1
|
Cortes LR, Forger NG. DNA methylation and demethylation shape sexual differentiation of neurochemical phenotype. Horm Behav 2023; 151:105349. [PMID: 37001316 PMCID: PMC10133097 DOI: 10.1016/j.yhbeh.2023.105349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 04/28/2023]
Abstract
Some of the best-studied neural sex differences depend on differential cell death in males and females, but other sex differences persist even if cell death is prevented. These include sex differences in neurochemical phenotype (i.e., stable patterns of gene expression). Work in our laboratory over the last several years has tested the hypothesis that sex differences in DNA methylation early in life underlie sexual differentiation of neuronal phenotype. We have shown that 1) expression of enzymes that place or remove DNA methylation marks is greatest during the first week of life in the mouse brain and overlaps with the perinatal critical period of sexual differentiation; 2) a transient inhibition of DNA methylation during neonatal life abolishes several sex differences in cell phenotype in the mouse hypothalamus; 3) both DNA methylation and de-methylation contribute to the development of neural sex differences; and 4) the effects of DNA methylation and de-methylation are brain region- and cell type-specific.
Collapse
Affiliation(s)
- L R Cortes
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, USA
| | - N G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Adult Neural Plasticity in Naked Mole-Rats: Implications of Fossoriality, Longevity and Sociality on the Brain's Capacity for Change. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:105-135. [PMID: 34424514 DOI: 10.1007/978-3-030-65943-1_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Naked mole-rats (Heterocephalus glaber) are small African rodents that have many unique behavioral and physiological adaptations well-suited for testing hypotheses about mammalian neural plasticity. In this chapter, we focus on three features of naked mole-rat biology and how they impact neural plasticity in this species: (1) their fossorial lifestyle, (2) their extreme longevity with a lack of demonstrable senescence, and (3) their unusual social structure. Critically, each of these features requires some degree of biological flexibility. First, their fossorial habitat situates them in an environment with characteristics to which the central nervous system is particularly sensitive (e.g., oxygen content, photoperiod, spatial complexity). Second, their long lifespan requires adaptations to combat senescence and declines in neural functioning. Finally, their extreme reproductive skew and sustained ability for release from reproductive suppression indicates remarkable neural sensitivity to the sociosexual environment that is distinct from chronological age. These three features of naked mole-rat life are not mutually exclusive, but they do each offer unique considerations for the possibilities, constraints, and mechanisms associated with adult neural plasticity.
Collapse
|
3
|
Stewart AN, MacLean SM, Stromberg AJ, Whelan JP, Bailey WM, Gensel JC, Wilson ME. Considerations for Studying Sex as a Biological Variable in Spinal Cord Injury. Front Neurol 2020; 11:802. [PMID: 32849242 PMCID: PMC7419700 DOI: 10.3389/fneur.2020.00802] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
In response to NIH initiatives to investigate sex as a biological variable in preclinical animal studies, researchers have increased their focus on male and female differences in neurotrauma. Inclusion of both sexes when modeling neurotrauma is leading to the identification of novel areas for therapeutic and scientific exploitation. Here, we review the organizational and activational effects of sex hormones on recovery from injury and how these changes impact the long-term health of spinal cord injury (SCI) patients. When determining how sex affects SCI it remains imperative to expand outcomes beyond locomotor recovery and consider other complications plaguing the quality of life of patients with SCI. Interestingly, the SCI field predominately utilizes female rodents for basic science research which contrasts most other male-biased research fields. We discuss the unique caveats this creates to the translatability of preclinical research in the SCI field. We also review current clinical and preclinical data examining sex as biological variable in SCI. Further, we report how technical considerations such as housing, size, care management, and age, confound the interpretation of sex-specific effects in animal studies of SCI. We have uncovered novel findings regarding how age differentially affects mortality and injury-induced anemia in males and females after SCI, and further identified estrus cycle dysfunction in mice after injury. Emerging concepts underlying sexually dimorphic responses to therapy are also discussed. Through a combination of literature review and primary research observations we present a practical guide for considering and incorporating sex as biological variable in preclinical neurotrauma studies.
Collapse
Affiliation(s)
- Andrew N Stewart
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Arnold J Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, United States
| | - Jessica P Whelan
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - William M Bailey
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Melinda E Wilson
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Federighi G, Asteriti S, Cangiano L. Lumbar spinal cord neurons putatively involved in ejaculation are sexually dimorphic in early postnatal mice. J Comp Neurol 2020; 528:624-636. [PMID: 31566721 DOI: 10.1002/cne.24776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023]
Abstract
A crucial role in ejaculation is thought to be played by a population of lumbar spino-thalamic neurons (LSt), which express galanin and other neuropeptides. In rats, these neurons are activated with ejaculation and their lesion selectively abolishes ejaculation but not other mating behaviors. Consistently with their role, in adult rats and humans, LSt neurons are sexually dimorphic, being more numerous in males. Here we examined whether sexual dimorphism arises early in development, using a transgenic mouse line in which the expression of fluorescent protein is driven by the galanin promoter. We focused on postnatal day 4, shortly after a transient perinatal androgen surge in males that could play an organizational role in LSt development. We found a population of brightly fluorescent neurons organized in bilateral columns dorsolateral to the central canal in segments L1-L5, the expected location of the LSt group. Their number was close to that of adult preparations and significantly greater in male than in female siblings (+19%; CI95% : +13% to +27%; p < .01). This was not due to a generalized higher galanin expression in the male since fluorescent L4 DRG neurons, innervating the hindlimbs and lower back, were not significantly dimorphic (-4%; CI95% : -10% to +8%; p = .92). Unexpectedly, we found in cervical segments a population of fluorescent neurons having a location relative to the central canal similar to the LSt. Thus, the LSt group is sexually dimorphic soon after birth. However, it is possible that only a subset of its neurons participate in the control of ejaculation.
Collapse
Affiliation(s)
| | - Sabrina Asteriti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lorenzo Cangiano
- Department of Translational Research, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Cisternas CD, Cortes LR, Golynker I, Castillo-Ruiz A, Forger NG. Neonatal Inhibition of DNA Methylation Disrupts Testosterone-Dependent Masculinization of Neurochemical Phenotype. Endocrinology 2020; 161:5631853. [PMID: 31742329 DOI: 10.1210/endocr/bqz022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
Abstract
Many neural sex differences are differences in the number of neurons of a particular phenotype. For example, male rodents have more calbindin-expressing neurons in the medial preoptic area (mPOA) and bed nucleus of the stria terminalis (BNST), and females have more neurons expressing estrogen receptor alpha (ERα) and kisspeptin in the ventromedial nucleus of the hypothalamus (VMH) and the anteroventral periventricular nucleus (AVPV), respectively. These sex differences depend on neonatal exposure to testosterone, but the underlying molecular mechanisms are unknown. DNA methylation is important for cell phenotype differentiation throughout the developing organism. We hypothesized that testosterone causes sex differences in neurochemical phenotype via changes in DNA methylation, and tested this by inhibiting DNA methylation neonatally in male and female mice, and in females given a masculinizing dose of testosterone. Neonatal testosterone treatment masculinized calbindin, ERα and kisspeptin cell number of females at weaning. Inhibiting DNA methylation with zebularine increased calbindin cell number only in control females, thus eliminating sex differences in calbindin in the mPOA and BNST. Zebularine also reduced the sex difference in ERα cell number in the VMH, in this case by increasing ERα neuron number in males and testosterone-treated females. In contrast, the neonatal inhibition of DNA methylation had no effect on kisspeptin cell number. We conclude that testosterone normally increases the number of calbindin cells and reduces ERα cells in males through orchestrated changes in DNA methylation, contributing to, or causing, the sex differences in both cell types.
Collapse
Affiliation(s)
| | - Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Ilona Golynker
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA
| |
Collapse
|
6
|
Mosley M, Weathington J, Cortes LR, Bruggeman E, Castillo-Ruiz A, Xue B, Forger NG. Neonatal Inhibition of DNA Methylation Alters Cell Phenotype in Sexually Dimorphic Regions of the Mouse Brain. Endocrinology 2017; 158:1838-1848. [PMID: 28398586 PMCID: PMC5460944 DOI: 10.1210/en.2017-00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Many of the best-studied neural sex differences relate to differences in cell number and are due to the hormonal control of developmental cell death. However, several prominent neural sex differences persist even if cell death is eliminated. We hypothesized that these may reflect cell phenotype "decisions" that depend on epigenetic mechanisms, such as DNA methylation. To test this, we treated newborn mice with the DNA methyltransferase (DNMT) inhibitor zebularine, or vehicle, and examined two sexually dimorphic markers at weaning. As expected, control males had more cells immunoreactive for calbindin-D28k (CALB) in the medial preoptic area (mPOA) and fewer cells immunoreactive for estrogen receptor α (ERα) in the ventrolateral portion of the ventromedial nucleus of the hypothalamus (VMHvl) and the mPOA than did females. Neonatal DNMT inhibition markedly increased CALB cell number in both sexes and ERα cell density in males; as a result, the sex differences in ERα in the VMHvl and mPOA were completely eliminated in zebularine-treated animals. Zebularine treatment did not affect developmental cell death or the total density of Nissl-stained cells at weaning. Thus, a neonatal disruption of DNA methylation apparently has long-term effects on the proportion of cells expressing CALB and ERα, and some of these effects are sex specific. We also found that sex differences in CALB in the mPOA and ERα in the VMHvl persist in mice with a neuron-specific depletion of either Dnmt1 or Dnmt3b, indicating that neither DNMT alone is likely to be required for the sexually dimorphic expression of these markers.
Collapse
Affiliation(s)
- Morgan Mosley
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Jill Weathington
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Laura R. Cortes
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Emily Bruggeman
- Department of Biology, Neuroscience Institute and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30302
| | - Alexandra Castillo-Ruiz
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Bingzhong Xue
- Department of Biology, Neuroscience Institute and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30302
| | - Nancy G. Forger
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| |
Collapse
|
7
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
8
|
Abstract
Spinal cord injury (SCI) results not only in motor and sensory deficits but also in autonomic dysfunctions. The disruption of connections between higher brain centers and the spinal cord, or the impaired autonomic nervous system itself, manifests a broad range of autonomic abnormalities. This includes compromised cardiovascular, respiratory, urinary, gastrointestinal, thermoregulatory, and sexual activities. These disabilities evoke potentially life-threatening symptoms that severely interfere with the daily living of those with SCI. In particular, high thoracic or cervical SCI often causes disordered hemodynamics due to deregulated sympathetic outflow. Episodic hypertension associated with autonomic dysreflexia develops as a result of massive sympathetic discharge often triggered by unpleasant visceral or sensory stimuli below the injury level. In the pelvic floor, bladder and urethral dysfunctions are classified according to upper motor neuron versus lower motor neuron injuries; this is dependent on the level of lesion. Most impairments of the lower urinary tract manifest in two interrelated complications: bladder storage and emptying. Inadequate or excessive detrusor and sphincter functions as well as detrusor-sphincter dyssynergia are examples of micturition abnormalities stemming from SCI. Gastrointestinal motility disorders in spinal cord injured-individuals are comprised of gastric dilation, delayed gastric emptying, and diminished propulsive transit along the entire gastrointestinal tract. As a critical consequence of SCI, neurogenic bowel dysfunction exhibits constipation and/or incontinence. Thus, it is essential to recognize neural mechanisms and pathophysiology underlying various complications of autonomic dysfunctions after SCI. This overview provides both vital information for better understanding these disorders and guides to pursue novel therapeutic approaches to alleviate secondary complications.
Collapse
Affiliation(s)
- Shaoping Hou
- Spinal Cord Research Center, Department of Neurobiology & Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | |
Collapse
|
9
|
Koss WA, Lloyd MM, Sadowski RN, Wise LM, Juraska JM. Gonadectomy before puberty increases the number of neurons and glia in the medial prefrontal cortex of female, but not male, rats. Dev Psychobiol 2015; 57:305-12. [PMID: 25782706 DOI: 10.1002/dev.21290] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/05/2015] [Indexed: 12/28/2022]
Abstract
The human prefrontal cortex, important for executive functions, loses gray matter throughout the adolescent period. In rats, our laboratory demonstrated that a loss of neurons between adolescence and adulthood partially underlies the loss of volume, and this loss is greater in females than males. Here, we examine whether being deprived of gonadal hormones before puberty through adulthood influences the number of neurons in the medial prefrontal cortex (mPFC). Prior to puberty, the testes or ovaries were removed in male and female rats. In adulthood, the number of neurons and glia in the mPFC were quantified using unbiased stereology, and the volume of the frontal white matter was measured. Prepubertal ovariectomy resulted in a higher number of neurons and glia and a larger volume of white matter compared to sham control littermates. Castrated males were not different from sham males on any measure. Thus ovarian hormones secreted after puberty influence the cellular composition of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Wendy A Koss
- Department of Psychology, University of Illinois, Champaign, 61820, IL
| | | | | | | | | |
Collapse
|
10
|
Sakamoto H. Sexually dimorphic nuclei in the spinal cord control male sexual functions. Front Neurosci 2014; 8:184. [PMID: 25071429 PMCID: PMC4092374 DOI: 10.3389/fnins.2014.00184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/10/2014] [Indexed: 01/06/2023] Open
Abstract
Lower spinal cord injuries frequently cause sexual dysfunction in men, including erectile dysfunction and an ejaculation disorder. This indicates that the important neural centers for male sexual function are located within the lower spinal cord. It is interesting that the lumbar spinal segments contain several neural circuits, showing a clear sexually dimorphism that, in association with neural circuits of the thoracic and sacral spinal cord, are critical in expressing penile reflexes during sexual behavior. To date, many sex differences in the spinal cord have been discovered. Interestingly, most of these are male dominant. Substantial evidence of sexually dimorphic neural circuits in the spinal cord have been reported in many animal models, but major issues remain unknown. For example, it is not known how the different circuits cooperatively function during male sexual behavior. In this review, therefore, the anatomical and functional significance of the sexually dimorphic nuclei in the spinal cord corresponding to the expression of male sexual behavior is discussed.
Collapse
Affiliation(s)
- Hirotaka Sakamoto
- Laboratory of Neuroendocrinology, Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University Okayama, Japan
| |
Collapse
|
11
|
Onakomaiya MM, Porter DM, Oberlander JG, Henderson LP. Sex and exercise interact to alter the expression of anabolic androgenic steroid-induced anxiety-like behaviors in the mouse. Horm Behav 2014; 66:283-97. [PMID: 24768711 PMCID: PMC4127168 DOI: 10.1016/j.yhbeh.2014.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 12/14/2022]
Abstract
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala.
Collapse
Affiliation(s)
- Marie M Onakomaiya
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Donna M Porter
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Joseph G Oberlander
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 2-160, Evanston, IL 60208, USA
| | - Leslie P Henderson
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
12
|
Abstract
Sex differences in many behaviors such as cognition, mood, and motor skills are well-documented in animals and humans and are regulated by many neural circuits. Sexual dimorphisms within cell populations in these circuits play critical roles in the production of these behavioral dichotomies. Here we focus on three proteins that have well described sexual dimorphisms; calbindin-D28k, a calcium binding protein, tyrosine hydroxylase, the rate limiting enzyme involved in dopamine synthesis and vasopressin, a neuropeptide with central and peripheral sites of action. We describe the sex differences in subpopulations of these proteins, with particular emphasis on laboratory mice. Our thrust is to examine genetic bases of sex differences and how the use of genetically modified models has advanced our understanding of this topic. Regional sex differences in the expression of these three proteins are driven by sex chromosome complement, steroid receptors or in some instances both. While studies of sex differences attributable to sex chromosome genes are still few in number it is exciting to note that this variable factors into expression differences for all three of these proteins. Different genetic mechanisms, which elaborate sex differences, may be employed stochastically in different cell populations. Alternately, general patterns involving the timing of differentiation of the sex differences, relative to the "critical period" in hormonal differences between males and female neonates may emerge. In conclusion, future directions in this area should include examination of the importance of location, timing, steroidal receptor/sex chromosome gene synergy and epigenetics in molding neural sex differences.
Collapse
Affiliation(s)
- Jean LeBeau Abel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, PO Box 800733, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
13
|
Barthold JS, Wang Y, Reilly A, Robbins A, Figueroa TE, Banihani A, Hagerty J, Akins RE. Reduced expression of androgen receptor and myosin heavy chain mRNA in cremaster muscle of boys with nonsyndromic cryptorchidism. J Urol 2012; 188:1411-6. [PMID: 22906643 DOI: 10.1016/j.juro.2012.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Indexed: 11/28/2022]
Abstract
PURPOSE To better define the developmental mechanisms of nonsyndromic cryptorchidism, we measured the expression of hormone receptor and muscle type specific mRNAs in target tissues of boys with and those without nonsyndromic cryptorchidism. MATERIALS AND METHODS Prospectively collected cremaster muscle and/or hernia sac tissues from boys with congenital (79) or acquired (66) nonsyndromic cryptorchidism and hernia/hydrocele (controls, 84) were analyzed for hormone receptor (RXFP2, AR, ESR1, ESR2) and myosin heavy chain specific (MYH1, MYH2, MYH7) mRNA expression using real-time reverse transcriptase polymerase chain reaction. Log transformed mRNA, phenotype and feeding history data were statistically analyzed using Pearson's correlation, ANOVA and 2-sample t tests. RESULTS AR mRNA expression was higher in cremaster muscle than in sac tissue, and significantly lower in congenital and acquired nonsyndromic cryptorchidism cases vs controls (p <0.01). Type 1 (slow/cardiac) MYH7 mRNA expression was also significantly reduced in both nonsyndromic cryptorchidism groups (p ≤ 0.002), while a reduction in type 2 (fast) MYH2 expression was more modest and significant only for the congenital cryptorchidism group (p <0.05). Cremasteric MYH7 and AR levels were strongly correlated (r(2) = 0.751, p <0.001). MYH7 and ESR1 mRNA levels were higher and lower, respectively, in boys with nonsyndromic cryptorchidism who were fed soy formula. Expression of other genes was not measurable. CONCLUSIONS Our data suggest that boys with congenital and acquired nonsyndromic cryptorchidism differentially express AR and slow twitch specific MYH7 mRNA in the cremaster muscle, and that MYH7 expression is correlated with AR levels and soy formula use. These differences in gene expression may reflect aberrant hormonal signaling and/or innervation during development with the potential for secondary functional effects and failed testicular descent.
Collapse
Affiliation(s)
- Julia Spencer Barthold
- Surgery/Urology and Nemours Biomedical Research, AI duPont Hospital for Children, Wilmington, Delaware 19803, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Turning sex inside-out: Peripheral contributions to sexual differentiation of the central nervous system. Biol Sex Differ 2012; 3:12. [PMID: 22640590 PMCID: PMC3464926 DOI: 10.1186/2042-6410-3-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 05/28/2012] [Indexed: 02/04/2023] Open
Abstract
Sexual differentiation of the nervous system occurs via the interplay of genetics, endocrinology and social experience through development. Much of the research into mechanisms of sexual differentiation has been driven by an implicit theoretical framework in which these causal factors act primarily and directly on sexually dimorphic neural populations within the central nervous system. This review will examine an alternative explanation by describing what is known about the role of peripheral structures and mechanisms (both neural and non-neural) in producing sex differences in the central nervous system. The focus of the review will be on experimental evidence obtained from studies of androgenic masculinization of the spinal nucleus of the bulbocavernosus, but other systems will also be considered.
Collapse
|
15
|
|
16
|
Brain–spinal cord neural circuits controlling male sexual function and behavior. Neurosci Res 2012; 72:103-16. [DOI: 10.1016/j.neures.2011.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 01/10/2023]
|
17
|
Kazantseva A, Gaysina D, Malykh S, Khusnutdinova E. The role of dopamine transporter (SLC6A3) and dopamine D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) gene polymorphisms in personality traits. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1033-40. [PMID: 21354244 DOI: 10.1016/j.pnpbp.2011.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 01/13/2023]
Abstract
Variations in personality traits are caused by interactions between multiple genes of small effect and environmental factors. To date, gender- and ethnicity-specific variations in personality have been established. In the present study, we aimed to test: (1) the effects of four polymorphisms of dopamine system genes: ANKK1/DRD2 Taq1A, DRD2 rs6275, SLC6A3 40-bp VNTR and rs27072, on personality traits; (2) whether these effects differ between men and women and between Russians and Tatars. A sample of 652 healthy individuals (222 men and 430 women) of Caucasian origin (233 Russians and 419 Tatars) from Russia was subjected to personality traits assessment with Eysenck Personality Inventory (EPI) and Temperament and Character Inventory-125 (TCI-125). The associations between each personality trait and polymorphisms were assessed with regression models adjusted for gender and ethnicity. There were significant effects of ANKK1/DRD2 Taq1A on Neuroticism (p=0.016) and of SLC6A3 rs27072 on Persistence (p=0.021) in both genders. The association between ANKK1/DRD2 Taq1A A2/A2-genotype and higher Novelty Seeking and lower Reward Dependence was shown in men only (p for gender interaction=0.018). In women only, there was a significant association between SLC6A3 10R*G-haplotype and higher Persistence (p=0.002). Our findings provide evidence for a modifying effect of gender on the associations between dopamine system genes and approach-related traits (in men) and Persistence (in women).
Collapse
Affiliation(s)
- A Kazantseva
- Institute of Biochemistry and Genetics, Ufa Scientific Centre, Russian Academy of Sciences, 71, Prospekt Oktyabrya, Ufa 450054, Russia.
| | | | | | | |
Collapse
|
18
|
Ostroumov A, Simonetti M, Nistri A. Cystic fibrosis transmembrane conductance regulator modulates synaptic chloride homeostasis in motoneurons of the rat spinal cord during neonatal development. Dev Neurobiol 2011; 71:253-68. [DOI: 10.1002/dneu.20855] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Zornik E, Yamaguchi A. Vocal pathway degradation in gonadectomized Xenopus laevis adults. J Neurophysiol 2011; 105:601-14. [PMID: 21148092 PMCID: PMC3059166 DOI: 10.1152/jn.00883.2010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/04/2010] [Indexed: 01/26/2023] Open
Abstract
Reproductive behaviors of many vertebrate species are activated in adult males by elevated androgen levels and abolished by castration. Neural and muscular components controlling these behaviors contain numerous hormone-sensitive sites including motor initiation centers (such as the basal ganglia), central pattern generators (CPGs), and muscles; therefore it is difficult to confirm the role of each hormone-activated target using behavioral assays alone. Our goal was to address this issue by determining the site of androgen-induced vocal activation using male Xenopus laevis, a species in which androgen dependence of vocal activation has been previously determined. We compared in vivo calling patterns and functionality of two in vitro preparations-the isolated larynx and an isolated brain from which fictive courtship vocalizations can be evoked--in castrated and control males. The isolated larynx allowed us to test whether castrated males were capable of transducing male-typical nerve signals into vocalizations and the fictively vocalizing brain preparation allowed us to directly examine vocal CPG function separate from the issue of vocal initiation. The results indicate that all three components--vocal initiation, CPG, and larynx--require intact gonads. Vocal production decreased dramatically in castrates and laryngeal contractile properties of castrated males were demasculinized, whereas no changes were observed in control animals. In addition, fictive calls of castrates were degraded compared with those of controls. To our knowledge, this finding represents the first demonstration of gonad-dependent maintenance of a CPG for courtship behavior in adulthood. Because previous studies showed that androgen-replacement can prevent castration-induced vocal impairments, we conclude that degradation of vocal initiation centers, larynx, and CPG function are most likely due to steroid hormone deprivation.
Collapse
Affiliation(s)
- Erik Zornik
- Biology Department, Boston University, Boston, Massachusetts, USA.
| | | |
Collapse
|
20
|
The gastrin-releasing peptide system in the spinal cord mediates masculine sexual function. Anat Sci Int 2010; 86:19-29. [DOI: 10.1007/s12565-010-0097-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 09/29/2010] [Indexed: 10/18/2022]
|
21
|
de Vries GJ, Södersten P. Sex differences in the brain: the relation between structure and function. Horm Behav 2009; 55:589-96. [PMID: 19446075 PMCID: PMC3932614 DOI: 10.1016/j.yhbeh.2009.03.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 03/10/2009] [Accepted: 03/12/2009] [Indexed: 11/24/2022]
Abstract
In the fifty years since the organizational hypothesis was proposed, many sex differences have been found in behavior as well as structure of the brain that depend on the organizational effects of gonadal hormones early in development. Remarkably, in most cases we do not understand how the two are related. This paper makes the case that overstating the magnitude or constancy of sex differences in behavior and too narrowly interpreting the functional consequences of structural differences are significant roadblocks in resolving this issue.
Collapse
Affiliation(s)
- Geert J de Vries
- Department of Psychology and Center for Neuroendocrine Studies, Tobin Hall, University of Massachusetts, Amherst, MA 01003 9333, USA.
| | | |
Collapse
|