1
|
Lipshutz SE, Hibbins MS, Bentz AB, Buechlein AM, Empson TA, George EM, Hauber ME, Rusch DB, Schelsky WM, Thomas QK, Torneo SJ, Turner AM, Wolf SE, Woodruff MJ, Hahn MW, Rosvall KA. Repeated behavioural evolution is associated with convergence of gene expression in cavity-nesting songbirds. Nat Ecol Evol 2025:10.1038/s41559-025-02675-x. [PMID: 40295778 DOI: 10.1038/s41559-025-02675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025]
Abstract
Uncovering the genomic bases of phenotypic adaptation is a major goal in biology, but this has been hard to achieve for complex behavioural traits. Here we leverage the repeated, independent evolution of obligate cavity nesting in birds to test the hypothesis that pressure to compete for a limited breeding resource has facilitated convergent evolution in behaviour, hormones and gene expression. We used an integrative approach, combining aggression assays in the field, testosterone measures and transcriptome-wide analyses of the brain in wild-captured females and males. Our experimental design compared species pairs across five avian families, each including one obligate cavity-nesting species and a related species with a more flexible nest strategy. We find behavioural convergence, with higher levels of territorial aggression in obligate cavity nesters, particularly among females. Across species, levels of testosterone in circulation were not associated with nest strategy nor aggression. Phylogenetic analyses of individual genes and co-regulated gene networks revealed more shared patterns of brain gene expression than expected by drift, although the scope of convergent gene expression evolution was limited to a small percentage of the genome. When comparing our results to other studies that did not use phylogenetic methods, we suggest that accounting for shared evolutionary history may reduce the number of genes inferred as convergently evolving. Altogether, we find that behavioural convergence in response to shared ecological pressures is associated with largely independent evolution of gene expression across different avian families, punctuated by a narrow set of convergently evolving genes.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN, USA.
- Department of Biology, Loyola University Chicago, Chicago, IL, USA.
- Department of Biology, Duke University, Durham, NC, USA.
| | - Mark S Hibbins
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Aaron M Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Tara A Empson
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth M George
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Advanced Science Research Center and Programs in Biology and in Psychology, Graduate Center of the City University of New York, New York, NY, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Wendy M Schelsky
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
- The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Quinn K Thomas
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Samuel J Torneo
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Abbigail M Turner
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sarah E Wolf
- Department of Biology, Indiana University, Bloomington, IN, USA
- School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mary J Woodruff
- Department of Biology, Indiana University, Bloomington, IN, USA
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, CO, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
2
|
Rosvall KA. Adaptations in surprising places. Science 2025; 387:358-359. [PMID: 39847649 DOI: 10.1126/science.adv1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Testosterone is controlled while it circulates in the bloodstream.
Collapse
|
3
|
Farrar VS. Revisiting the specific and potentially independent role of the gonad in hormone regulation and reproductive behavior. J Exp Biol 2024; 227:jeb247686. [PMID: 39508240 DOI: 10.1242/jeb.247686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Gonadal sex steroid hormones are well-studied modulators of reproductive physiology and behavior. Recent behavioral endocrinology research has focused on how the brain dynamically responds to - and may even produce - sex steroids, but the gonadal tissues that primarily release these hormones receive much less attention as a potential mediator of behavioral variation. This Commentary revisits mechanisms by which the reproductive hypothalamic-pituitary-gonadal (HPG) axis can be modulated specifically at the gonadal level. These mechanisms include those that may allow the gonad to be regulated independently of the HPG axis, such as receptors for non-HPG hormones, neural inputs and local production of conventional 'neuropeptides'. Here, I highlight studies that examine variation in these gonadal mechanisms in diverse taxa, with an emphasis on recent transcriptomic work. I then outline how future work can establish functional roles of gonadal mechanisms in reproductive behavior and evaluate gonad responsiveness to environmental cues. When integrated with neural mechanisms, further investigation of gonadal hormone regulation can yield new insight into the control and evolution of steroid-mediated traits, including behavior.
Collapse
Affiliation(s)
- Victoria S Farrar
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Robinson CD, Hale MD, Cox CL, John-Alder HB, Cox RM. Effects of Testosterone on Gene Expression Are Concordant between Sexes but Divergent across Species of Sceloporus Lizards. Am Nat 2024; 204:517-532. [PMID: 39486031 DOI: 10.1086/732200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
AbstractHormones mediate sexual dimorphism by regulating sex-specific patterns of gene expression, but it is unclear how much of this regulation involves sex-specific hormone levels versus sex-specific transcriptomic responses to the same hormonal signal. Moreover, transcriptomic responses to hormones can evolve, but the extent to which hormonal pleiotropy in gene regulation is conserved across closely related species is not well understood. We addressed these issues by elevating testosterone levels in juvenile females and males of three Sceloporus lizard species before sexual divergence in circulating testosterone and then characterizing transcriptomic responses in the liver. In each species, more genes were responsive to testosterone in males than in females, suggesting that early developmental processes prime sex-specific transcriptomic responses to testosterone later in life. However, overall transcriptomic responses to testosterone were concordant between sexes, with no genes exhibiting sex-by-treatment interactions. By contrast, hundreds of genes exhibited species-by-treatment interactions, particularly when comparing distantly related species with different patterns of sexual dimorphism, suggesting evolutionary lability in gene regulation by testosterone. Collectively, our results indicate that early organizational effects may lead to sex-specific differences in the magnitude, but not the direction, of transcriptomic responses to testosterone and that the hormone-genome interface accrues regulatory changes over evolutionary time.
Collapse
|
5
|
Mangiamele LA, Dawn A, LeCure KM, Mantica GE, Racicot R, Fuxjager MJ, Preininger D. How new communication behaviors evolve: Androgens as modifiers of neuromotor structure and function in foot-flagging frogs. Horm Behav 2024; 161:105502. [PMID: 38382227 DOI: 10.1016/j.yhbeh.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
How diverse animal communication signals have arisen is a question that has fascinated many. Xenopus frogs have been a model system used for three decades to reveal insights into the neuroendocrine mechanisms and evolution of vocal diversity. Due to the ease of studying central nervous system control of the laryngeal muscles in vitro, Xenopus has helped us understand how variation in vocal communication signals between sexes and between species is produced at the molecular, cellular, and systems levels. Yet, it is becoming easier to make similar advances in non-model organisms. In this paper, we summarize our research on a group of frog species that have evolved a novel hind limb signal known as 'foot flagging.' We have previously shown that foot flagging is androgen dependent and that the evolution of foot flagging in multiple unrelated species is accompanied by the evolution of higher androgen hormone sensitivity in the leg muscles. Here, we present new preliminary data that compare patterns of androgen receptor expression and neuronal cell density in the lumbar spinal cord - the neuromotor system that controls the hind limb - between foot-flagging and non-foot-flagging frog species. We then relate our work to prior findings in Xenopus, highlighting which patterns of hormone sensitivity and neuroanatomical structure are shared between the neuromotor systems underlying Xenopus vocalizations and foot-flagging frogs' limb movement and which appear to be species-specific. Overall, we aim to illustrate the power of drawing inspiration from experiments in model organisms, in which the mechanistic details have been worked out, and then applying these ideas to a non-model species to reveal new details, further complexities, and fresh hypotheses.
Collapse
Affiliation(s)
- Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America.
| | - AllexAndrya Dawn
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Kerry M LeCure
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Gina E Mantica
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Riccardo Racicot
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, United States of America
| | - Doris Preininger
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria; Vienna Zoo, Vienna, Austria
| |
Collapse
|
6
|
Taff CC, Baldan D, Mentesana L, Ouyang JQ, Vitousek MN, Hau M. Endocrine flexibility can facilitate or constrain the ability to cope with global change. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220502. [PMID: 38310929 PMCID: PMC10838644 DOI: 10.1098/rstb.2022.0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024] Open
Abstract
Global climate change has increased average environmental temperatures world-wide, simultaneously intensifying temperature variability and extremes. Growing numbers of studies have documented phenological, behavioural and morphological responses to climate change in wild populations. As systemic signals, hormones can contribute to orchestrating many of these phenotypic changes. Yet little is known about whether mechanisms like hormonal flexibility (reversible changes in hormone concentrations) facilitate or limit the ability of individuals, populations and species to cope with a changing climate. In this perspective, we discuss different mechanisms by which hormonal flexibility, primarily in glucocorticoids, could promote versus hinder evolutionary adaptation to changing temperature regimes. We focus on temperature because it is a key gradient influenced by climate change, it is easy to quantify, and its links to hormones are well established. We argue that reaction norm studies that connect individual responses to population-level and species-wide patterns will be critical for making progress in this field. We also develop a case study on urban heat islands, where several key questions regarding hormonal flexibility and adaptation to climate change can be addressed. Understanding the mechanisms that allow animals to cope when conditions become more challenging will help in predicting which populations are vulnerable to ongoing climate change. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Conor C. Taff
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, Colby College, Waterville, ME 04901, USA
| | - Davide Baldan
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Lucia Mentesana
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Faculty of Sciences, Republic University, Montevideo, 11200, Uruguay
| | - Jenny Q. Ouyang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Maren N. Vitousek
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michaela Hau
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Department of Biology, University of Konstanz, Konstanz, 78467, Germany
| |
Collapse
|
7
|
Munley KM, Sinkiewicz DM, Szwed SM, Demas GE. Sex and seasonal differences in neural steroid sensitivity predict territorial aggression in Siberian hamsters. Horm Behav 2023; 154:105390. [PMID: 37354601 PMCID: PMC10527453 DOI: 10.1016/j.yhbeh.2023.105390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 06/26/2023]
Abstract
Many animals display marked changes in physiology and behavior on a seasonal timescale, including non-reproductive social behaviors (e.g., aggression). Previous studies from our lab suggest that the pineal hormone melatonin acts via steroid hormones to regulate seasonal aggression in Siberian hamsters (Phodopus sungorus), a species in which both males and females display increased non-breeding aggression. The neural actions of melatonin on steroids and aggressive behavior, however, are relatively unexplored. Here, we housed male and female hamsters in long-day photoperiods (LDs, characteristic of breeding season) or short-day photoperiods (SDs, characteristic of non-breeding season) and administered timed melatonin (M) or control injections. Following 10 weeks of treatment, we quantified aggressive behavior and neural steroid sensitivity by measuring the relative mRNA expression of two steroidogenic enzymes (aromatase and 5α-reductase 3) and estrogen receptor 1 in brain regions associated with aggression or reproduction [medial preoptic area (MPOA), anterior hypothalamus (AH), arcuate nucleus (ARC), and periaqueductal gray (PAG)] via quantitative PCR. Although LD-M and SD males and females displayed increased aggression and similar changes in gene expression in the ARC, there were sex-specific effects of treatment with melatonin and SDs on gene expression in the MPOA, AH, and PAG. Furthermore, males and females exhibited different relationships between neural gene expression and aggression in response to melatonin and SDs. Collectively, these findings support a role for melatonin in regulating seasonal variation in neural steroid sensitivity and aggression and reveal how distinct neuroendocrine responses may modulate a similar behavioral phenotype in male and female hamsters.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA; Department of Psychology, University of Houston, Houston, TX 77204, USA.
| | - David M Sinkiewicz
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Sydney M Szwed
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Vitousek MN, Dantzer B, Fuxjager MJ, Schlinger BA. Evolutionary behavioral endocrinology: Introduction to the special issue. Horm Behav 2023; 152:105356. [PMID: 37031556 DOI: 10.1016/j.yhbeh.2023.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, United States of America; Cornell Lab of Ornithology, Ithaca, NY 14850, United States of America
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States of America; Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, United States of America
| | - Barney A Schlinger
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, United States of America; Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095, United States of America.
| |
Collapse
|
9
|
Zimmer C, Taff CC, Ardia DR, Rosvall KA, Kallenberg C, Bentz AB, Taylor AR, Johnson LS, Vitousek MN. Gene expression in the female tree swallow brain is associated with inter- and intra-population variation in glucocorticoid levels. Horm Behav 2023; 147:105280. [PMID: 36403365 DOI: 10.1016/j.yhbeh.2022.105280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 10/12/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022]
Abstract
Studies of the evolutionary causes and consequences of variation in circulating glucocorticoids (GCs) have begun to reveal how they are shaped by selection. Yet the extent to which variation in circulating hormones reflects variation in other important regulators of the hypothalamic-pituitary-adrenal (HPA) axis, and whether these relationships vary among populations inhabiting different environments, remain poorly studied. Here, we compare gene expression in the brain of female tree swallows (Tachycineta bicolor) from populations that breed in environments that differ in their unpredictability. We find evidence of inter-population variation in the expression of glucocorticoid and mineralocorticoid receptors in the hypothalamus, with the highest gene expression in a population from an extreme environment, and lower expression in a population from a more consistent environment as well as in birds breeding at an environmentally variable high-altitude site that are part of a population that inhabits a mixture of high and low altitude habitats. Within some populations, variation in circulating GCs predicted differences in gene expression, particularly in the hypothalamus. However, some patterns were present in all populations, whereas others were not. These results are consistent with the idea that some combination of local adaptation and phenotypic plasticity may modify components of the HPA axis affecting stress resilience. Our results also underscore that a comprehensive understanding of the function and evolution of the stress response cannot be gained from measuring circulating hormones alone, and that future studies that apply a more explicitly evolutionary approach to important regulatory traits are likely to provide significant insights.
Collapse
Affiliation(s)
- Cedric Zimmer
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France.
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| | - Daniel R Ardia
- Department of Biology, Franklin and Marshall College, Lancaster, PA 17604, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Christine Kallenberg
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alexandra B Bentz
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA; Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Audrey R Taylor
- Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - L Scott Johnson
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA; Cornell Lab of Ornithology, Ithaca, NY 14850, USA
| |
Collapse
|