), clear cell (CCOC), endometrioid (ENOC), and mucinous (MOC). However, the landscape of molecular and immunological alterations in these histotypes, especially LGSOC, CCOC, ENOC, and MOC, is largely uncharacterized. We collected 101 treatment-naive EOC patients. The resected tumor tissues and paired preoperative peripheral blood samples were collected and subjected to target sequencing of 1021 cancer-associated genes and T cell repertoire sequencing. Distinct characteristics of mutations were identified among the five histotypes. Furthermore, tumor mutation burden (TMB) was found to be higher in CCOC and ENOC, but lower in LGSOC and HGSOC. Alterations associated with DNA damage repair (DDR) pathways and homologous recombination deficiencies (HRD) were prevalent in five histotypes. CCOC demonstrated increased level of T cell clonality compared with HSGOC. Interestingly, the proportion of the 100 most common T cell clones was associated with TMB and tumor neoantigen burden in CCOC, highlighting more sensitive anti-tumor responses in this histotype, which was also evidenced by the enhanced convergent recombination of T cell clones. These findings shed light on the molecular traits of genomic alteration and T cell repertoire in the five major EOC histotypes and may help optimize clinical management of EOC with different histotypes.
Collapse
|
34
|
Patient-derived tumor models are attractive tools to repurpose drugs for ovarian cancer treatment: Pre-clinical updates. Oncotarget 2022; 13:553-575. [PMID: 35359749 PMCID: PMC8959092 DOI: 10.18632/oncotarget.28220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Despite advances in understanding of ovarian cancer biology, the progress in translation of research findings into new therapies is still slow. It is associated in part with limitations of commonly used cancer models such as cell lines and genetically engineered mouse models that lack proper representation of diversity and complexity of actual human tumors. In addition, the development of de novo anticancer drugs is a lengthy and expensive process. A promising alternative to new drug development is repurposing existing FDA-approved drugs without primary oncological purpose. These approved agents have known pharmacokinetics, pharmacodynamics, and toxicology and could be approved as anticancer drugs quicker and at lower cost. To successfully translate repurposed drugs to clinical application, an intermediate step of pre-clinical animal studies is required. To address challenges associated with reliability of tumor models for pre-clinical studies, there has been an increase in development of patient-derived xenografts (PDXs), which retain key characteristics of the original patient’s tumor, including histologic, biologic, and genetic features. The expansion and utilization of clinically and molecularly annotated PDX models derived from different ovarian cancer subtypes could substantially aid development of new therapies or rapid approval of repurposed drugs to improve treatment options for ovarian cancer patients.
Collapse
|
35
|
Chao WR, Lee MY, Lee YJ, Sheu GT, Han CP. Comparing the 2017 ASCO/CAP guideline for gastroesophageal adenocarcinoma surgical specimen to the 2018 ASCO/CAP guideline for breast cancer in assessing the HER2 status in primary mucinous ovarian carcinoma. Virchows Arch 2022; 480:1023-1030. [DOI: 10.1007/s00428-022-03285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/09/2022] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
36
|
The Evolution of Ovarian Carcinoma Subclassification. Cancers (Basel) 2022; 14:cancers14020416. [PMID: 35053578 PMCID: PMC8774015 DOI: 10.3390/cancers14020416] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Historically, cancers presenting with their main tumor mass in the ovary have been classified as ovarian carcinomas (a concise term for epithelial ovarian cancer) and treated with a one-size-fits-all approach. Over the last two decades, a growing molecular understanding established that ovarian carcinomas consist of several distinct histologic types, which practically represent different diseases. Further research is now delineating several molecular subtypes within each histotype. This histotype/molecular subtype subclassification provides a framework of grouping tumors based on molecular similarities for research, clinical trial inclusion and future patient management. Abstract The phenotypically informed histotype classification remains the mainstay of ovarian carcinoma subclassification. Histotypes of ovarian epithelial neoplasms have evolved with each edition of the WHO Classification of Female Genital Tumours. The current fifth edition (2020) lists five principal histotypes: high-grade serous carcinoma (HGSC), low-grade serous carcinoma (LGSC), mucinous carcinoma (MC), endometrioid carcinoma (EC) and clear cell carcinoma (CCC). Since histotypes arise from different cells of origin, cell lineage-specific diagnostic immunohistochemical markers and histotype-specific oncogenic alterations can confirm the morphological diagnosis. A four-marker immunohistochemical panel (WT1/p53/napsin A/PR) can distinguish the five principal histotypes with high accuracy, and additional immunohistochemical markers can be used depending on the diagnostic considerations. Histotypes are further stratified into molecular subtypes and assessed with predictive biomarker tests. HGSCs have recently been subclassified based on mechanisms of chromosomal instability, mRNA expression profiles or individual candidate biomarkers. ECs are composed of the same molecular subtypes (POLE-mutated/mismatch repair-deficient/no specific molecular profile/p53-abnormal) with the same prognostic stratification as their endometrial counterparts. Although methylation analyses and gene expression and sequencing showed at least two clusters, the molecular subtypes of CCCs remain largely elusive to date. Mutational and immunohistochemical data on LGSC have suggested five molecular subtypes with prognostic differences. While our understanding of the molecular composition of ovarian carcinomas has significantly advanced and continues to evolve, the need for treatment options suitable for these alterations is becoming more obvious. Further preclinical studies using histotype-defined and molecular subtype-characterized model systems are needed to expand the therapeutic spectrum for women diagnosed with ovarian carcinomas.
Collapse
|
37
|
Abstract
OPINION STATEMENT Complete surgical resection is the gold-standard treatment for all mucinous ovarian carcinoma (MOC) cases. Advanced-stage disease is often additionally treated with adjuvant platinum-based chemotherapy; however, these were developed largely against the more common high-grade serous ovarian carcinoma and have low efficacy in treating MOC. More effective therapeutics are needed to treat late-stage and platinum-resistant tumors; however, traditional drug development and clinical trial paradigms are a major challenge for such a rare disease. New approaches to support evidence-based treatment decisions are required, such as registry trials. Recently, a number of targeted therapies have emerged as viable treatment options in other cancer types, and for some of these, the actionable tumor mutations are also seen in MOC. Thus, a promising alternative approach to provide benefit to current MOC patients involves DNA sequencing to identify a tumor's unique mutational profile and allow matching to available targeted agents. Such a pipeline can involve special approval to administer a drug already approved for clinical use in other cancer types to a given MOC patient, or their inclusion in existing ongoing clinical trials, such as basket trials encompassing patients with tumors from a range of anatomical sites. Implementation of such personalized medicine can be boosted using improved pre-clinical models, where through a clinical research collaboration a patient's own tumor cells can be used to a test a range of putative therapies prior to administration in the clinic, enabling selection of the available pharmaceutical/s that give any given patient the best possible chance of cancer remission.
Collapse
|
38
|
Youssef A, Haskali MB, Gorringe KL. The Protein Landscape of Mucinous Ovarian Cancer: Towards a Theranostic. Cancers (Basel) 2021; 13:5596. [PMID: 34830751 PMCID: PMC8616050 DOI: 10.3390/cancers13225596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/20/2023] Open
Abstract
MOC is a rare histotype of epithelial ovarian cancer, and current management options are inadequate for the treatment of late stage or recurrent disease. A shift towards personalised medicines in ovarian cancer is being observed, with trials targeting specific molecular pathways, however, MOC lags due to its rarity. Theranostics is a rapidly evolving category of personalised medicine, encompassing both a diagnostic and therapeutic approach by recognising targets that are expressed highly in tumour tissue in order to deliver a therapeutic payload. The present review evaluates the protein landscape of MOC in recent immunohistochemical- and proteomic-based research, aiming to identify potential candidates for theranostic application. Fourteen proteins were selected based on cell membrane localisation: HER2, EGFR, FOLR1, RAC1, GPR158, CEACAM6, MUC16, PD-L1, NHE1, CEACAM5, MUC1, ACE2, GP2, and PTPRH. Optimal proteins to target using theranostic agents must exhibit high membrane expression on cancerous tissue with low expression on healthy tissue to afford improved disease outcomes with minimal off-target effects and toxicities. We provide guidelines to consider in the selection of a theranostic target for MOC and suggest future directions in evaluating the results of this review.
Collapse
Affiliation(s)
- Arkan Youssef
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Mohammad B. Haskali
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kylie L. Gorringe
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
39
|
The cell of cancer origin provides the most reliable roadmap to its diagnosis, prognosis (biology) and therapy. Med Hypotheses 2021; 157:110704. [PMID: 34688214 DOI: 10.1016/j.mehy.2021.110704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022]
Abstract
Cancers arise from single transformed cells from virtually every organ of the body, divide in a relatively uncontrolled manner, and metastasize widely. A search for a "magic bullet" to precisely diagnose, characterize, and ultimately treat cancer has largely failed because cancer cells do not differ significantly from their organ-specific cells of origin. Instead of searching for genomic, epigenetic, transcriptional, and translational differences between cancers and their cells of origin, we should paradoxically focus on what cancer cells have in common with their untransformed cells of origin. This redirected search will lead to improved diagnostic and therapeutic strategies where therapeutic index considerations and drug-limiting toxicities can largely be circumvented. We cite three cancer examples that illustrate this paradigm-shifting strategy: pseudomyxoma peritonei (PP), metastasis of unknown origin (cancers of unknown primary) (MUO), and cancers that arise from potentially dispensable organs (CAD). In each of these examples, the cell of cancer origin still provides the most reliable road map to its diagnosis, prognosis (biology), and therapy.
Collapse
|
40
|
Bartoletti M, Musacchio L, Giannone G, Tuninetti V, Bergamini A, Scambia G, Lorusso D, Valabrega G, Mangili G, Puglisi F, Pignata S. Emerging molecular alterations leading to histology-specific targeted therapies in ovarian cancer beyond PARP inhibitors. Cancer Treat Rev 2021; 101:102298. [PMID: 34634660 DOI: 10.1016/j.ctrv.2021.102298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 01/12/2023]
Abstract
After more than 30 years of a one-size-fits-all approach in the management of advanced ovarian cancer, in 2018 the SOLO1 trial results have introduced a new era of personalized medicine. A deeper knowledge of ovarian cancer biology and the development of new drugs targeting specific molecular pathways have led to biomarker-driven phase 3 trials with practice changing results. Thereafter, platinum-based combinations are no longer the only therapeutic options available in first line setting and poly-ADP ribose polymerase inhibitors maintenance therapy has become the mainstay in patients with tumor harboring a homologous recombination defect. However, most of the recent therapeutic breakthroughs regard high grade serous carcinoma, the most frequent ovarian cancer subtype, and only few improvements have occurred in the management of less common histotypes. Moving towards the next challenges, we aimed to investigate and review new potential molecular targets in ovarian cancer, according to histotype, starting from promising molecular drivers and matched drugs that have been investigated in early and late-stage clinical trials or conceptualized in preclinical studies.
Collapse
Affiliation(s)
- M Bartoletti
- Department of Medicine (DAME), University of Udine, Udine, Italy; Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - L Musacchio
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - G Giannone
- Candiolo Cancer Institute, FPO- IRCCS, Candiolo (TO), Italy; Department of Oncology, University of Turin, Torino, Piemonte, Italy
| | - V Tuninetti
- Candiolo Cancer Institute, FPO- IRCCS, Candiolo (TO), Italy; Department of Oncology, University of Turin, Torino, Piemonte, Italy
| | - A Bergamini
- Department of Obstetrics and Gynecology, IRCCS, San Raffaele Hospital, Milan, Italy
| | - G Scambia
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Life Science and Public Health, Catholic University of Sacred Heart Largo Agostino Gemelli, Rome, Italy
| | - D Lorusso
- Department of Women and Child Health, Division of Gynecologic Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Department of Life Science and Public Health, Catholic University of Sacred Heart Largo Agostino Gemelli, Rome, Italy
| | - G Valabrega
- Candiolo Cancer Institute, FPO- IRCCS, Candiolo (TO), Italy; Department of Oncology, University of Turin, Torino, Piemonte, Italy
| | - G Mangili
- Department of Obstetrics and Gynecology, IRCCS, San Raffaele Hospital, Milan, Italy
| | - F Puglisi
- Department of Medicine (DAME), University of Udine, Udine, Italy; Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano (PN), Italy
| | - S Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy.
| |
Collapse
|
41
|
Barnes BM, Nelson L, Tighe A, Burghel GJ, Lin IH, Desai S, McGrail JC, Morgan RD, Taylor SS. Distinct transcriptional programs stratify ovarian cancer cell lines into the five major histological subtypes. Genome Med 2021; 13:140. [PMID: 34470661 PMCID: PMC8408985 DOI: 10.1186/s13073-021-00952-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (OC) is a heterogenous disease consisting of five major histologically distinct subtypes: high-grade serous (HGSOC), low-grade serous (LGSOC), endometrioid (ENOC), clear cell (CCOC) and mucinous (MOC). Although HGSOC is the most prevalent subtype, representing 70-80% of cases, a 2013 landmark study by Domcke et al. found that the most frequently used OC cell lines are not molecularly representative of this subtype. This raises the question, if not HGSOC, from which subtype do these cell lines derive? Indeed, non-HGSOC subtypes often respond poorly to chemotherapy; therefore, representative models are imperative for developing new targeted therapeutics. METHODS Non-negative matrix factorisation (NMF) was applied to transcriptomic data from 44 OC cell lines in the Cancer Cell Line Encyclopedia, assessing the quality of clustering into 2-10 groups. Epithelial OC subtypes were assigned to cell lines optimally clustered into five transcriptionally distinct classes, confirmed by integration with subtype-specific mutations. A transcriptional subtype classifier was then developed by trialling three machine learning algorithms using subtype-specific metagenes defined by NMF. The ability of classifiers to predict subtype was tested using RNA sequencing of a living biobank of patient-derived OC models. RESULTS Application of NMF optimally clustered the 44 cell lines into five transcriptionally distinct groups. Close inspection of orthogonal datasets revealed this five-cluster delineation corresponds to the five major OC subtypes. This NMF-based classification validates the Domcke et al. analysis, in identifying lines most representative of HGSOC, and additionally identifies models representing the four other subtypes. However, NMF of the cell lines into two clusters did not align with the dualistic model of OC and suggests this classification is an oversimplification. Subtype designation of patient-derived models by a random forest transcriptional classifier aligned with prior diagnosis in 76% of unambiguous cases. In cases where there was disagreement, this often indicated potential alternative diagnosis, supported by a review of histological, molecular and clinical features. CONCLUSIONS This robust classification informs the selection of the most appropriate models for all five histotypes. Following further refinement on larger training cohorts, the transcriptional classification may represent a useful tool to support the classification of new model systems of OC subtypes.
Collapse
Affiliation(s)
- Bethany M Barnes
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Louisa Nelson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK
| | - I-Hsuan Lin
- Bioinformatics Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Sudha Desai
- Department of Histopathology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Joanne C McGrail
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
| | - Robert D Morgan
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Rd, Manchester, M20 4BX, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Oglesby Cancer Research Building, 555 Wilmslow Road, Manchester, M20 4GJ, UK.
| |
Collapse
|
42
|
Xu T, Vorobyeva A, Schulga A, Konovalova E, Vorontsova O, Ding H, Gräslund T, Tashireva LA, Orlova A, Tolmachev V, Deyev SM. Imaging-Guided Therapy Simultaneously Targeting HER2 and EpCAM with Trastuzumab and EpCAM-Directed Toxin Provides Additive Effect in Ovarian Cancer Model. Cancers (Basel) 2021; 13:3939. [PMID: 34439094 PMCID: PMC8393281 DOI: 10.3390/cancers13163939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 12/29/2022] Open
Abstract
Efficient treatment of disseminated ovarian cancer (OC) is challenging due to its heterogeneity and chemoresistance. Overexpression of human epidermal growth factor receptor 2 (HER2) and epithelial cell adhesion molecule (EpCAM) in approx. 30% and 70% of ovarian cancers, respectively, allows for co-targeted treatment. The clinical efficacy of the monoclonal antibody trastuzumab in patients with HER2-positive breast, gastric and gastroesophageal cancers makes it readily available as the HER2-targeting component. As the EpCAM-targeting component, we investigated the designed ankyrin repeat protein (DARPin) Ec1 fused to a truncated variant of Pseudomonas exotoxin A with reduced immunogenicity and low general toxicity (LoPE). Ec1-LoPE was radiolabeled, evaluated in ovarian cancer cells in vitro and its biodistribution and tumor-targeting properties were studied in vivo. The therapeutic efficacy of Ec1-LoPE alone and in combination with trastuzumab was studied in mice bearing EpCAM- and HER2-expressing SKOV3 xenografts. SPECT/CT imaging enabled visualization of EpCAM and HER2 expression in the tumors. Co-treatment using Ec1-LoPE and trastuzumab was more effective at reducing tumor growth and prolonged the median survival of mice compared with mice in the control and monotherapy groups. Repeated administration of Ec1-LoPE was well tolerated without signs of hepatic or kidney toxicity. Co-treatment with trastuzumab and Ec1-LoPE might be a potential therapeutic strategy for HER2- and EpCAM-positive OC.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Elena Konovalova
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Olga Vorontsova
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
| | - Haozhong Ding
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (H.D.); (T.G.)
| | - Torbjörn Gräslund
- Department of Protein Science, KTH Royal Institute of Technology, Roslagstullsbacken 21, 114 17 Stockholm, Sweden; (H.D.); (T.G.)
| | - Liubov A. Tashireva
- Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Anna Orlova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 751 23 Uppsala, Sweden
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.X.); (O.V.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
| | - Sergey M. Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634 050 Tomsk, Russia; (A.S.); (A.O.); (S.M.D.)
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
- Bio-Nanophotonic Lab, Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University ‘MEPhI’, 115409 Moscow, Russia
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
43
|
Mori S, Gotoh O, Kiyotani K, Low SK. Genomic alterations in gynecological malignancies: histotype-associated driver mutations, molecular subtyping schemes, and tumorigenic mechanisms. J Hum Genet 2021; 66:853-868. [PMID: 34092788 DOI: 10.1038/s10038-021-00940-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023]
Abstract
There are numerous histological subtypes (histotypes) of gynecological malignancies, with each histotype considered to largely reflect a feature of the "cell of origin," and to be tightly linked with the clinical behavior and biological phenotype of the tumor. The recent advances in massive parallel sequencing technologies have provided a more complete picture of the range of the genomic alterations that can persist within individual tumors, and have highlighted the types and frequencies of driver-gene mutations and molecular subtypes often associated with these histotypes. Several large-scale genomic cohorts, including the Cancer Genome Atlas (TCGA), have been used to characterize the genomic features of a range of gynecological malignancies, including high-grade serous ovarian carcinoma, uterine corpus endometrial carcinoma, uterine cervical carcinoma, and uterine carcinosarcoma. These datasets have also been pivotal in identifying clinically relevant molecular targets and biomarkers, and in the construction of molecular subtyping schemes. In addition, the recent widespread use of clinical sequencing for the more ubiquitous types of gynecological cancer has manifested in a series of large genomic datasets that have allowed the characterization of the genomes, driver mutations, and histotypes of even rare cancer types, with sufficient statistical power. Here, we review the field of gynecological cancer, and seek to describe the genomic features by histotype. We also will demonstrate how these are linked with clinicopathological attributes and highlight the potential tumorigenic mechanisms.
Collapse
Affiliation(s)
- Seiichi Mori
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan.
| | - Osamu Gotoh
- Project for Development of Innovative Research on Cancer Therapeutics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siew Kee Low
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
44
|
Shylasree TS, Richa B, Lavanya G, Gulia S. Molecular Signatures of Gynecological Cancers: Clinicians Perspective. Indian J Surg Oncol 2021; 12:103-110. [PMID: 33994735 PMCID: PMC8119522 DOI: 10.1007/s13193-020-01271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022] Open
Abstract
Large-scale molecular profiling and DNA sequencing has revolutionized cancer research. Precision medicine is a rapidly developing area in cancer care but it is not uniformly applied across different tumor types. Biomarker-based therapy is associated with improved outcomes, both in terms of progression-free survival and overall survival. Comprehensive genomic profiling (CGP) uses next-generation sequencing to analyze the complete coding sequence of hundreds of genes from a small amount of tissue. Genes included in these assays are those associated with cancer development or have diagnostic, prognostic, familial, or therapeutic implications Genomic profiling is emerging as a clinically viable tool to personalize patient's treatment. This article discusses how the insights gained through CGP can impact treatment plan in common gynecological cancers.
Collapse
Affiliation(s)
- TS Shylasree
- Department of Gynecological Oncology, Tata Memorial Hospital, Homibaba National Institute, Dr. E Borges Road, Parel, Mumbai, 400 012 India
| | - Bansal Richa
- Department of Gynecological Oncology, Tata Memorial Hospital, Homibaba National Institute, Dr. E Borges Road, Parel, Mumbai, 400 012 India
| | - Gurram Lavanya
- Department of Gynecological Oncology, Tata Memorial Hospital, Homibaba National Institute, Dr. E Borges Road, Parel, Mumbai, 400 012 India
| | - Seema Gulia
- Department of Gynecological Oncology, Tata Memorial Hospital, Homibaba National Institute, Dr. E Borges Road, Parel, Mumbai, 400 012 India
| |
Collapse
|
45
|
Dundr P, Singh N, Nožičková B, Němejcová K, Bártů M, Stružinská I. Primary mucinous ovarian tumors vs. ovarian metastases from gastrointestinal tract, pancreas and biliary tree: a review of current problematics. Diagn Pathol 2021; 16:20. [PMID: 33706757 PMCID: PMC7953678 DOI: 10.1186/s13000-021-01079-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
Background Making the distinction between primary mucinous and metastatic ovarian tumors is often difficult, especially in tumors with a primary source from the gastrointestinal tract, pancreas and biliary tree. The aim of the following paper is to provide an overview of the problematics, with a focus on the possibilities of the differential diagnosis at the macroscopic, microscopic and immunohistochemical level. Main body The three main aspects of mucinous ovarian tumors are described in detail, including the comparison of the available diagnostic algorithms based on the evaluation of mostly macroscopic features, characterization of the spectrum of microscopic features, and a detailed analysis of the immunophenotype comparing 20 antibodies with the assessment of their statistical significance for differential diagnosis purposes. Specific features, including Krukenberg tumor and pseudomyxoma peritonei, are also discussed. Conclusion Despite the growing knowledge of the macroscopic and microscopic features of ovarian mucinous tumors and the availability of a wide range of immunohistochemical antibodies useful in this setting, there still remains a group of tumors which cannot be precisely classified without close clinical-pathological cooperation.
Collapse
Affiliation(s)
- Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic.
| | - Naveena Singh
- Department of Cellular Pathology, Barts Health NHS Trust, Queen Mary University of London, London, UK.,Blizard Institute of Core Pathology, Queen Mary University of London, London, UK
| | - Barbora Nožičková
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Michaela Bártů
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Ivana Stružinská
- Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| |
Collapse
|
46
|
Kommoss FKF, Cheasley D, Wakefield MJ, Scott CL, Campbell IG, Gilks CB, Gorringe K. Primary mucinous ovarian neoplasms rarely show germ cell histogenesis. Histopathology 2020; 78:640-642. [PMID: 33151585 DOI: 10.1111/his.14297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Felix K F Kommoss
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Matthew J Wakefield
- Walter and Eliza Hall Institute, Parkville, Australia.,University of Melbourne, Parkville, Australia
| | - Clare L Scott
- Peter MacCallum Cancer Centre, Melbourne, Australia.,Walter and Eliza Hall Institute, Parkville, Australia.,University of Melbourne, Parkville, Australia
| | - Ian G Campbell
- Peter MacCallum Cancer Centre, Melbourne, Australia.,University of Melbourne, Parkville, Australia
| | - C Blake Gilks
- Department of Pathology, Vancouver General Hospital and University of British Columbia, Vancouver, BC, Canada
| | - Kylie Gorringe
- Peter MacCallum Cancer Centre, Melbourne, Australia.,University of Melbourne, Parkville, Australia
| |
Collapse
|
47
|
P53 and PIK3CA Mutations in KRAS/HER2 Negative Ovarian Intestinal-Type Mucinous Carcinoma Associated with Mature Teratoma. Case Rep Obstet Gynecol 2020; 2020:8863610. [PMID: 32774960 PMCID: PMC7396118 DOI: 10.1155/2020/8863610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
Primary ovarian intestinal-type mucinous carcinomas associated with mature teratoma are rare and represent less than 3% of all primary ovarian neoplasms. The molecular profile of these tumors is still controversial. We report here the first case of mucinous ovarian tumor in which mutation of the PIK3CA and P53 genes could be demonstrated by the next generation sequencing technique without KRAS mutation or HER2 amplification. Our data suggest that these mucinous carcinoma variants probably present an extremely complex molecular biology profile that should be known in the future to stratify therapeutic outcomes and potential targeted therapies, particularly in recurrent disease.
Collapse
|
48
|
The Landscape and Therapeutic Implications of Molecular Profiles in Epithelial Ovarian Cancer. J Clin Med 2020; 9:jcm9072239. [PMID: 32679669 PMCID: PMC7408825 DOI: 10.3390/jcm9072239] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian cancer (EOC) affects 43,000 women worldwide every year and has a five-year survival rate of 30%. Mainstay treatment is extensive surgery and chemotherapy. Outcomes could be improved by molecular profiling. We conducted a review of the literature to identify relevant publications on molecular and genetic alterations in EOC. Approximately 15% of all EOCs are due to BRCA1 or BRCA2 mutations. Four histologic subtypes characterized by different mutations have been described: serous, endometrioid, mucinous, and clear-cell. Between 20–30% of high-grade serous EOCs have a BRCA mutation. Tumors with BRCA mutations are unable to repair double-strand DNA breaks, making them more sensitive to platinum-based chemotherapy and to PolyAdenosine Diphosphate-Ribose Polymerase (PARP) inhibitors. Olaparib is a PARP inhibitor with proven efficacy in BRCA-mutated ovarian cancer, but its effectiveness remains to be demonstrated in tumors with a BRCAness (breast cancer) profile (i.e., also including sporadic tumors in patients with deficient DNA repair genes). A universally accepted molecular definition of BRCAness is required to identify optimal theranostic strategies involving PARP inhibitors. Gene expression analyses have led to the identification of four subgroups of high-grade serous EOC: mesenchymal, proliferative, differentiated, and immunoreactive. These subtypes are not mutually exclusive but are correlated with prognosis. They are not yet used in routine clinical practice. A greater understanding of EOC subtypes could improve patient management.
Collapse
|
49
|
Nasioudis D, Latif NA. Reply to "Is there a promising role of HIPEC in patients with advanced mucinous ovarian cancer?" by lavazzo et al. Arch Gynecol Obstet 2020; 303:599-600. [PMID: 32542453 DOI: 10.1007/s00404-020-05647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Dimitrios Nasioudis
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, University of Pennsylvania Health System, 3400 Spruce Street, 1 West Gates, Philadelphia, PA, 19104, USA.
| | - Nawar A Latif
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Hospital of the University of Pennsylvania, University of Pennsylvania Health System, 3400 Spruce Street, 1 West Gates, Philadelphia, PA, 19104, USA
| |
Collapse
|
50
|
Kirchhoff E, Petru E, Tamussino K, Jahn SW, Regitnig P. Das muzinöse Ovarialkarzinom: Eine eigene Entität. Geburtshilfe Frauenheilkd 2020. [DOI: 10.1055/s-0039-3403410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- E Kirchhoff
- Universitätsklinik für Frauenheilkunde und Geburtshilfe, Medizinische Universität Graz
| | - E Petru
- Universitätsklinik für Frauenheilkunde und Geburtshilfe, Medizinische Universität Graz
| | - K Tamussino
- Universitätsklinik für Frauenheilkunde und Geburtshilfe, Medizinische Universität Graz
| | - S W Jahn
- Institut für Pathologie, Medizinische Universität Graz
| | - P Regitnig
- Institut für Pathologie, Medizinische Universität Graz
| |
Collapse
|