1
|
Morris GM, Ariyaratnam JP. Embryology of the Cardiac Conduction System Relevant to Arrhythmias. Card Electrophysiol Clin 2019; 11:409-420. [PMID: 31400866 DOI: 10.1016/j.ccep.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Embryogenesis of the heart involves the complex cellular differentiation of slow-conducting primary myocardium into the rapidly conducting chamber myocardium of the adult. However, small areas of relatively undifferentiated cells remain to form components of the adult cardiac conduction system (CCS) and nodal tissues. Further investigation has revealed additional areas of nodal-like tissues outside of the established CCS. The embryologic origins of these areas are similar to those of the adult CCS. Under pathologic conditions, these areas can give rise to important clinical arrhythmias. Here, we review the embryologic basis for these proarrhythmic structures within the heart.
Collapse
Affiliation(s)
- Gwilym M Morris
- Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK.
| | - Jonathan P Ariyaratnam
- Cardiovascular Sciences, University of Manchester, Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
2
|
Gorabi AM, Hajighasemi S, Khori V, Soleimani M, Rajaei M, Rabbani S, Atashi A, Ghiaseddin A, Saeid AK, Ahmadi Tafti H, Sahebkar A. Functional biological pacemaker generation by T-Box18 protein expression via stem cell and viral delivery approaches in a murine model of complete heart block. Pharmacol Res 2019; 141:443-450. [PMID: 30677516 DOI: 10.1016/j.phrs.2019.01.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 11/26/2022]
Abstract
Despite recent advances in the treatment of cardiac arrhythmia, the available options are still limited and associated with some complications. Induction of biological pacemakers via Tbx18 gene insertion in the heart tissue has been suggested as a promising therapeutic strategy for cardiac arrhythmia. Following a previous in vitro study reporting the production of Tbx18-expressing human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), we aimed to investigate the efficacy of these engineered cells to generate pacemaker rhythms in a murine model of complete heart block. We also attempted to generate a functional pacemaker by Tbx18 overexpression in native cardiac cells of rat heart. The hiPSC-derived pacemaker cells were produced by lentiviral delivery of Tbx18 gene to stem cells during a small molecule-based differentiation process. In the present study, 16 male albino Wistar rats were randomly assigned to Tbx18-lentivirus (n = 4) and Tbx18-pacemaker cells (n = 4) administered via injection into the left ventricular anterolateral wall. The control rats received GFP-lentiviruses (n = 4) and GFP-pacemaker cells (n = 4). Fourteen days after the injection, the rats were sacrificed and analyzed by electrocardiography (ECG) recording using a Langendorff-perfused heart model following complete heart block induced by hypokalemia and crashing. Immunofluorescence staining was used to investigate the expression of Tbx18, HCN4 and connexin 43 (Cx43) proteins in Tbx18-delivered cells of heart tissues. The heart rate was significantly reduced after complete heart block in all of the experimental rats (P < 0.05). Heart beating in the Tbx18-transduced hearts was slower compared with rats receiving Tbx18-pacemaker cells (P = 0.04). The duration of ventricular fibrillation (VF) was higher in the lentiviral Tbx18 group compared with the GFP-injected controls (P = 0.02) and the Tbx18-pacemaker cell group (P = 0.02). The ECG recording data showed spontaneous pacemaker rhythms in both intervention groups with signal propagation in Tbx18-transduced ventricles. Immunostaining results confirmed the overexpression of HCN4 and downregulation of Cx43 as a result of the expression of the Tbx18 gene and spontaneously contracting myocyte formation. We confirmed the formation of a functional pacemaker after introduction of Tbx18 via cell and gene therapy strategies. Although the pacemaker activity was better in gene-received hearts since there were longer VF duration and signal propagation from the injection site, more data should be gathered from the long-term activity of such pacemakers in different hosts.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Iran
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Rajaei
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Ali Kazemi Saeid
- Department of Cardiology, Tehran University of Medical Science, Tehran, Iran; Research Department, Laboratory of Dr. Stanley Nattel, Montreal Heart Institute Research Center, Montreal University, Montreal, Canada.
| | - Hossein Ahmadi Tafti
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Tehran, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Tehran, Iran; School of Medicine, Mashhad University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Sharpe EJ, Larson ED, Proenza C. Cyclic AMP reverses the effects of aging on pacemaker activity and If in sinoatrial node myocytes. J Gen Physiol 2017; 149:237-247. [PMID: 28057842 PMCID: PMC5299620 DOI: 10.1085/jgp.201611674] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
Aging reduces pacemaker activity and shifts the voltage dependence of activation of the funny current, If, in sinoatrial node myocytes. Sharpe et al. find that these effects of aging can be reversed by application of exogenous cAMP but not by stimulation of endogenous cAMP. Aerobic capacity decreases with age, in part because of an age-dependent decline in maximum heart rate (mHR) and a reduction in the intrinsic pacemaker activity of the sinoatrial node of the heart. Isolated sinoatrial node myocytes (SAMs) from aged mice have slower spontaneous action potential (AP) firing rates and a hyperpolarizing shift in the voltage dependence of activation of the “funny current,” If. Cyclic AMP (cAMP) is a critical modulator of both AP firing rate and If in SAMs. Here, we test the ability of endogenous and exogenous cAMP to overcome age-dependent changes in acutely isolated murine SAMs. We found that maximal stimulation of endogenous cAMP with 3-isobutyl-1-methylxanthine (IBMX) and forskolin significantly increased AP firing rate and depolarized the voltage dependence of activation of If in SAMs from both young and aged mice. However, these changes were insufficient to overcome the deficits in aged SAMs, and significant age-dependent differences in AP firing rate and If persisted in the presence of IBMX and forskolin. In contrast, the effects of aging on SAMs were completely abolished by a high concentration of exogenous cAMP, which restored AP firing rate and If activation to youthful levels in cells from aged animals. Interestingly, the age-dependent differences in AP firing rates and If were similar in whole-cell and perforated-patch recordings, and the hyperpolarizing shift in If persisted in excised inside-out patches, suggesting a limited role for cAMP in causing these changes. Collectively, the data indicate that aging does not impose an absolute limit on pacemaker activity and that it does not act by simply reducing the concentration of freely diffusible cAMP in SAMs.
Collapse
Affiliation(s)
- Emily J Sharpe
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Eric D Larson
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045 .,Department of Medicine, Division of Cardiology, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
4
|
Benes J, Ammirabile G, Sankova B, Campione M, Krejci E, Kvasilova A, Sedmera D. The role of connexin40 in developing atrial conduction. FEBS Lett 2014; 588:1465-9. [PMID: 24486905 DOI: 10.1016/j.febslet.2014.01.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
Abstract
Connexin40 (Cx40) is the main connexin expressed in the murine atria and ventricular conduction system. We assess here the developmental role of Cx40 in atrial conduction of the mouse. Cx40 deficiency significantly prolonged activation times in embryonic day 10.5, 12.5 and 14.5 atria during spontaneous activation; the severity decreased with increasing age. In a majority of Cx40 deficient mice the impulse originated from an ectopic focus in the right atrial appendage; in such a case the activation time was even longer due to prolonged activation. Cx40 has thus an important physiological role in the developing atria.
Collapse
Affiliation(s)
- Jiri Benes
- Department of Cardiovascular Morphogenesis, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, Prague, Czech Republic; Charles University in Prague, First Faculty of Medicine, Department of Radiology of the First Faculty of Medicine and General Teaching Hospital, U Nemocnice 2, Prague, Czech Republic.
| | - Grazia Ammirabile
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35121, Italy
| | - Barbora Sankova
- Department of Cardiovascular Morphogenesis, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, Prague, Czech Republic
| | - Marina Campione
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35121, Italy
| | - Eliska Krejci
- Department of Cardiovascular Morphogenesis, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, Prague, Czech Republic
| | - Alena Kvasilova
- Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, Prague, Czech Republic
| | - David Sedmera
- Department of Cardiovascular Morphogenesis, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, U Nemocnice 3, Prague, Czech Republic
| |
Collapse
|
5
|
Hashem SI, Lam ML, Mihardja SS, White SM, Lee RJ, Claycomb WC. Shox2 regulates the pacemaker gene program in embryoid bodies. Stem Cells Dev 2013; 22:2915-26. [PMID: 23767866 DOI: 10.1089/scd.2013.0123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The pacemaker tissues of the heart are a complex set of specialized cells that initiate the rhythmic heartbeat. The sinoatrial node (SAN) serves as the primary pacemaker, whereas the atrioventricular node can serve as a subsidiary pacemaker in cases of SAN failure or block. The elucidation of genetic networks regulating the development of these tissues is crucial for understanding the mechanisms underlying arrhythmias and for the design of targeted therapies. Here we report temporal and spatial self-organized formation of the pacemaker and contracting tissues in three-dimensional aggregate cultures of mouse embryonic stem cells termed embryoid bodies (EBs). Using genetic marker expression and electrophysiological analyses we demonstrate that in EBs the pacemaker potential originates from a localized population of cells and propagates into the adjacent contracting region forming a functional syncytium. When Shox2, a major determinant of the SAN genetic pathway, was ablated we observed substantial slowing of spontaneous contraction rates and an altered gene expression pattern including downregulation of HCN4, Cx45, Tbx2, Tbx3, and bone morphogenetic protein 4 (BMP4); and upregulation of Cx40, Cx43, Nkx2.5, and Tbx5. This phenotype could be rescued by adding BMP4 to Shox2 knockout EBs in culture from days 6 to 16 of differentiation. When wild-type EBs were treated with Noggin, a potent BMP4 inhibitor, we observed a phenotype consistent with the Shox2 knockout EB. Altogether, we have generated a reproducible in vitro model that will be an invaluable tool for studying the molecular pathways regulating the development of cardiac pacemaker tissues.
Collapse
Affiliation(s)
- Sherin I Hashem
- 1 Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | | | | | | | | | | |
Collapse
|
6
|
Liang X, Wang G, Lin L, Lowe J, Zhang Q, Bu L, Chen Y, Chen J, Sun Y, Evans SM. HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res 2013; 113:399-407. [PMID: 23743334 DOI: 10.1161/circresaha.113.301588] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE To date, there has been no specific marker of the first heart field to facilitate understanding of contributions of the first heart field to cardiac lineages. Cardiac arrhythmia is a leading cause of death, often resulting from abnormalities in the cardiac conduction system (CCS). Understanding origins and identifying markers of CCS lineages are essential steps toward modeling diseases of the CCS and for development of biological pacemakers. OBJECTIVE To investigate HCN4 as a marker for the first heart field and for precursors of distinct components of the CCS, and to gain insight into contributions of first and second heart lineages to the CCS. METHODS AND RESULTS HCN4CreERT2, -nuclear LacZ, and -H2BGFP mouse lines were generated. HCN4 expression was examined by means of immunostaining with HCN4 antibody and reporter gene expression. Lineage studies were performed using HCN4CreERT2, Isl1Cre, Nkx2.5Cre, and Tbx18Cre, coupled to coimmunostaining with CCS markers. Results demonstrated that, at cardiac crescent stages, HCN4 marks the first heart field, with HCN4CreERT2 allowing assessment of cell fates adopted by first heart field myocytes. Throughout embryonic development, HCN4 expression marked distinct CCS precursors at distinct stages, marking the entire CCS by late fetal stages. We also noted expression of HCN4 in distinct subsets of endothelium at specific developmental stages. CONCLUSIONS This study provides insight into contributions of first and second heart lineages to the CCS and highlights the potential use of HCN4 in conjunction with other markers for optimization of protocols for generation and isolation of specific conduction system precursors.
Collapse
Affiliation(s)
- Xingqun Liang
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.,Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Gang Wang
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Lizhu Lin
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Jennifer Lowe
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Qingquang Zhang
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lei Bu
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yihan Chen
- Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ju Chen
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yunfu Sun
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA.,Key Laboratory of Arrhythmia, Ministry of Education, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
7
|
Xiong Y, Swaminath G, Cao Q, Yang L, Guo Q, Salomonis H, Lu J, Houze JB, Dransfield PJ, Wang Y, Liu JJ, Wong S, Schwandner R, Steger F, Baribault H, Liu L, Coberly S, Miao L, Zhang J, Lin DCH, Schwarz M. Activation of FFA1 mediates GLP-1 secretion in mice. Evidence for allosterism at FFA1. Mol Cell Endocrinol 2013; 369:119-29. [PMID: 23403053 DOI: 10.1016/j.mce.2013.01.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/03/2013] [Accepted: 01/14/2013] [Indexed: 01/04/2023]
Abstract
FFA1 (GPR40) and GPR120 are G-protein-coupled receptors activated by long-chain fatty acids. FFA1 is expressed in pancreatic β-cells, where it regulates glucose-dependent insulin secretion, and GPR120 has been implicated in mediating GLP-1 secretion. We show here that FFA1 co-localizes with GLP-1 in enteroendocrine cells and plays a critical role in glucose management by mediating GLP-1 secretion in vivo. Corn oil induces GLP-1 secretion in wild type mice and in GPR120-/- mice, but not in FFA1-/- mice. α-Linolenic acid, an endogenous ligand of FFA1, induces GLP-1 secretion in GLUTag cells and in primary fetal mouse intestinal cells. Synthetic partial FFA1 agonists do not stimulate GLP-1 secretion in mice, but partial and full agonists combined function cooperatively to enhance receptor activation and GLP-1 secretion both in vitro and in vivo. We conclude that allosterism at FFA1 can contribute to postprandial glucose management by stimulating insulin secretion via an extrapancreatic mechanism of action, and that GPR120 in GLP-1 secretion requires further investigation.
Collapse
Affiliation(s)
- Yumei Xiong
- Department of Metabolic Disorders, Amgen Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Vedantham V, Evangelista M, Huang Y, Srivastava D. Spatiotemporal regulation of an Hcn4 enhancer defines a role for Mef2c and HDACs in cardiac electrical patterning. Dev Biol 2012; 373:149-62. [PMID: 23085412 DOI: 10.1016/j.ydbio.2012.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 11/17/2022]
Abstract
Regional differences in cardiomyocyte automaticity permit the sinoatrial node (SAN) to function as the leading cardiac pacemaker and the atrioventricular (AV) junction as a subsidiary pacemaker. The regulatory mechanisms controlling the distribution of automaticity within the heart are not understood. To understand regional variation in cardiac automaticity, we carried out an in vivo analysis of cis-regulatory elements that control expression of the hyperpolarization-activated cyclic-nucleotide gated ion channel 4 (Hcn4). Using transgenic mice, we found that spatial and temporal patterning of Hcn4 expression in the AV conduction system required cis-regulatory elements with multiple conserved fragments. One highly conserved region, which contained a myocyte enhancer factor 2C (Mef2C) binding site previously described in vitro, induced reporter expression specifically in the embryonic non-chamber myocardium and the postnatal AV bundle in a Mef2c-dependent manner in vivo. Inhibition of histone deacetylase (HDAC) activity in cultured transgenic embryos showed expansion of reporter activity to working myocardium. In adult animals, hypertrophy induced by transverse aortic constriction, which causes translocation of HDACs out of the nucleus, resulted in ectopic activation of the Hcn4 enhancer in working myocardium, recapitulating pathological electrical remodeling. These findings reveal mechanisms that control the distribution of automaticity among cardiomyocytes during development and in response to stress.
Collapse
Affiliation(s)
- Vasanth Vedantham
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
9
|
Yi T, Wong J, Feller E, Sink S, Taghli-Lamallem O, Wen J, Kim C, Fink M, Giles W, Soussou W, Chen HSV. Electrophysiological mapping of embryonic mouse hearts: mechanisms for developmental pacemaker switch and internodal conduction pathway. J Cardiovasc Electrophysiol 2011; 23:309-18. [PMID: 21985309 DOI: 10.1111/j.1540-8167.2011.02191.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Understanding sinoatrial node (SAN) development could help in developing therapies for SAN dysfunction. However, electrophysiological investigation of SAN development remains difficult because mutant mice with SAN dysfunctions are frequently embryonically lethal. Most research on SAN development is therefore limited to immunocytochemical observations without comparable functional studies. METHODS AND RESULTS We applied a multielectrode array (MEA) recording system to study SAN development in mouse hearts acutely isolated at embryonic ages (E) 8.5-12.5 days. Physiological heart rates were routinely restored, enabling accurate functional assessment of SAN development. We found that dominant pacemaking activity originated from the left inflow tract (LIFT) region at E8.5, but switched to the right SAN by E12.5. Combining MEA recordings and pharmacological agents, we show that intracellular calcium (Ca(2+))-mediated automaticity develops early and is the major mechanism of pulse generation in the LIFT of E8.5 hearts. Later in development at E12.5, sarcolemmal ion channels develop in the SAN at a time when pacemaker channels are down-regulated in the LIFT, leading to a switch in the dominant pacemaker location. Additionally, low micromolar concentrations of tetrodotoxin (TTX), a sodium channel blocker, minimally affect pacemaker rhythm at E8.5-E12.5, but suppress atrial activation and reveal a TTX-resistant SAN-atrioventricular node (internodal) pathway that mediates internodal conduction in E12.5 hearts. CONCLUSIONS Using a physiological mapping method, we demonstrate that differential mechanistic development of automaticity between the left and right inflow tract regions confers the pacemaker location switch. Moreover, a TTX-resistant pathway mediates preferential internodal conduction in E12.5 mouse hearts.
Collapse
Affiliation(s)
- Tongyin Yi
- Center for Neuroscience, Aging and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arnolds DE, Moskowitz IP. Inducible recombination in the cardiac conduction system of minK: CreERT² BAC transgenic mice. Genesis 2011; 49:878-84. [PMID: 21504046 DOI: 10.1002/dvg.20759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 03/31/2011] [Accepted: 04/12/2011] [Indexed: 02/06/2023]
Abstract
Inducible Cre recombination is a powerful technology that allows for spatial and temporal modulation of gene expression in vivo. Diseases of the cardiac conduction system (CCS) pose a significant clinical burden but are not currently well understood at the molecular level. To enable inducible recombination in the murine CCS, we created a minK:CreERT(2) bacterial artificial chromosome (BAC) transgenic mouse line. Cre activity is present after tamoxifen administration in the atrioventricular (AV) node, AV bundle, and bundle branches of adult transgenic mice. We anticipate that by enabling inducible recombination specifically in the AV node, bundle, and bundle branches, minK:CreERT(2) BAC transgenic mice will prove useful in advancing our understanding of CCS disease and function.
Collapse
Affiliation(s)
- David E Arnolds
- Department of Pediatrics, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
11
|
Autonomic nervous dysfunction in hamsters infected with West Nile virus. PLoS One 2011; 6:e19575. [PMID: 21573009 PMCID: PMC3090402 DOI: 10.1371/journal.pone.0019575] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 04/06/2011] [Indexed: 02/08/2023] Open
Abstract
Clinical studies and case reports clearly document that West Nile virus (WNV) can cause respiratory and gastrointestinal (GI) complications. Other functions controlled by the autonomic nervous system may also be directly affected by WNV, such as bladder and cardiac functions. To investigate how WNV can cause autonomic dysfunctions, we focused on the cardiac and GI dysfunctions of rodents infected with WNV. Infected hamsters had distension of the stomach and intestines at day 9 after viral challenge. GI motility was detected by a dye retention assay; phenol red dye was retained more in the stomachs of infected hamsters as compared to sham-infected hamsters. The amplitudes of electromygraphs (EMGs) of intestinal muscles were significantly reduced. Myenteric neurons that innervate the intestines, in addition to neurons in the brain stem, were identified to be infected with WNV. These data suggest that infected neurons controlling autonomic function were the cause of GI dysfunction in WNV-infected hamsters. Using radiotelemetry to record electrocardiograms and to measure heart rate variability (HRV), a well-accepted readout for autonomic function, we determined that HRV and autonomic function were suppressed in WNV-infected hamsters. Cardiac histopathology was observed at day 9 only in the right atrium, which was coincident with WNV staining. A subset of WNV infected cells was identified among cells with hyperplarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4) as a marker for cells in the sinoatrial (SA) and atrioventricular (AV) nodes. The unique contribution of this study is the discovery that WNV infection of hamsters can lead to autonomic dysfunction as determined by reduced HRV and reduced EMG amplitudes of the GI tract. These data may model autonomic dysfunction of the human West Nile neurological disease.
Collapse
|
12
|
Kim C, Majdi M, Xia P, Wei KA, Talantova M, Spiering S, Nelson B, Mercola M, Chen HSV. Non-cardiomyocytes influence the electrophysiological maturation of human embryonic stem cell-derived cardiomyocytes during differentiation. Stem Cells Dev 2010; 19:783-95. [PMID: 20001453 DOI: 10.1089/scd.2009.0349] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Various types of cardiomyocytes undergo changes in automaticity and electrical properties during fetal heart development. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs), like fetal cardiomyocytes, are electrophysiologically immature and exhibit automaticity. We used hESC-CMs to investigate developmental changes in mechanisms of automaticity and to determine whether electrophysiological maturation is driven by an intrinsic developmental clock and/or is regulated by interactions with non-cardiomyocytes in embryoid bodies (EBs). We isolated pure populations of hESC-CMs from EBs by lentivirus-engineered Puromycin resistance at various stages of differentiation. Using pharmacological agents, calcium (Ca(2+)) imaging, and intracellular recording techniques, we found that intracellular Ca(2+)-cycling mechanisms developed early and contributed to dominant automaticity throughout hESC-CM differentiation. Sarcolemmal ion channels evolved later upon further differentiation within EBs and played an increasing role in controlling automaticity and electrophysiological properties of hESC-CMs. In contrast to the development of intracellular Ca(2+)-handling proteins, ion channel development and electrophysiological maturation of hESC-CMs did not occur when hESC-CMs were isolated from EBs early and maintained in culture without further interaction with non-cardiomyocytes. Adding back non-cardiomyocytes to early-isolated hESC-CMs rescued the arrest of electrophysiological maturation, indicating that non-cardiomyocytes in EBs drive electrophysiological maturation of early hESC-CMs. Non-cardiomyocytes in EBs contain most cell types present in the embryonic heart that are known to influence early cardiac development. Our study is the first to demonstrate that non-cardiomyocytes influence electrophysiological maturation of early hESC-CMs in cultures. Defining the nature of these extrinsic signals will aid in the directed maturation of immature hESC-CMs to mitigate arrhythmogenic risks of cell-based therapies.
Collapse
Affiliation(s)
- Changsung Kim
- Center for Neuroscience, Aging and Stem Cell Research, Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The Cardiac Pacemaker and Conduction System Develops From Embryonic Myocardium that Retains Its Primitive Phenotype. J Cardiovasc Pharmacol 2010; 56:6-15. [DOI: 10.1097/fjc.0b013e3181e775d3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Abstract
Purkinje fibers in cardiac conduction tissue during fatal electrocution. A total of 16 Sprague Dawley rats were divided into 2 groups as follows: the electrocution group and the control group.Animals were deeply anesthetized with sodium pentobarbital and, in the electrocution group, all 8 rats underwent a fatal electrical shock (220 v,50 Hz) followed by cervical dislocation. In the control group, all 8 rats underwent execution by cervical dislocation. Following death, hearts were rapidly excised and perfused with 1% paraformaldehyde before tissues of the left ventricular anterior wall (LVAW) were isolated. The microscopic structure of the Purkinje fibers were subsequently analyzed using conventional hematoxylin and eosin staining. A majority of the Purkinje fibers were located in groups among the cardiac muscle of the LVAW. A significant reduction in Purkinje fiber expression was displayed in the electrocution group compared with the control group (P G 0.05).The mean total number of Purkinje fibers for the electrocution and control groups were 59 T 11 and 3287 T 19 cells, respectively (P G 0.05).The estimated number of Purkinje fibers in the LVAW of the control group was significantly greater than observed in the electrocution group(41.09 T 0.24 vs. 0.7375 T 0.14, P G 0.05). The findings of the current study suggest that such a reduction would be reflected in abnormal cardiac conduction and a possible cause of sudden death.
Collapse
|
15
|
Mommersteeg MTM, Christoffels VM, Anderson RH, Moorman AFM. Atrial fibrillation: a developmental point of view. Heart Rhythm 2009; 6:1818-24. [PMID: 19726237 DOI: 10.1016/j.hrthm.2009.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/10/2009] [Indexed: 02/02/2023]
Abstract
The myocardial sleeves of the systemic venous tributaries and the pulmonary veins are known to be common anatomic substrates for atrial fibrillation. Rapidly evolving evidence has shown that a substantial part of the paroxysmal variant of this abnormal rhythm has a familial heritage, and the number of genes found to be involved is increasing. One of the mechanisms underlying the condition is ectopic pacemaking activity. Knowledge of the normal embryological development of the atrial myocardium, in particular the myocardial sleeves clothing the systemic venous tributaries and the pulmonary veins at their junctions with the atrial chambers, may contribute to the understanding of the origins of such ectopic pacing. In this respect, it is now well established that the myocardial sleeves of the systemic venous tributaries have a distinct origin and program of gene expression when compared with the pulmonary venous myocardium. The myocardium clothing the pulmonary veins, however, is particularly susceptible to changes in the levels of gene expression, with the changes then favoring the presence of genes responsible for pacemaking. Only recently has interest developed in the genetic and heritable bases of atrial fibrillation, and much is still to be learned. Better understanding of both the developmental and genetic factors, nonetheless, will surely be helpful in the diagnosis, prevention, and treatment of this troublesome arrhythmia. With this in mind, therefore, we have reviewed the current knowledge concerning the initial development of the pulmonary venous myocardium, emphasizing its crucial differences from the systemic venous myocardium.
Collapse
|
16
|
Affiliation(s)
| | - Antoon F.M. Moorman
- From the Heart Failure Research Center, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Gross DR. Other Transgenic Animal Models Used in Cardiovascular Studies. ANIMAL MODELS IN CARDIOVASCULAR RESEARCH 2009. [PMCID: PMC7121723 DOI: 10.1007/978-0-387-95962-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Previous chapters have described a large number of transgenic animal models used to study specific cardiovascular syndromes. This chapter will fill in some gaps. Many of these transgenic animals were developed to study normal and/or abnormal physiological responses in other organ systems, or to study basic biochemical and molecular reactions or pathways. These models were then discovered to also have effects on the cardiovascular system, some of them unanticipated. A word of caution, particularly when highly inbred mouse strains are used to develop transgenic models - not all strains of a particular species are created equal. When cardiovascular parameters of age- and sex-matched A/J and C57BL/6J inbred mice were compared the C57BL/6J mice demonstrated eccentric physiologic ventricular hypertrophy, increased ventricular function, lower heart rates, and increased exercise endurance.1
Collapse
|
18
|
Sedmera D. Development of cardiac conduction system in mammals with a focus on the anatomical, functional and medical/genetical aspects. J Appl Biomed 2007. [DOI: 10.32725/jab.2007.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|