1
|
Shankey NT, Igo BL, Grossen TL, Cohen RE. Melatonin treatment during the breeding season increases testosterone in male green anole lizards (Anolis carolinensis). Horm Behav 2024; 166:105655. [PMID: 39522144 DOI: 10.1016/j.yhbeh.2024.105655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Melatonin is a natural hormone that regulates seasonal behaviors in vertebrates by binding to its receptors (MT1 and MT2). Specifically, high levels of melatonin are associated with short photoperiods, often coinciding with the non-breeding season, meaning that melatonin may inhibit seasonal reproduction. Green anole lizards (Anolis carolinensis), have large, active gonads, increased levels of testosterone and estradiol, and increased reproductive behaviors during the breeding season. Previous studies have examined the role of melatonin in seasonal reproduction in this species, but it is unclear how melatonin receptors change seasonally or if melatonin treatment during the early breeding season influences reproduction. In Experiment 1, we measured MT1 and MT2 mRNA expression in the brains and gonads of unmanipulated anoles between breeding and non-breeding seasons. MT1 mRNA expression was significantly higher in the male brain during the breeding season compared to the non-breeding season, and MT1 mRNA levels were generally higher compared to MT2. This suggests that melatonin may regulate seasonal reproduction through MT1 in the brain, and higher levels during the breeding season may compensate for low seasonal levels of melatonin. In Experiment 2, anoles were treated with melatonin or a blank control for 10 weeks during the breeding season. In males, melatonin treatment increased testosterone levels. This suggests that rather than inhibiting reproduction, continuous high doses of melatonin may increase reproductive hormones during the breeding season. Our findings support the role of melatonin in modulating seasonal reproduction, but the exact mechanisms behind melatonin's stimulatory effect is unclear.
Collapse
Affiliation(s)
- Nicholas T Shankey
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Bernadette L Igo
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Taylor L Grossen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA.
| |
Collapse
|
2
|
Shankey NT, Cohen RE. Neural control of reproduction in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:307-321. [PMID: 38247297 DOI: 10.1002/jez.2783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.
Collapse
Affiliation(s)
- Nicholas T Shankey
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| |
Collapse
|
3
|
Carsia RV, McIlroy PJ, John-Alder HB. Invited review: Adrenocortical function in avian and non-avian reptiles: Insights from dispersed adrenocortical cells. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111424. [PMID: 37080352 DOI: 10.1016/j.cbpa.2023.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Herein we review our work involving dispersed adrenocortical cells from several lizard species: the Eastern Fence Lizard (Sceloporus undulatus), Yarrow's Spiny Lizard (Sceloporus jarrovii), Striped Plateau Lizard (Sceloporus virgatus) and the Yucatán Banded Gecko (Coleonyx elegans). Early work demonstrated changes in steroidogenic function of adrenocortical cells derived from adult S. undulatus associated with seasonal interactions with sex. However, new information suggests that both sexes operate within the same steroidogenic budget over season. The observed sex effect was further explored in orchiectomized and ovariectomized lizards, some supported with exogenous testosterone. Overall, a suppressive effect of testosterone was evident, especially in cells from C. elegans. Life stage added to this complex picture of adrenal steroidogenic function. This was evident when sexually mature and immature Sceloporus lizards were subjected to a nutritional stressor, cricket restriction/deprivation. There were divergent patterns of corticosterone, aldosterone, and progesterone responses and associated sensitivities of each to corticotropin (ACTH). Finally, we provide strong evidence that there are multiple, labile subpopulations of adrenocortical cells. We conclude that the rapid (days) remodeling of adrenocortical steroidogenic function through fluctuating cell subpopulations drives the circulating corticosteroid profile of Sceloporus lizard species. Interestingly, progesterone and aldosterone may be more important with corticosterone serving as essential supportive background. In the wild, the flux in adrenocortical cell subpopulations may be adversely susceptible to climate-change related disruptions in food sources and to xenobiotic/endocrine-disrupting chemicals. We urge further studies using native lizard species as bioindicators of local pollutants and as models to examine the broader eco-exposome.
Collapse
Affiliation(s)
- Rocco V Carsia
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Patrick J McIlroy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, 311 North Fifth Street, Camden, NJ 08102, United States
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, The Pinelands Field Station Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, United States
| |
Collapse
|
4
|
Munley KM, Wade KL, Pradhan DS. Uncovering the seasonal brain: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a biochemical approach for studying seasonal social behaviors. Horm Behav 2022; 142:105161. [PMID: 35339904 DOI: 10.1016/j.yhbeh.2022.105161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Many animals show pronounced changes in physiology and behavior across the annual cycle, and these adaptations enable individuals to prioritize investing in the neuroendocrine mechanisms underlying reproduction and/or survival based on the time of year. While prior research has offered valuable insight into how seasonal variation in neuroendocrine processes regulates social behavior, the majority of these studies have investigated how a single hormone influences a single behavioral phenotype. Given that hormones are synthesized and metabolized via complex biochemical pathways and often act in concert to control social behavior, these approaches provide a limited view of how hormones regulate seasonal changes in behavior. In this review, we discuss how seasonal influences on hormones, the brain, and social behavior can be studied using liquid chromatography-tandem mass spectrometry (LC-MS/MS), an analytical chemistry technique that enables researchers to simultaneously quantify the concentrations of multiple hormones and the activities of their synthetic enzymes. First, we examine studies that have investigated seasonal plasticity in brain-behavior interactions, specifically by focusing on how two groups of hormones, sex steroids and nonapeptides, regulate sexual and aggressive behavior. Then, we explain the operations of LC-MS/MS, highlight studies that have used LC-MS/MS to study the neuroendocrine mechanisms underlying social behavior, both within and outside of a seasonal context, and discuss potential applications for LC-MS/MS in the field of behavioral neuroendocrinology. We propose that this cutting-edge technology will provide a more comprehensive understanding of how the multitude of hormones that comprise complex neuroendocrine networks affect seasonal variation in the brain and behavior.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kristina L Wade
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
5
|
Williams CT, Chmura HE, Deal CK, Wilsterman K. Sex-differences in Phenology: A Tinbergian Perspective. Integr Comp Biol 2022; 62:980-997. [PMID: 35587379 DOI: 10.1093/icb/icac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Shifts in the timing of cyclic seasonal life-history events are among the most commonly reported responses to climate change, with differences in response rates among interacting species leading to phenological mismatches. Within a species, however, males and females can also exhibit differential sensitivity to environmental cues and may therefore differ in their responsiveness to climate change, potentially leading to phenological mismatches between the sexes. This occurs because males differ from females in when and how energy is allocated to reproduction, resulting in marked sex-differences in life-history timing across the annual cycle. In this review, we take a Tinbergian perspective and examine sex differences in timing of vertebrates from adaptive, ontogenetic, mechanistic, and phylogenetic viewpoints with the goal of informing and motivating more integrative research on sexually dimorphic phenologies. We argue that sexual and natural selection lead to sex-differences in life-history-timing and that understanding the ecological and evolutionary drivers of these differences is critical for connecting climate-driven phenological shifts to population resilience. Ontogeny may influence how and when sex differences in life-history timing arise because the early-life environment can profoundly affect developmental trajectory, rates of reproductive maturation, and seasonal timing. The molecular mechanisms underlying these organismal traits are relevant to identifying the diversity and genetic basis of population- and species-level responses to climate change, and promisingly, the molecular basis of phenology is becoming increasingly well-understood. However, because most studies focus on a single sex, the causes of sex-differences in phenology critical to population resilience often remain unclear. New sequencing tools and analyses informed by phylogeny may help generate hypotheses about mechanism as well as insight into the general "evolvability" of sex differences across phylogenetic scales, especially as trait and genome resources grow. We recommend that greater attention be placed on determining sex-differences in timing mechanisms and monitoring climate change responses in both sexes, and we discuss how new tools may provide key insights into sex-differences in phenology from all four Tinbergian domains.
Collapse
Affiliation(s)
- Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave, Missoula, MT 59801, USA
| | - Cole K Deal
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Kathryn Wilsterman
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Tao CY, Harley JZ, Spencer SL, Cohen RE. Characterizing seasonal transitions: Breeding-like morphology and behavior during the late non-breeding season in green anole lizards. Horm Behav 2022; 139:105106. [PMID: 34995849 DOI: 10.1016/j.yhbeh.2021.105106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Seasonally breeding animals, such as green anole lizards (Anolis carolinensis), allow for the examination of the control of reproduction during different reproductive states. During the breeding season, the gonads are large and reproductively active. Following the breeding season, gonads regress and become less active, and the lizards enter a refractory period where breeding is inhibited. After this stage, a post-refractory period occurs during which the lizards are still in a non-breeding state, but environmental changes can trigger the onset of breeding. However, it is unclear what causes these changes in reproductive state and we hypothesized that this may be due to alterations in gonadotropin-releasing hormone (GnRH) signaling. The present study aimed to identify morphological and behavioral differences in GnRH- and saline-injected refractory and post-refractory male anoles when housed under the same non-breeding environmental conditions. We found that post-refractory anoles had increased testicular weight, recrudescence, sperm presence, and reproductive behavior, with no impact of GnRH injection. Renal sex segment size and steroidogenic acute regulatory protein (StAR) mRNA levels did not differ among groups, indicating that testosterone levels likely had not increased in post-refractory lizards. Post-refractory anoles in this study were beginning to transition towards a breeding state without exposure to changing environmental conditions, and GnRH was not necessary for these changes. These data reveal a complex interaction between the activation of breeding, changing environmental conditions, and the underlying physiology regulating reproduction in seasonally breeding lizards. Future studies are needed to further elucidate the mechanisms that regulate this relationship.
Collapse
Affiliation(s)
- Cai Y Tao
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Jada Z Harley
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Savannah L Spencer
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA.
| |
Collapse
|
7
|
Campos SM, Belkasim SS. Chemical Communication in Lizards and a Potential Role for Vasotocin in Modulating Social Interactions. Integr Comp Biol 2021; 61:205-220. [PMID: 33940600 DOI: 10.1093/icb/icab044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Lizards use chemical communication to mediate many reproductive, competitive, and social behaviors, but the neuroendocrine mechanisms underlying chemical communication in lizards are not well understood and understudied. By implementing a neuroendocrine approach to the study of chemical communication in reptiles, we can address a major gap in our knowledge of the evolutionary mechanisms shaping chemical communication in vertebrates. The neuropeptide arginine vasotocin (AVT) and its mammalian homolog vasopressin are responsible for a broad spectrum of diversity in competitive and reproductive strategies in many vertebrates, mediating social behavior through the chemosensory modality. In this review, we posit that, though limited, the available data on AVT-mediated chemical communication in lizards reveal intriguing patterns that suggest AVT plays a more prominent role in lizard chemosensory behavior than previously appreciated. We argue that these results warrant more research into the mechanisms used by AVT to modify the performance of chemosensory behavior and responses to conspecific chemical signals. We first provide a broad overview of the known social functions of chemical signals in lizards, the glandular sources of chemical signal production in lizards (e.g., epidermal secretory glands), and the chemosensory detection methods and mechanisms used by lizards. Then, we review the locations of vasotocinergic populations and neuronal projections in lizard brains, as well as sites of peripheral receptors for AVT in lizards. Finally, we end with a case study in green anoles (Anolis carolinensis), discussing findings from recently published work on the impact of AVT in adult males on chemosensory communication during social interactions, adding new data from a similar study in which we tested the impact of AVT on chemosensory behavior of adult females. We offer concluding remarks on addressing several fundamental questions regarding the role of AVT in chemosensory communication and social behavior in lizards.
Collapse
Affiliation(s)
- Stephanie M Campos
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| | - Selma S Belkasim
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA
| |
Collapse
|
8
|
Information content of ultraviolet-reflecting colour patches and visual perception of body coloration in the Tyrrhenian wall lizard Podarcis tiliguerta. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03023-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Wang Y, Liu X, Li W, Zhao J, Liu H, Yu L, Zhu X. Reproductive performance is associated with seasonal plasma reproductive hormone levels, steroidogenic enzymes and sex hormone receptor expression levels in cultured Asian yellow pond turtles (Mauremys mutica). Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110566. [PMID: 33515788 DOI: 10.1016/j.cbpb.2021.110566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
In order to understand the endocrine mechanism associated with fecundity of seasonally breeding animals, we investigated the plasma reproductive hormones levels and detected the differences in steroidogenic enzymes and sex hormone receptor mRNA levels in female Mauremys mutica. These turtles were divided into higher fecundity (HF) group than those in lower fecundity (LF) group based on paternity identification in our previous research. The plasma estrogen (E2), testosterone (T) and progesterone (P4) levels were significantly higher in pre-breeding season (PBS) than those in non-breeding season (NBS) and were markedly higher in the HF group than those in LF group. In the hypothalamus, there was significantly higher mRNA abundance of P450-cholesterol side-chain cleavage enzyme (P450Scc) encoded by Cyp11α1, aromatase (Cyp19α1) and 5-reductase (5α-R), but significantly lower mRNA levels of follicular stimulating hormone receptor (FSHR) and progesterone receptor (PR) detected in PBS than those in NBS. The pituitary steroidogenic acute regulatory protein (StAR), cytochrome P450-17alpha-hydroxylase (Cyp17α1), 3-hydroxy-steroid dehydrogenase (3βHSD), 17-hydroxy-steroid dehydrogenase 3 (17βHSD3), Cyp19α1, 5α-R, FSHR, estrogen receptor 1 (ESR1), androgen receptor (AR) and PR transcriptional levels in HF group were up-regulated significantly compared with the LF group. In the ovary, Cyp17α1 and 17βHSD3 transcriptional levels were markedly higher in PBS than those in NBS. We detected significantly increased expression levels of all steroidogenic enzymes, but notably lower mRNA levels of FSHR and PR in uterus during the PBS, and the HF group has significantly higher expression levels of StAR, Cyp17α1, 5α-R and AR than LF group. Our work reveals seasonal variations in hormone regulation as well as gene regulation in turtles, providing reliable information to understand the mechanisms underlying the different reproductive capacity of reptiles.
Collapse
Affiliation(s)
- Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Jian Zhao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Haiyang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Lingyun Yu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China
| | - Xinping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong 510380, PR China.
| |
Collapse
|
10
|
Campos SM, Rojas V, Wilczynski W. Arginine vasotocin impacts chemosensory behavior during social interactions of Anolis carolinensis lizards. Horm Behav 2020; 124:104772. [PMID: 32439348 DOI: 10.1016/j.yhbeh.2020.104772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
In reptiles, arginine vasotocin (AVT) impacts the performance of and response to visual social signals, but whether AVT also operates within the chemosensory system as arginine vasopressin (AVP) does in mammals is unknown, despite social odors being potent modifiers of competitive and appetitive behavior in reptiles. Here, we ask whether elevated levels of exogenous AVT impact rates of chemical display behavior (e.g. tongue flicks) in adult males, and whether conspecific males or females can chemically discriminate between competitor males based on differing levels of exogenous AVT in green anoles (Anolis carolinensis). We injected wild-caught green anole males with either AVT (AVT-Males) or a vehicle control (CON-Males) solution, then presented treated males with a conspecific stimulus (Intruder-Male or Intruder-Female) and filmed 30-minute interactions. We found that AVT-Males were faster than CON-Males to perform a tongue flick to conspecifics, and faster to chemically display toward Intruder-Females, suggesting AVT increased male interest in available chemical information during social encounters. Intruders performed more lip smack behavior when interacting with AVT-Males than with CON-Males, and Intruder-Males performed more tongue flick behavior when interacting with AVT-Males than with CON-Males, suggesting anoles can discriminate between conspecifics based on exogenous AVT levels. We also found a reduction in Intruder movement behavior when Intruders were paired with AVT-Males. This study provides empirical support for AVT-mediated chemosensory behavior in reptilian social interactions, in a microsmatic lizard species, suggesting the mechanism by which mammalian AVP and non-mammalian AVT mediate chemosensory behavior during social interactions may be evolutionarily conserved.
Collapse
Affiliation(s)
- Stephanie M Campos
- Georgia State University, Neuroscience Institute and Center for Behavioral Neuroscience, Atlanta, GA, USA.
| | - Valentina Rojas
- Universidad del Bío-Bío, Concepción, Chile; Universidad Catolica del Maule, Talca, Chile
| | - Walter Wilczynski
- Georgia State University, Neuroscience Institute and Center for Behavioral Neuroscience, Atlanta, GA, USA
| |
Collapse
|
11
|
Kang H, Kenealy TM, Cohen RE. The hypothalamic-pituitary-gonadal axis and thyroid hormone regulation interact to influence seasonal breeding in green anole lizards (Anolis carolinensis). Gen Comp Endocrinol 2020; 292:113446. [PMID: 32126224 DOI: 10.1016/j.ygcen.2020.113446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Reproductive physiology and behavior is mainly regulated by the hypothalamus-pituitary-gonad (HPG) axis, although abnormal thyroid hormone (TH) levels alter HPG axis activity. Seasonally breeding animals, such as green anole lizards (Anolis carolinensis), undergo drastic hormonal and behavioral changes between breeding and non-breeding seasons, with increased sex steroid hormones, larger gonads and increased reproductive behaviors during the breeding compared to non-breeding seasons. Relatively less is known regarding the regulation of gonadal TH in seasonal reproduction. We examined whether the gonadal expression of enzymes involved in TH activation are altered in concert with seasonal reproduction. Type 2 deiodinase (Dio2) mRNA, the TH activating enzyme, was upregulated in breeding compared to non-breeding testes, while type 3 deiodinase (Dio3) mRNA, the TH deactivating enzyme, was upregulated in breeding ovaries. To study the association between the HPG axis and local activation of TH, we manipulated the HPG axis during the non-breeding season by subcutaneously injecting luteinizing hormone (LH) and follicle stimulating hormone (FSH) in male lizards. We found that acute LH and FSH injections induced many aspects of breeding, with increased testes size and testosterone levels. Surprisingly, Dio3 was upregulated in the testes after LH and FSH injections, while Dio2 mRNA levels were unchanged. These results suggest that there might be different roles for local TH activation in developing and maintaining fully mature and functional gonads. Our findings continue to support the role for TH in regulating reproduction.
Collapse
Affiliation(s)
- Hyejoo Kang
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Taylor M Kenealy
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA.
| |
Collapse
|
12
|
Van Dyke JU, Thompson MB, Burridge CP, Castelli MA, Clulow S, Dissanayake DSB, Dong CM, Doody JS, Edwards DL, Ezaz T, Friesen CR, Gardner MG, Georges A, Higgie M, Hill PL, Holleley CE, Hoops D, Hoskin CJ, Merry DL, Riley JL, Wapstra E, While GM, Whiteley SL, Whiting MJ, Zozaya SM, Whittington CM. Australian lizards are outstanding models for reproductive biology research. AUST J ZOOL 2020. [DOI: 10.1071/zo21017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Australian lizards are a diverse group distributed across the continent and inhabiting a wide range of environments. Together, they exhibit a remarkable diversity of reproductive morphologies, physiologies, and behaviours that is broadly representative of vertebrates in general. Many reproductive traits exhibited by Australian lizards have evolved independently in multiple lizard lineages, including sociality, complex signalling and mating systems, viviparity, and temperature-dependent sex determination. Australian lizards are thus outstanding model organisms for testing hypotheses about how reproductive traits function and evolve, and they provide an important basis of comparison with other animals that exhibit similar traits. We review how research on Australian lizard reproduction has contributed to answering broader evolutionary and ecological questions that apply to animals in general. We focus on reproductive traits, processes, and strategies that are important areas of current research, including behaviours and signalling involved in courtship; mechanisms involved in mating, egg production, and sperm competition; nesting and gestation; sex determination; and finally, birth in viviparous species. We use our review to identify important questions that emerge from an understanding of this body of research when considered holistically. Finally, we identify additional research questions within each topic that Australian lizards are well suited for reproductive biologists to address.
Collapse
|
13
|
Santillo A, Rosati L, Prisco M, Chieffi Baccari G, Andreuccetti P, Falvo S, Di Fiore MM. Aromatase immunolocalization and activity in the lizard's brain: Dynamic changes during the reproductive cycle. C R Biol 2019; 342:18-26. [PMID: 30709696 DOI: 10.1016/j.crvi.2019.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/15/2022]
Abstract
The purpose of the present study is to highlight the role of aromatase in the neuroendocrine control of the reproductive cycle of the male lizard Podarcis sicula during the three significant phases, i.e. the pre-reproductive, reproductive, and post-reproductive stages. Using immunohistochemical, biochemical, and hormonal tools, we have determined the localization and the activity of P450 aromatase (P450 aro) in the lizard's brain together with the determination of hormonal profile of sex steroids, i.e. testosterone and 17β-estradiol. The present data demonstrated that the localization of P450 is shown in brain regions involved in the regulation of the reproductive behavior (medial septum, preoptic area, and hypothalamus). Its activity, as well as the intensity of the signal, is modified according to the period of reproduction, resulting in functional dynamic changes. P450 aro activity and signal intensity decrease in the pre-reproductive period and progressively increase during the reproductive stage until it reaches the maximum peak level at the post-reproductive phase. P450 aro determines a local estrogen synthesis, balancing the testosterone and estradiol levels, and therefore its role is crucial, since it plays an important role in the neuroendocrine/behavioral regulation of the reproductive processes in the male lizard P. sicula.
Collapse
Affiliation(s)
- Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "L. Vanvitelli", Caserta, Italy
| | - Luigi Rosati
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| | - Marina Prisco
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "L. Vanvitelli", Caserta, Italy
| | - Piero Andreuccetti
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy.
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "L. Vanvitelli", Caserta, Italy
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
14
|
Suriyampola PS, Cacéres J, Martins EP. Effects of short-term turbidity on sensory preference and behaviour of adult fish. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Martins EP, Ossip-Drahos AG, Vital García C, Zúñiga-Vega JJ, Campos SM, Hews DK. Trade-offs between visual and chemical behavioral responses. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2617-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Carsia RV, McIlroy PJ, John-Alder HB. Modulation of adrenal steroidogenesis by testosterone in the lizard, Coleonyx elegans. Gen Comp Endocrinol 2018; 259:93-103. [PMID: 29155264 DOI: 10.1016/j.ygcen.2017.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
Our previous work with adrenocortical cells from several Sceloporus lizard species suggests that gonadal hormones influence the steroidogenic capacity and the sensitivity to ACTH. However, there are discrepancies in these cellular response parameters suggesting that the effects of gonadal hormones on adrenocortical function vary with species, sex, age, season, and environmental/experimental conditions. To gain further insight into these complex interactions, here we report studies on Coleonyx elegans, Eublepharidae (Yucatán Banded Gecko), which is only distantly related to Sceloporus lizards via a basal common ancestor and in captivity, reproduces throughout the year. We hypothesized that a more constant reproductive pattern would result in less variable effects of gonadal hormones on adrenocortical function. Reproductively mature male geckos were orchiectomized with and without replacement of testosterone (300 μg) via an implanted Silastic® tube. Reproductively mature intact female geckos received implants with and without testosterone. After 11 weeks, adrenocortical cells were isolated from these lizards and incubated with corticotropin (ACTH) for 3 h at 28 °C. Three adrenocortical steroids, progesterone, corticosterone and aldosterone, were measured by highly specific radioimmunoassays. The production rate of each steroid was statistically analyzed using established software and net maximal rate (by subtracting the basal rate) in response to ACTH was determined. In general, corticosterone predominated and comprised ∼83% of the total net maximal rate, followed by progesterone (∼14%) and aldosterone (∼3%). Compared to the functional responses of adrenocortical cells derived from other lizards thus far, adrenocortical cells from C. elegans exhibited a depressed steroid response to ACTH and this depressed response was more pronounced in male cells. In addition, other sex differences in cellular response were apparent. In female cells, the net maximal rates of progesterone, corticosterone and aldosterone were, respectively, 161, 122 and 900% greater than those in intact-male cells. In contrast, cellular sensitivity to ACTH, as determined by the half-maximally effective steroidogenic concentration (EC50) of ACTH, did not differ between intact-male and intact-female adrenocortical cells. Treatment effects were most striking for corticosterone, the putative, major glucocorticoid in lizards. Orchiectomy caused an increase in the net maximal corticosterone rate equivalent to that of intact-female cells. Testosterone maintenance in orchiectomized lizards completely suppressed the stimulatory effect of orchiectomy. However, orchiectomy with or without testosterone maintenance did not alter cellular sensitivity to ACTH. The effect of testosterone supplementation in intact females, although suppressive, was notably different from its effect in orchiectomized males. Its effect on the net maximal corticosterone rate was relatively modest and did not completely "masculinize" the greater rate seen in intact-female cells. However, testosterone supplementation dramatically suppressed the basal corticosterone rate (by 82%) and enhanced the overall cellular sensitivity to ACTH by 150%, two effects not seen in cells derived from testosterone-treated orchiectomized lizards. Collectively, these findings clearly indicating that the gonad directly or indirectly regulates lizard adrenocortical cell function. Whereas other gonadal or extra-gonadal factors may play a role, testosterone appears to be an essential determinant of the observed sex differences in adrenocortical function.
Collapse
Affiliation(s)
- Rocco V Carsia
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA; Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| | - Patrick J McIlroy
- Department of Biology and Center for Computational and Integrative Biology, Rutgers University, 311 North Fifth Street, Camden, NJ 08102, USA.
| | - Henry B John-Alder
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
17
|
Smith GT, Proffitt MR, Smith AR, Rusch DB. Genes linked to species diversity in a sexually dimorphic communication signal in electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 204:93-112. [PMID: 29058069 DOI: 10.1007/s00359-017-1223-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 02/06/2023]
Abstract
Sexually dimorphic behaviors are often regulated by androgens and estrogens. Steroid receptors and metabolism are control points for evolutionary changes in sexual dimorphism. Electric communication signals of South American knifefishes are a model for understanding the evolution and physiology of sexually dimorphic behavior. These signals are regulated by gonadal steroids and controlled by a simple neural circuit. Sexual dimorphism of the signals varies across species. We used transcriptomics to examine mechanisms for sex differences in electric organ discharges (EODs) of two closely related species, Apteronotus leptorhynchus and Apteronotus albifrons, with reversed sexual dimorphism in their EODs. The pacemaker nucleus (Pn), which controls EOD frequency (EODf), expressed transcripts for steroid receptors and metabolizing enzymes, including androgen receptors, estrogen receptors, aromatase, and 5α-reductase. The Pn expressed mRNA for ion channels likely to regulate the high-frequency activity of Pn neurons and for neuromodulator and neurotransmitter receptors that may regulate EOD modulations used in aggression and courtship. Expression of several ion channel genes, including those for Kir3.1 inward-rectifying potassium channels and sodium channel β1 subunits, was sex-biased or correlated with EODf in ways consistent with EODf sex differences. Our findings provide a basis for future studies to characterize neurogenomic mechanisms by which sex differences evolve.
Collapse
Affiliation(s)
- G Troy Smith
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA. .,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
| | - Melissa R Proffitt
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - Adam R Smith
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Department of Biology, Indiana University, Jordan Hall, 1001 E. 3rd St., Bloomington, IN, 47405, USA.,Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
18
|
Pollock NB, Feigin S, Drazenovic M, John-Alder HB. Sex hormones and the development of sexual size dimorphism: 5α-dihydrotestosterone inhibits growth in a female-larger lizard ( Sceloporus undulatus). ACTA ACUST UNITED AC 2017; 220:4068-4077. [PMID: 28912255 DOI: 10.1242/jeb.166553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022]
Abstract
Sexual differences in adult body size [sexual size dimorphism (SSD)] and color (sexual dichromatism) are widespread, and both male- and female-biased dimorphisms are observed even among closely related species. A growing body of evidence indicates testosterone can regulate growth, thus the development of SSD, and sexual dichromatism. However, the mechanism(s) underlying these effects are conjectural, including possible conversions of testosterone to estradiol (E2) or 5α-dihydrotestosterone (DHT). In the present study, we hypothesized that the effects of testosterone are physiological responses mediated by androgen receptors, and we tested two specific predictions: (1) that DHT would mimic the effects of testosterone by inhibiting growth and enhancing coloration, and (2) that removal of endogenous testosterone via surgical castration would stimulate growth. We also hypothesized that females share downstream regulatory networks with males and predicted that females and males would respond similarly to DHT. We conducted experiments on eastern fence lizards (Sceloporus undulatus), a female-larger species with striking sexual dichromatism. We implanted Silastic® tubules containing 150 µg DHT into intact females and intact and castrated males. We measured linear growth rates and quantified color for ventral and dorsal surfaces. We found that DHT decreased growth rate and enhanced male-typical coloration in both males and females. We also found that, given adequate time, castration alone is sufficient to stimulate growth rate in males. The results presented here suggest that: (1) the effects of testosterone on growth and coloration are mediated by androgen receptors without requiring aromatization of testosterone into E2, and (2) females possess the androgen-receptor-mediated regulatory networks required for initiating male-typical inhibition of growth and enhanced coloration in response to androgens.
Collapse
Affiliation(s)
- Nicholas B Pollock
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA
| | - Stephanie Feigin
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Marko Drazenovic
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Henry B John-Alder
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA.,Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
19
|
Hoops D, Ullmann JFP, Janke AL, Vidal-Garcia M, Stait-Gardner T, Dwihapsari Y, Merkling T, Price WS, Endler JA, Whiting MJ, Keogh JS. Sexual selection predicts brain structure in dragon lizards. J Evol Biol 2016; 30:244-256. [PMID: 27696584 DOI: 10.1111/jeb.12984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/30/2016] [Accepted: 09/20/2016] [Indexed: 01/10/2023]
Abstract
Phenotypic traits such as ornaments and armaments are generally shaped by sexual selection, which often favours larger and more elaborate males compared to females. But can sexual selection also influence the brain? Previous studies in vertebrates report contradictory results with no consistent pattern between variation in brain structure and the strength of sexual selection. We hypothesize that sexual selection will act in a consistent way on two vertebrate brain regions that directly regulate sexual behaviour: the medial preoptic nucleus (MPON) and the ventromedial hypothalamic nucleus (VMN). The MPON regulates male reproductive behaviour whereas the VMN regulates female reproductive behaviour and is also involved in male aggression. To test our hypothesis, we used high-resolution magnetic resonance imaging combined with traditional histology of brains in 14 dragon lizard species of the genus Ctenophorus that vary in the strength of precopulatory sexual selection. Males belonging to species that experience greater sexual selection had a larger MPON and a smaller VMN. Conversely, females did not show any patterns of variation in these brain regions. As the volumes of both these regions also correlated with brain volume (BV) in our models, we tested whether they show the same pattern of evolution in response to changes in BV and found that the do. Therefore, we show that the primary brain nuclei underlying reproductive behaviour in vertebrates can evolve in a mosaic fashion, differently between males and females, likely in response to sexual selection, and that these same regions are simultaneously evolving in concert in relation to overall brain size.
Collapse
Affiliation(s)
- D Hoops
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - J F P Ullmann
- Center for Advanced Imaging, The University of Queensland, Brisbane, Qld, Australia
| | - A L Janke
- Center for Advanced Imaging, The University of Queensland, Brisbane, Qld, Australia
| | - M Vidal-Garcia
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - T Stait-Gardner
- Nanoscale Organization and Dynamics Group, School of Science and Health, University of Western Sydney, Penrith, NSW, Australia
| | - Y Dwihapsari
- Nanoscale Organization and Dynamics Group, School of Science and Health, University of Western Sydney, Penrith, NSW, Australia
| | - T Merkling
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - W S Price
- Nanoscale Organization and Dynamics Group, School of Science and Health, University of Western Sydney, Penrith, NSW, Australia
| | - J A Endler
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Vic., Australia
| | - M J Whiting
- Department of Biological Sciences, Discipline of Brain, Behavior and Evolution, Macquarie University, Sydney, NSW, Australia
| | - J S Keogh
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Acton, ACT, Australia
| |
Collapse
|
20
|
Wade J. Genetic regulation of sex differences in songbirds and lizards. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150112. [PMID: 26833833 DOI: 10.1098/rstb.2015.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 01/06/2023] Open
Abstract
Sex differences in the morphology of neural and peripheral structures related to reproduction often parallel the frequency of particular behaviours displayed by males and females. In a variety of model organisms, these sex differences are organized in development by gonadal steroids, which also act in adulthood to modulate behavioural expression and in some cases to generate parallel anatomical changes on a seasonal basis. Data collected from diverse species, however, suggest that changes in hormone availability are not sufficient to explain sex and seasonal differences in structure and function. This paper pulls together some of this literature from songbirds and lizards and considers the information in the broader context of taking a comparative approach to investigating genetic mechanisms associated with behavioural neuroendocrinology.
Collapse
Affiliation(s)
- Juli Wade
- Departments of Psychology and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Shors TJ, Tobόn K, DiFeo G, Durham DM, Chang HYM. Sexual Conspecific Aggressive Response (SCAR): A Model of Sexual Trauma that Disrupts Maternal Learning and Plasticity in the Female Brain. Sci Rep 2016; 6:18960. [PMID: 26804826 PMCID: PMC4726239 DOI: 10.1038/srep18960] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
Abstract
Sexual aggression can disrupt processes related to learning as females emerge from puberty into young adulthood. To model these experiences in laboratory studies, we developed SCAR, which stands for Sexual Conspecific Aggressive Response. During puberty, a rodent female is paired daily for 30-min with a sexually-experienced adult male. During the SCAR experience, the male tracks the anogenital region of the female as she escapes from pins. Concentrations of the stress hormone corticosterone were significantly elevated during and after the experience. Moreover, females that were exposed to the adult male throughout puberty did not perform well during training with an associative learning task nor did they learn well to express maternal behaviors during maternal sensitization. Most females that were exposed to the adult male did not learn to care for offspring over the course of 17 days. Finally, females that did not express maternal behaviors retained fewer newly-generated cells in their hippocampus whereas those that did express maternal behaviors retained more cells, most of which would differentiate into neurons within weeks. Together these data support SCAR as a useful laboratory model for studying the potential consequences of sexual aggression and trauma for the female brain during puberty and young adulthood.
Collapse
Affiliation(s)
- Tracey J Shors
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| | - Krishna Tobόn
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| | - Gina DiFeo
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| | - Demetrius M Durham
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| | - Han Yan M Chang
- Behavioral and Systems Neuroscience, Department of Psychology, Center for Collaborative Neuroscience, Rutgers University
| |
Collapse
|
22
|
Husak JF. Measuring Selection on Physiology in the Wild and Manipulating Phenotypes (in Terrestrial Nonhuman Vertebrates). Compr Physiol 2015; 6:63-85. [PMID: 26756627 DOI: 10.1002/cphy.c140061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To understand why organisms function the way that they do, we must understand how evolution shapes physiology. This requires knowledge of how selection acts on physiological traits in nature. Selection studies in the wild allow us to determine how variation in physiology causes variation in fitness, revealing how evolution molds physiology over evolutionary time. Manipulating phenotypes experimentally in a selection study shifts the distribution of trait variation in a population to better explore potential constraints and the adaptive value of physiological traits. There is a large database of selection studies in the wild on a variety of traits, but very few of those are physiological traits. Nevertheless, data available so far suggest that physiological traits, including metabolic rate, thermal physiology, whole-organism performance, and hormone levels, are commonly subjected to directional selection in nature, with stabilizing and disruptive selection less common than predicted if physiological traits are optimized to an environment. Selection studies on manipulated phenotypes, including circulating testosterone and glucocorticoid levels, reinforce this notion, but reveal that trade-offs between survival and reproduction or correlational selection can constrain the evolution of physiology. More studies of selection on physiological traits in nature that quantify multiple traits are necessary to better determine the manner in which physiological traits evolve and whether different types of traits (dynamic performance vs. regulatory) evolve differently.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
23
|
Golinski A, Kubička L, John-Alder H, Kratochvíl L. Androgenic control of male-typical behavior, morphology and sex recognition is independent of the mode of sex determination: A case study on Lichtenfelder's gecko (Eublepharidae: Goniurosaurus lichtenfelderi). Horm Behav 2015; 72:49-59. [PMID: 25967849 DOI: 10.1016/j.yhbeh.2015.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 11/21/2022]
Abstract
Previous work on lizards has shown that many sexually dimorphic traits depend on testosterone (T), but the details of this control can vary among species. Here, we tested the role of T on the expression of morphological, physiological, and behavioral traits in Lichtenfelder's gecko (Goniurosaurus lichtenfelderi), from the lizard family Eublepharidae notable for interspecific variation in sexually dimorphic traits and the mode of sex determination. Experiments included three groups of males (intact control, surgically castrated, castrated with T replacement) and two groups of females (intact control, T supplemented). In males, castration caused reductions in 1) the size of hemipenes, 2) offensive aggression, 3) male sexual behavior in a neutral arena, 4) activity of precloacal glands, and 5) loss of male chemical cues for sex recognition. These reductions were not observed in castrated males with T replacement. Interestingly, castrated males performed sexual behavior in their home cages, which shows that the effect of T depends on the environmental context. Notably, tail vibration, previously reported as a courtship behavior in other eublepharids, is displayed by males of G. lichtenfelderi during interactions with conspecifics of both sexes, suggesting an evolutionary shift in the meaning of this signal. In females, T induced growth of hemipenes and male-typical courtship but did not induce precloacal pore activity, aggression, or mounting. In comparison to previous reports on Eublepharis macularius, our results indicate that effects of T do not depend on the mode of sex determination. Further, our results extend our understanding of the complexity of control of male traits and illustrate how lability in the effects of T can be a general mechanism causing evolutionary changes in the components of suites of functionally correlated traits.
Collapse
Affiliation(s)
- Alison Golinski
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Lukáš Kubička
- Faculty of Science, Charles University in Prague, Department of Ecology, Viničná 7, 128 44 Praha 2, Czech Republic
| | - Henry John-Alder
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Lukáš Kratochvíl
- Faculty of Science, Charles University in Prague, Department of Ecology, Viničná 7, 128 44 Praha 2, Czech Republic.
| |
Collapse
|
24
|
Kerver HN, Wade J. Hormonal regulation of steroid receptor coactivator-1 mRNA in the male and female green anole brain. J Neuroendocrinol 2015; 27:223-33. [PMID: 25557947 DOI: 10.1111/jne.12249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/02/2023]
Abstract
Green anole lizards are seasonal breeders, with male sexual behaviour primarily regulated by an annual increase in testosterone. Morphological, biochemical and behavioural changes associated with reproduction are activated by testosterone, generally with a greater effect in the breeding season (BS) than in the nonbreeding season (NBS). The present study investigates the possibility that differences in a steroid receptor coactivator may regulate this seasonal difference in responsiveness to testosterone. In situ hybridisation was used to examine the expression of steroid receptor coactivator-1 (SRC-1) in the brains of gonadally intact male and female green anoles across breeding states. A second experiment examined gonadectomised animals with and without testosterone treatment. Gonadally intact males had more SRC-1 expressing cells in the preoptic area and larger volumes of this region as defined by these cells than females. Main effects of both sex and season (males > females and BS > NBS) were present in cell number and volume of the ventromedial hypothalamus. An interaction between sex and season suggested that high expression in BS males was driving these effects. In hormone-manipulated animals, testosterone treatment increased both the number of SRC-1 expressing cells in and volumes of the preoptic area and amygdala. These results suggest that testosterone selectively regulates SRC-1, and that this coactivator may play a role in facilitating reproductive behaviours across both sexes. However, changes in SRC-1 expression are not likely responsible for the seasonal change in responsiveness to testosterone.
Collapse
Affiliation(s)
- H N Kerver
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
25
|
Kerver HN, Wade J. Relationships among sex, season and testosterone in the expression of androgen receptor mRNA and protein in the green anole forebrain. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:303-14. [PMID: 25471151 DOI: 10.1159/000368388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022]
Abstract
Sexual behavior in male green anole lizards is regulated by a seasonal increase in testosterone (T). However, T is much more effective at activating behavioral, morphological and biochemical changes related to reproduction in the breeding season (BS; spring) compared to nonbreeding season (NBS; fall). An increase in androgen receptor (AR) during the BS is one potential mechanism for this differential responsiveness. AR expression has not been investigated in specific brain regions across seasons in anoles. The present studies were designed to determine relative AR expression in areas important for male (preoptic area, ventromedial amygdala) and female (ventromedial hypothalamus) sexual behavior, as well as whether T upregulates AR in the anole brain. In situ hybridization and Western blot analyses were performed in unmanipulated animals across sex and season, as well as in gonadectomized animals with and without T treatment. Among hormone-manipulated animals, more cells expressing AR mRNA were detected in females than males in the amygdala. T treatment increased the volume of the ventromedial hypothalamus of gonadectomized animals in the BS, but not the NBS. AR protein in dissections of the hypothalamus and preoptic area was increased in males compared to females specifically in the BS. Additionally, among females, it was increased in the NBS compared to the BS. Collectively, these results indicate that differences in central AR expression probably do not facilitate a seasonal responsiveness to T. However, they are consistent with a role for AR in regulating some differences between sexes in the display of reproductive behaviors.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, Mich., USA
| | | |
Collapse
|
26
|
Husak JF, Lovern MB. Variation in steroid hormone levels among Caribbean Anolis lizards: endocrine system convergence? Horm Behav 2014; 65:408-15. [PMID: 24662425 DOI: 10.1016/j.yhbeh.2014.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 03/12/2014] [Accepted: 03/15/2014] [Indexed: 11/17/2022]
Abstract
Variation in aggression among species can be due to a number of proximate and ultimate factors, leading to patterns of divergent and convergent evolution of behavior among even closely related species. Caribbean Anolis lizards are well known for their convergence in microhabitat use and morphology, but they also display marked convergence in social behavior and patterns of aggression. We studied 18 Anolis species across six ecomorphs on four different Caribbean islands to test four main hypotheses. We hypothesized that species differences in aggression would be due to species differences in circulating testosterone (T), a steroid hormone implicated in numerous studies across vertebrate taxa as a primary determinant of social behavior; more aggressive species were expected to have higher baseline concentrations of T and corticosterone. We further hypothesized that low-T species would increase T and corticosterone levels during a social challenge. Within three of the four island assemblages studied we found differences in T levels among species within an island that differ in aggression, but in the opposite pattern than predicted: more aggressive species had lower baseline T than the least aggressive species. The fourth island, Puerto Rico, showed the pattern of baseline T levels among species we predicted. There were no patterns of corticosterone levels among species or ecomorphs. One of the two species tested increased T in response to a social challenge, but neither species elevated corticosterone. Our results suggest that it is possible for similarities in aggression among closely related species to evolve via different proximate mechanisms.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA; Department of Zoology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Matthew B Lovern
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA; Department of Zoology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
27
|
Kabelik D, Alix VC, Singh LJ, Johnson AL, Choudhury SC, Elbaum CC, Scott MR. Neural activity in catecholaminergic populations following sexual and aggressive interactions in the brown anole, Anolis sagrei. Brain Res 2014; 1553:41-58. [PMID: 24472578 DOI: 10.1016/j.brainres.2014.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/16/2014] [Indexed: 01/01/2023]
Abstract
Social behaviors in vertebrates are modulated by catecholamine (CA; dopamine, norepinephrine, epinephrine) release within the social behavior neural network. Few studies have examined activity across CA populations in relation to social behaviors. The involvement of CAs in social behavior regulation is especially underexplored in reptiles, relative to other amniotes. In this study, we mapped CA populations throughout the brain (excluding retina and olfactory bulb) of the male brown anole lizard, Anolis sagrei, via immunofluorescent visualization of the rate-limiting enzyme for CA synthesis, tyrosine hydroxylase (TH). Colocalization of TH with the immediate early gene product Fos, an indirect marker of neural activity, also enabled us to relate activity in TH-immunoreactive (TH-ir) neurons to appetitive and consummatory sexual and aggressive behaviors. We detected most major TH-ir cell populations that are present in other amniotes (within the hypothalamus, midbrain, and hindbrain), although the A15 population was entirely absent. We also detected a few novel or rare cell clusters within the amygdala, medial septum, and inferior raphe. Many CA populations, especially dopaminergic groups, showed increased TH-Fos colocalization in association with appetitive and consummatory sexual behavior expression, while a small number of regions showed increased colocalization in relation to solely consummatory aggression (biting of an opponent). In conclusion, we here map CA populations throughout the brown anole brain and demonstrate evidence for catecholaminergic involvement in appetitive and consummatory sexual behaviors and consummatory aggressive behaviors in this species.
Collapse
Affiliation(s)
- David Kabelik
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA.
| | - Veronica C Alix
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Leah J Singh
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Alyssa L Johnson
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Shelley C Choudhury
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Caroline C Elbaum
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| | - Madeline R Scott
- Department of Biology, Rhodes College, 2000 N Parkway, Memphis, TN 38112, USA
| |
Collapse
|
28
|
Kerver HN, Wade J. Seasonal and sexual dimorphisms in expression of androgen receptor and its coactivators in brain and peripheral copulatory tissues of the green anole. Gen Comp Endocrinol 2013; 193:56-67. [PMID: 23892016 DOI: 10.1016/j.ygcen.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/14/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
Green anoles are seasonally breeding lizards, with an annual rise in testosterone (T) being the primary activator of male sexual behaviors. Responsiveness to T is decreased in the non-breeding season (NBS) compared to breeding season (BS) on a variety of levels, including displays of reproductive behavior and the morphology and biochemistry of associated tissues. To evaluate the possibility that seasonal changes in responsiveness to T are regulated by androgen receptors (AR) and/or two of its coactivators, CREB binding protein (CBP) and steroid receptor coactivator-1 (SRC-1), we tested whether they differ in expression across season in brains of both sexes and in peripheral copulatory tissues of males (hemipenis and retractor penis magnus muscle). AR mRNA was increased in the brains of males compared to females and in copulatory muscle in the BS compared to NBS. In the hemipenis, transcriptional activity appeared generally diminished in the NBS. T-treatment increased AR mRNA in the copulatory muscle and AR protein in the hemipenis, the latter to a greater extent in the BS than the NBS. T also decreased SRC-1 protein in hemipenis. Interpretations are complicated, in part because levels of mRNA and protein expression were not correlated and multiple sizes of the AR and CBP proteins were detected, with some tissue specificity. However, the results are consistent with the idea that differences in receptor and coactivator expression at central and peripheral levels may play roles in regulating sex and seasonal differences in the motivation or physical ability to engage in sexual behavior.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, United States.
| | | |
Collapse
|
29
|
Schlinger BA, Barske J, Day L, Fusani L, Fuxjager MJ. Hormones and the neuromuscular control of courtship in the golden-collared manakin (Manacus vitellinus). Front Neuroendocrinol 2013; 34:143-56. [PMID: 23624091 PMCID: PMC3995001 DOI: 10.1016/j.yfrne.2013.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022]
Abstract
Many animals engage in spectacular courtship displays, likely recruiting specialized neural, hormonal and muscular systems to facilitate these performances. Male golden-collared manakins (Manacus vitellinus) of Panamanian rainforests perform physically elaborate courtship displays that include novel forms of visual and acoustic signaling. We study the behavioral neuroendocrinology of this male's courtship, combining field behavioral observations with anatomical, biochemical and molecular laboratory-based studies. Seasonally, male courtship is activated by testosterone with little correspondence between testosterone levels and display intensity. Females prefer males whose displays are exceptionally frequent, fast and accurate. The activation of androgen receptors (AR) is crucial for optimal display performance, with AR expressed at elevated levels in several neuromuscular tissues. Apparently, courtship enlists an elaborate androgen-dependent network that includes spinal motoneurons, skeletal muscles and somatosensory systems. This work highlights the value of studying non-traditional species to illuminate physiological adaptations and, hopefully, stimulates future research on other species with complex behaviors.
Collapse
Affiliation(s)
- Barney A Schlinger
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
Neural steroids, as well as the enzymes that produce these hormones, are important for sexual differentiation of the brain during development. Aromatase converts testosterone into oestradiol. 5α-reductase converts testosterone to 5α-dihydrotestosterone and occurs in two isozymes: type 1 (5αR1) and type 2 (5αR2). Each of these enzymes is present in the developing brain in many species, although no work has been carried out examining the expression of all three enzymes in non-avian reptiles with genetic sex determination. In the present study, we evaluated mRNA expression of neural aromatase, 5αR1 and 5αR2, on the day of hatching and at day 50 in one such lizard, the green anole. We describe the distribution of these enzymes throughout the brain and the quantification of mRNA expression in three regions that control adult sexual behaviours: the preoptic area (POA) and ventromedial amygdala (AMY), which are involved in male displays, as well as the ventromedial hypothalamus, which regulates female receptivity. Younger animals had a greater number (POA) and density (AMY) of 5αR1 mRNA expressing cells. We detected no effects of sex or age on aromatase or 5αR2. In comparison with data from adults, the present results support the idea that the green anole forebrain has not completely differentiated by 50 days after hatching and that 5αR1 may play a role in the early development of regions important for masculine function.
Collapse
Affiliation(s)
- R E Cohen
- Department of Zoology, Michigan State University, East Lansing, MI, USA.
| | | |
Collapse
|
31
|
O'Connell LA, Mitchell MM, Hofmann HA, Crews D. Androgens coordinate neurotransmitter-related gene expression in male whiptail lizards. GENES BRAIN AND BEHAVIOR 2012; 11:813-8. [PMID: 22862958 DOI: 10.1111/j.1601-183x.2012.00828.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/24/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022]
Abstract
Sex steroid hormones coordinate neurotransmitter systems in the male brain to facilitate sexual behavior. Although neurotransmitter release in the male brain has been well documented, little is known about how androgens orchestrate changes in gene expression of neurotransmitter receptors. We used male whiptail lizards (Cnemidophorus inornatus) to investigate how androgens alter neurotransmitter-related gene expression in brain regions involved in social decision making. We focused on three neurotransmitter systems involved in male-typical sexual behavior, including the N-methyl-d-aspartate (NMDA) glutamate receptor, nitric oxide and dopamine receptors. Here, we show that in androgen-treated males, there are coordinated changes in neurotransmitter-related gene expression. In androgen-implanted castrates compared with blank-implanted castrates (control group), we found associated increases in neuronal nitric oxide synthase gene expression in the nucleus accumbens (NAcc), preoptic area and ventromedial hypothalamus, a decrease of NR1 gene expression (obligate subunit of NMDA receptors) in the medial amygdaloid area and NAcc and a decrease in D1 and D2 dopamine receptor gene expression in the NAcc. Our results support and expand the current model of androgen-mediated gene expression changes of neurotransmitter-related systems that facilitate sexual behavior in males. This also suggests that the proposed evolutionarily ancient reward system that reinforces sexual behavior in amniote vertebrates extends to reptiles.
Collapse
Affiliation(s)
- L A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | | | | | | |
Collapse
|
32
|
García-Muñoz E, Gomes V, Carretero MA. Lateralization in refuge selection in Podarcis hispanica at different hierarchical levels. Behav Ecol 2012. [DOI: 10.1093/beheco/ars058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Wade J. Sculpting reproductive circuits: relationships among hormones, morphology and behavior in anole lizards. Gen Comp Endocrinol 2012; 176:456-60. [PMID: 22202602 DOI: 10.1016/j.ygcen.2011.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/09/2011] [Accepted: 12/11/2011] [Indexed: 11/15/2022]
Abstract
Morphology parallels function on a variety of levels in reproductive circuits in anole lizards, as in many vertebrate groups. For example, across species within the anole genus the muscle fibers regulating extension of a throat fan used in courtship are larger in males than females. Endocrine factors controlling behavior and morphology have been studied in detail in one species, the green anole (Anolis carolinensis). This review briefly describes the results that have been obtained and highlights key areas for future investigation that will provide insights on mechanisms from a comparative perspective.
Collapse
Affiliation(s)
- Juli Wade
- Department of Psychology, Program in Neuroscience, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824-1101, USA.
| |
Collapse
|
34
|
Cohen RE, Wade J. Aromatase and 5α-reductase type 2 mRNA in the green anole forebrain: an investigation of the effects of sex, season and testosterone manipulation. Gen Comp Endocrinol 2012; 176:377-84. [PMID: 22326351 PMCID: PMC3334470 DOI: 10.1016/j.ygcen.2012.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/21/2022]
Abstract
Aromatase and 5α-reductase (5αR) catalyze the synthesis of testosterone (T) metabolites: estradiol and 5α-dihydrotestosterone, respectively. These enzymes are important in controlling sexual behaviors in male and female vertebrates. To investigate factors contributing to their regulation in reptiles, male and female green anole lizards were gonadectomized during the breeding and non-breeding seasons and treated with a T-filled or blank capsule. In situ hybridization was used to examine main effects of and interactions among sex, season, and T on expression of aromatase and one isozyme of 5αR (5αR2) in three brain regions that control reproductive behaviors: the preoptic area, ventromedial nucleus of the amygdala and ventromedial hypothalamus (VMH). Patterns of mRNA generally paralleled previous evaluations of intact animals. Although no main effects of T were detected, interactions were present in the VMH. Specifically, the density of 5αR2 expressing cells was greater in T-treated than control females in this region, regardless of season. Among breeding males, blank-treated males had a denser population of 5αR2 positive cells than T-treated males. Overall, T appears to have less of a role in the regulation of these enzymes than in other vertebrate groups, which is consistent with the primary role of T (rather than its metabolites) in regulation of reproductive behaviors in lizards. However, further investigation of protein and enzyme activity levels are needed before specific conclusions can be drawn.
Collapse
Affiliation(s)
- Rachel E Cohen
- Department of Zoology, Michigan State University, East Lansing, MI 48824-1101, United States.
| | | |
Collapse
|